Recast: Update to upstream commit 57610fa (2019)

(cherry picked from commit 6ba546f98b)
This commit is contained in:
Rémi Verschelde 2020-04-30 15:16:13 +02:00
parent 8730722a74
commit 8d394f6c01
8 changed files with 478 additions and 239 deletions

View file

@ -440,12 +440,12 @@ Files extracted from upstream source:
## recastnavigation
- Upstream: https://github.com/recastnavigation/recastnavigation
- version: git (ef3ea40f, 2017)
- Version: git (57610fa6ef31b39020231906f8c5d40eaa8294ae, 2019)
- License: zlib
Files extracted from upstream source:
- `Recast/` folder
- `Recast/` folder without `CMakeLists.txt`
- License.txt

View file

@ -332,6 +332,8 @@ struct rcCompactSpan
/// @ingroup recast
struct rcCompactHeightfield
{
rcCompactHeightfield();
~rcCompactHeightfield();
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
int spanCount; ///< The number of spans in the heightfield.
@ -376,6 +378,8 @@ struct rcHeightfieldLayer
/// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet
struct rcHeightfieldLayerSet
{
rcHeightfieldLayerSet();
~rcHeightfieldLayerSet();
rcHeightfieldLayer* layers; ///< The layers in the set. [Size: #nlayers]
int nlayers; ///< The number of layers in the set.
};
@ -395,6 +399,8 @@ struct rcContour
/// @ingroup recast
struct rcContourSet
{
rcContourSet();
~rcContourSet();
rcContour* conts; ///< An array of the contours in the set. [Size: #nconts]
int nconts; ///< The number of contours in the set.
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
@ -411,6 +417,8 @@ struct rcContourSet
/// @ingroup recast
struct rcPolyMesh
{
rcPolyMesh();
~rcPolyMesh();
unsigned short* verts; ///< The mesh vertices. [Form: (x, y, z) * #nverts]
unsigned short* polys; ///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp]
unsigned short* regs; ///< The region id assigned to each polygon. [Length: #maxpolys]

View file

@ -20,6 +20,9 @@
#define RECASTALLOC_H
#include <stddef.h>
#include <stdint.h>
#include <RecastAssert.h>
/// Provides hint values to the memory allocator on how long the
/// memory is expected to be used.
@ -58,64 +61,257 @@ void* rcAlloc(size_t size, rcAllocHint hint);
/// @see rcAlloc
void rcFree(void* ptr);
/// An implementation of operator new usable for placement new. The default one is part of STL (which we don't use).
/// rcNewTag is a dummy type used to differentiate our operator from the STL one, in case users import both Recast
/// and STL.
struct rcNewTag {};
inline void* operator new(size_t, const rcNewTag&, void* p) { return p; }
inline void operator delete(void*, const rcNewTag&, void*) {}
/// A simple dynamic array of integers.
/// Signed to avoid warnnings when comparing to int loop indexes, and common error with comparing to zero.
/// MSVC2010 has a bug where ssize_t is unsigned (!!!).
typedef intptr_t rcSizeType;
#define RC_SIZE_MAX INTPTR_MAX
/// Macros to hint to the compiler about the likeliest branch. Please add a benchmark that demonstrates a performance
/// improvement before introducing use cases.
#if defined(__GNUC__) || defined(__clang__)
#define rcLikely(x) __builtin_expect((x), true)
#define rcUnlikely(x) __builtin_expect((x), false)
#else
#define rcLikely(x) (x)
#define rcUnlikely(x) (x)
#endif
/// Variable-sized storage type. Mimics the interface of std::vector<T> with some notable differences:
/// * Uses rcAlloc()/rcFree() to handle storage.
/// * No support for a custom allocator.
/// * Uses signed size instead of size_t to avoid warnings in for loops: "for (int i = 0; i < foo.size(); i++)"
/// * Omits methods of limited utility: insert/erase, (bad performance), at (we don't use exceptions), operator=.
/// * assign() and the pre-sizing constructor follow C++11 semantics -- they don't construct a temporary if no value is provided.
/// * push_back() and resize() support adding values from the current vector. Range-based constructors and assign(begin, end) do not.
/// * No specialization for bool.
template <typename T, rcAllocHint H>
class rcVectorBase {
rcSizeType m_size;
rcSizeType m_cap;
T* m_data;
// Constructs a T at the give address with either the copy constructor or the default.
static void construct(T* p, const T& v) { ::new(rcNewTag(), (void*)p) T(v); }
static void construct(T* p) { ::new(rcNewTag(), (void*)p) T; }
static void construct_range(T* begin, T* end);
static void construct_range(T* begin, T* end, const T& value);
static void copy_range(T* dst, const T* begin, const T* end);
void destroy_range(rcSizeType begin, rcSizeType end);
// Creates an array of the given size, copies all of this vector's data into it, and returns it.
T* allocate_and_copy(rcSizeType size);
void resize_impl(rcSizeType size, const T* value);
public:
typedef rcSizeType size_type;
typedef T value_type;
rcVectorBase() : m_size(0), m_cap(0), m_data(0) {};
rcVectorBase(const rcVectorBase<T, H>& other) : m_size(0), m_cap(0), m_data(0) { assign(other.begin(), other.end()); }
explicit rcVectorBase(rcSizeType count) : m_size(0), m_cap(0), m_data(0) { resize(count); }
rcVectorBase(rcSizeType count, const T& value) : m_size(0), m_cap(0), m_data(0) { resize(count, value); }
rcVectorBase(const T* begin, const T* end) : m_size(0), m_cap(0), m_data(0) { assign(begin, end); }
~rcVectorBase() { destroy_range(0, m_size); rcFree(m_data); }
// Unlike in std::vector, we return a bool to indicate whether the alloc was successful.
bool reserve(rcSizeType size);
void assign(rcSizeType count, const T& value) { clear(); resize(count, value); }
void assign(const T* begin, const T* end);
void resize(rcSizeType size) { resize_impl(size, NULL); }
void resize(rcSizeType size, const T& value) { resize_impl(size, &value); }
// Not implemented as resize(0) because resize requires T to be default-constructible.
void clear() { destroy_range(0, m_size); m_size = 0; }
void push_back(const T& value);
void pop_back() { rcAssert(m_size > 0); back().~T(); m_size--; }
rcSizeType size() const { return m_size; }
rcSizeType capacity() const { return m_cap; }
bool empty() const { return size() == 0; }
const T& operator[](rcSizeType i) const { rcAssert(i >= 0 && i < m_size); return m_data[i]; }
T& operator[](rcSizeType i) { rcAssert(i >= 0 && i < m_size); return m_data[i]; }
const T& front() const { rcAssert(m_size); return m_data[0]; }
T& front() { rcAssert(m_size); return m_data[0]; }
const T& back() const { rcAssert(m_size); return m_data[m_size - 1]; };
T& back() { rcAssert(m_size); return m_data[m_size - 1]; };
const T* data() const { return m_data; }
T* data() { return m_data; }
T* begin() { return m_data; }
T* end() { return m_data + m_size; }
const T* begin() const { return m_data; }
const T* end() const { return m_data + m_size; }
void swap(rcVectorBase<T, H>& other);
// Explicitly deleted.
rcVectorBase& operator=(const rcVectorBase<T, H>& other);
};
template<typename T, rcAllocHint H>
bool rcVectorBase<T, H>::reserve(rcSizeType count) {
if (count <= m_cap) {
return true;
}
T* new_data = allocate_and_copy(count);
if (!new_data) {
return false;
}
destroy_range(0, m_size);
rcFree(m_data);
m_data = new_data;
m_cap = count;
return true;
}
template <typename T, rcAllocHint H>
T* rcVectorBase<T, H>::allocate_and_copy(rcSizeType size) {
rcAssert(RC_SIZE_MAX / static_cast<rcSizeType>(sizeof(T)) >= size);
T* new_data = static_cast<T*>(rcAlloc(sizeof(T) * size, H));
if (new_data) {
copy_range(new_data, m_data, m_data + m_size);
}
return new_data;
}
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::assign(const T* begin, const T* end) {
clear();
reserve(end - begin);
m_size = end - begin;
copy_range(m_data, begin, end);
}
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::push_back(const T& value) {
// rcLikely increases performance by ~50% on BM_rcVector_PushPreallocated,
// and by ~2-5% on BM_rcVector_Push.
if (rcLikely(m_size < m_cap)) {
construct(m_data + m_size++, value);
return;
}
rcAssert(RC_SIZE_MAX / 2 >= m_size);
rcSizeType new_cap = m_size ? 2*m_size : 1;
T* data = allocate_and_copy(new_cap);
// construct between allocate and destroy+free in case value is
// in this vector.
construct(data + m_size, value);
destroy_range(0, m_size);
m_size++;
m_cap = new_cap;
rcFree(m_data);
m_data = data;
}
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::resize_impl(rcSizeType size, const T* value) {
if (size < m_size) {
destroy_range(size, m_size);
m_size = size;
} else if (size > m_size) {
T* new_data = allocate_and_copy(size);
// We defer deconstructing/freeing old data until after constructing
// new elements in case "value" is there.
if (value) {
construct_range(new_data + m_size, new_data + size, *value);
} else {
construct_range(new_data + m_size, new_data + size);
}
destroy_range(0, m_size);
rcFree(m_data);
m_data = new_data;
m_cap = size;
m_size = size;
}
}
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::swap(rcVectorBase<T, H>& other) {
// TODO: Reorganize headers so we can use rcSwap here.
rcSizeType tmp_cap = other.m_cap;
rcSizeType tmp_size = other.m_size;
T* tmp_data = other.m_data;
other.m_cap = m_cap;
other.m_size = m_size;
other.m_data = m_data;
m_cap = tmp_cap;
m_size = tmp_size;
m_data = tmp_data;
}
// static
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::construct_range(T* begin, T* end) {
for (T* p = begin; p < end; p++) {
construct(p);
}
}
// static
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::construct_range(T* begin, T* end, const T& value) {
for (T* p = begin; p < end; p++) {
construct(p, value);
}
}
// static
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::copy_range(T* dst, const T* begin, const T* end) {
for (rcSizeType i = 0 ; i < end - begin; i++) {
construct(dst + i, begin[i]);
}
}
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::destroy_range(rcSizeType begin, rcSizeType end) {
for (rcSizeType i = begin; i < end; i++) {
m_data[i].~T();
}
}
template <typename T>
class rcTempVector : public rcVectorBase<T, RC_ALLOC_TEMP> {
typedef rcVectorBase<T, RC_ALLOC_TEMP> Base;
public:
rcTempVector() : Base() {}
explicit rcTempVector(rcSizeType size) : Base(size) {}
rcTempVector(rcSizeType size, const T& value) : Base(size, value) {}
rcTempVector(const rcTempVector<T>& other) : Base(other) {}
rcTempVector(const T* begin, const T* end) : Base(begin, end) {}
};
template <typename T>
class rcPermVector : public rcVectorBase<T, RC_ALLOC_PERM> {
typedef rcVectorBase<T, RC_ALLOC_PERM> Base;
public:
rcPermVector() : Base() {}
explicit rcPermVector(rcSizeType size) : Base(size) {}
rcPermVector(rcSizeType size, const T& value) : Base(size, value) {}
rcPermVector(const rcPermVector<T>& other) : Base(other) {}
rcPermVector(const T* begin, const T* end) : Base(begin, end) {}
};
/// Legacy class. Prefer rcVector<int>.
class rcIntArray
{
int* m_data;
int m_size, m_cap;
void doResize(int n);
// Explicitly disabled copy constructor and copy assignment operator.
rcIntArray(const rcIntArray&);
rcIntArray& operator=(const rcIntArray&);
rcTempVector<int> m_impl;
public:
/// Constructs an instance with an initial array size of zero.
rcIntArray() : m_data(0), m_size(0), m_cap(0) {}
/// Constructs an instance initialized to the specified size.
/// @param[in] n The initial size of the integer array.
rcIntArray(int n) : m_data(0), m_size(0), m_cap(0) { resize(n); }
~rcIntArray() { rcFree(m_data); }
/// Specifies the new size of the integer array.
/// @param[in] n The new size of the integer array.
void resize(int n)
{
if (n > m_cap)
doResize(n);
m_size = n;
}
/// Push the specified integer onto the end of the array and increases the size by one.
/// @param[in] item The new value.
void push(int item) { resize(m_size+1); m_data[m_size-1] = item; }
/// Returns the value at the end of the array and reduces the size by one.
/// @return The value at the end of the array.
rcIntArray() {}
rcIntArray(int n) : m_impl(n, 0) {}
void push(int item) { m_impl.push_back(item); }
void resize(int size) { m_impl.resize(size); }
int pop()
{
if (m_size > 0)
m_size--;
return m_data[m_size];
int v = m_impl.back();
m_impl.pop_back();
return v;
}
/// The value at the specified array index.
/// @warning Does not provide overflow protection.
/// @param[in] i The index of the value.
const int& operator[](int i) const { return m_data[i]; }
/// The value at the specified array index.
/// @warning Does not provide overflow protection.
/// @param[in] i The index of the value.
int& operator[](int i) { return m_data[i]; }
/// The current size of the integer array.
int size() const { return m_size; }
int size() const { return static_cast<int>(m_impl.size()); }
int& operator[](int index) { return m_impl[index]; }
int operator[](int index) const { return m_impl[index]; }
};
/// A simple helper class used to delete an array when it goes out of scope.

View file

@ -23,11 +23,34 @@
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <new>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"
namespace
{
/// Allocates and constructs an object of the given type, returning a pointer.
/// TODO: Support constructor args.
/// @param[in] hint Hint to the allocator.
template <typename T>
T* rcNew(rcAllocHint hint) {
T* ptr = (T*)rcAlloc(sizeof(T), hint);
::new(rcNewTag(), (void*)ptr) T();
return ptr;
}
/// Destroys and frees an object allocated with rcNew.
/// @param[in] ptr The object pointer to delete.
template <typename T>
void rcDelete(T* ptr) {
if (ptr) {
ptr->~T();
rcFree((void*)ptr);
}
}
} // namespace
float rcSqrt(float x)
{
return sqrtf(x);
@ -73,9 +96,8 @@ void rcContext::log(const rcLogCategory category, const char* format, ...)
rcHeightfield* rcAllocHeightfield()
{
return new (rcAlloc(sizeof(rcHeightfield), RC_ALLOC_PERM)) rcHeightfield;
return rcNew<rcHeightfield>(RC_ALLOC_PERM);
}
rcHeightfield::rcHeightfield()
: width()
, height()
@ -104,84 +126,133 @@ rcHeightfield::~rcHeightfield()
void rcFreeHeightField(rcHeightfield* hf)
{
if (!hf) return;
hf->~rcHeightfield();
rcFree(hf);
rcDelete(hf);
}
rcCompactHeightfield* rcAllocCompactHeightfield()
{
rcCompactHeightfield* chf = (rcCompactHeightfield*)rcAlloc(sizeof(rcCompactHeightfield), RC_ALLOC_PERM);
memset(chf, 0, sizeof(rcCompactHeightfield));
return chf;
return rcNew<rcCompactHeightfield>(RC_ALLOC_PERM);
}
void rcFreeCompactHeightfield(rcCompactHeightfield* chf)
{
if (!chf) return;
rcFree(chf->cells);
rcFree(chf->spans);
rcFree(chf->dist);
rcFree(chf->areas);
rcFree(chf);
rcDelete(chf);
}
rcCompactHeightfield::rcCompactHeightfield()
: width(),
height(),
spanCount(),
walkableHeight(),
walkableClimb(),
borderSize(),
maxDistance(),
maxRegions(),
bmin(),
bmax(),
cs(),
ch(),
cells(),
spans(),
dist(),
areas()
{
}
rcCompactHeightfield::~rcCompactHeightfield()
{
rcFree(cells);
rcFree(spans);
rcFree(dist);
rcFree(areas);
}
rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet()
{
rcHeightfieldLayerSet* lset = (rcHeightfieldLayerSet*)rcAlloc(sizeof(rcHeightfieldLayerSet), RC_ALLOC_PERM);
memset(lset, 0, sizeof(rcHeightfieldLayerSet));
return lset;
return rcNew<rcHeightfieldLayerSet>(RC_ALLOC_PERM);
}
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset)
{
if (!lset) return;
for (int i = 0; i < lset->nlayers; ++i)
rcDelete(lset);
}
rcHeightfieldLayerSet::rcHeightfieldLayerSet()
: layers(), nlayers() {}
rcHeightfieldLayerSet::~rcHeightfieldLayerSet()
{
for (int i = 0; i < nlayers; ++i)
{
rcFree(lset->layers[i].heights);
rcFree(lset->layers[i].areas);
rcFree(lset->layers[i].cons);
rcFree(layers[i].heights);
rcFree(layers[i].areas);
rcFree(layers[i].cons);
}
rcFree(lset->layers);
rcFree(lset);
rcFree(layers);
}
rcContourSet* rcAllocContourSet()
{
rcContourSet* cset = (rcContourSet*)rcAlloc(sizeof(rcContourSet), RC_ALLOC_PERM);
memset(cset, 0, sizeof(rcContourSet));
return cset;
return rcNew<rcContourSet>(RC_ALLOC_PERM);
}
void rcFreeContourSet(rcContourSet* cset)
{
if (!cset) return;
for (int i = 0; i < cset->nconts; ++i)
{
rcFree(cset->conts[i].verts);
rcFree(cset->conts[i].rverts);
}
rcFree(cset->conts);
rcFree(cset);
rcDelete(cset);
}
rcContourSet::rcContourSet()
: conts(),
nconts(),
bmin(),
bmax(),
cs(),
ch(),
width(),
height(),
borderSize(),
maxError() {}
rcContourSet::~rcContourSet()
{
for (int i = 0; i < nconts; ++i)
{
rcFree(conts[i].verts);
rcFree(conts[i].rverts);
}
rcFree(conts);
}
rcPolyMesh* rcAllocPolyMesh()
{
rcPolyMesh* pmesh = (rcPolyMesh*)rcAlloc(sizeof(rcPolyMesh), RC_ALLOC_PERM);
memset(pmesh, 0, sizeof(rcPolyMesh));
return pmesh;
return rcNew<rcPolyMesh>(RC_ALLOC_PERM);
}
void rcFreePolyMesh(rcPolyMesh* pmesh)
{
if (!pmesh) return;
rcFree(pmesh->verts);
rcFree(pmesh->polys);
rcFree(pmesh->regs);
rcFree(pmesh->flags);
rcFree(pmesh->areas);
rcFree(pmesh);
rcDelete(pmesh);
}
rcPolyMesh::rcPolyMesh()
: verts(),
polys(),
regs(),
flags(),
areas(),
nverts(),
npolys(),
maxpolys(),
nvp(),
bmin(),
bmax(),
cs(),
ch(),
borderSize(),
maxEdgeError() {}
rcPolyMesh::~rcPolyMesh()
{
rcFree(verts);
rcFree(polys);
rcFree(regs);
rcFree(flags);
rcFree(areas);
}
rcPolyMeshDetail* rcAllocPolyMeshDetail()

View file

@ -58,29 +58,3 @@ void rcFree(void* ptr)
if (ptr)
sRecastFreeFunc(ptr);
}
/// @class rcIntArray
///
/// While it is possible to pre-allocate a specific array size during
/// construction or by using the #resize method, certain methods will
/// automatically resize the array as needed.
///
/// @warning The array memory is not initialized to zero when the size is
/// manually set during construction or when using #resize.
/// @par
///
/// Using this method ensures the array is at least large enough to hold
/// the specified number of elements. This can improve performance by
/// avoiding auto-resizing during use.
void rcIntArray::doResize(int n)
{
if (!m_cap) m_cap = n;
while (m_cap < n) m_cap *= 2;
int* newData = (int*)rcAlloc(m_cap*sizeof(int), RC_ALLOC_TEMP);
rcAssert(newData);
if (m_size && newData) memcpy(newData, m_data, m_size*sizeof(int));
rcFree(m_data);
m_data = newData;
}

View file

@ -1009,7 +1009,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
if (cset.nconts > 0)
{
// Calculate winding of all polygons.
rcScopedDelete<char> winding((char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP));
rcScopedDelete<signed char> winding((signed char*)rcAlloc(sizeof(signed char)*cset.nconts, RC_ALLOC_TEMP));
if (!winding)
{
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);

View file

@ -557,15 +557,16 @@ static float polyMinExtent(const float* verts, const int nverts)
inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, rcIntArray& tris)
static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, const int nin, rcIntArray& tris)
{
int start = 0, left = 1, right = nhull-1;
// Start from an ear with shortest perimeter.
// This tends to favor well formed triangles as starting point.
float dmin = 0;
float dmin = FLT_MAX;
for (int i = 0; i < nhull; i++)
{
if (hull[i] >= nin) continue; // Ears are triangles with original vertices as middle vertex while others are actually line segments on edges
int pi = prev(i, nhull);
int ni = next(i, nhull);
const float* pv = &verts[hull[pi]*3];
@ -770,7 +771,7 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
// If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points.
if (minExtent < sampleDist*2)
{
triangulateHull(nverts, verts, nhull, hull, tris);
triangulateHull(nverts, verts, nhull, hull, nin, tris);
return true;
}
@ -778,7 +779,7 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
// We're using the triangulateHull instead of delaunayHull as it tends to
// create a bit better triangulation for long thin triangles when there
// are no internal points.
triangulateHull(nverts, verts, nhull, hull, tris);
triangulateHull(nverts, verts, nhull, hull, nin, tris);
if (tris.size() == 0)
{
@ -1140,7 +1141,8 @@ static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
static unsigned char getEdgeFlags(const float* va, const float* vb,
const float* vpoly, const int npoly)
{
// Return true if edge (va,vb) is part of the polygon.
// The flag returned by this function matches dtDetailTriEdgeFlags in Detour.
// Figure out if edge (va,vb) is part of the polygon boundary.
static const float thrSqr = rcSqr(0.001f);
for (int i = 0, j = npoly-1; i < npoly; j=i++)
{

View file

@ -25,8 +25,17 @@
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"
#include <new>
namespace
{
struct LevelStackEntry
{
LevelStackEntry(int x_, int y_, int index_) : x(x_), y(y_), index(index_) {}
int x;
int y;
int index;
};
} // namespace
static void calculateDistanceField(rcCompactHeightfield& chf, unsigned short* src, unsigned short& maxDist)
{
@ -245,17 +254,15 @@ static bool floodRegion(int x, int y, int i,
unsigned short level, unsigned short r,
rcCompactHeightfield& chf,
unsigned short* srcReg, unsigned short* srcDist,
rcIntArray& stack)
rcTempVector<LevelStackEntry>& stack)
{
const int w = chf.width;
const unsigned char area = chf.areas[i];
// Flood fill mark region.
stack.resize(0);
stack.push((int)x);
stack.push((int)y);
stack.push((int)i);
stack.clear();
stack.push_back(LevelStackEntry(x, y, i));
srcReg[i] = r;
srcDist[i] = 0;
@ -264,9 +271,11 @@ static bool floodRegion(int x, int y, int i,
while (stack.size() > 0)
{
int ci = stack.pop();
int cy = stack.pop();
int cx = stack.pop();
LevelStackEntry& back = stack.back();
int cx = back.x;
int cy = back.y;
int ci = back.index;
stack.pop_back();
const rcCompactSpan& cs = chf.spans[ci];
@ -332,9 +341,7 @@ static bool floodRegion(int x, int y, int i,
{
srcReg[ai] = r;
srcDist[ai] = 0;
stack.push(ax);
stack.push(ay);
stack.push(ai);
stack.push_back(LevelStackEntry(ax, ay, ai));
}
}
}
@ -343,12 +350,20 @@ static bool floodRegion(int x, int y, int i,
return count > 0;
}
static unsigned short* expandRegions(int maxIter, unsigned short level,
rcCompactHeightfield& chf,
unsigned short* srcReg, unsigned short* srcDist,
unsigned short* dstReg, unsigned short* dstDist,
rcIntArray& stack,
bool fillStack)
// Struct to keep track of entries in the region table that have been changed.
struct DirtyEntry
{
DirtyEntry(int index_, unsigned short region_, unsigned short distance2_)
: index(index_), region(region_), distance2(distance2_) {}
int index;
unsigned short region;
unsigned short distance2;
};
static void expandRegions(int maxIter, unsigned short level,
rcCompactHeightfield& chf,
unsigned short* srcReg, unsigned short* srcDist,
rcTempVector<LevelStackEntry>& stack,
bool fillStack)
{
const int w = chf.width;
const int h = chf.height;
@ -356,7 +371,7 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
if (fillStack)
{
// Find cells revealed by the raised level.
stack.resize(0);
stack.clear();
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
@ -366,9 +381,7 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
{
if (chf.dist[i] >= level && srcReg[i] == 0 && chf.areas[i] != RC_NULL_AREA)
{
stack.push(x);
stack.push(y);
stack.push(i);
stack.push_back(LevelStackEntry(x, y, i));
}
}
}
@ -377,27 +390,26 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
else // use cells in the input stack
{
// mark all cells which already have a region
for (int j=0; j<stack.size(); j+=3)
for (int j=0; j<stack.size(); j++)
{
int i = stack[j+2];
int i = stack[j].index;
if (srcReg[i] != 0)
stack[j+2] = -1;
stack[j].index = -1;
}
}
rcTempVector<DirtyEntry> dirtyEntries;
int iter = 0;
while (stack.size() > 0)
{
int failed = 0;
dirtyEntries.clear();
memcpy(dstReg, srcReg, sizeof(unsigned short)*chf.spanCount);
memcpy(dstDist, srcDist, sizeof(unsigned short)*chf.spanCount);
for (int j = 0; j < stack.size(); j += 3)
for (int j = 0; j < stack.size(); j++)
{
int x = stack[j+0];
int y = stack[j+1];
int i = stack[j+2];
int x = stack[j].x;
int y = stack[j].y;
int i = stack[j].index;
if (i < 0)
{
failed++;
@ -426,9 +438,8 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
}
if (r)
{
stack[j+2] = -1; // mark as used
dstReg[i] = r;
dstDist[i] = d2;
stack[j].index = -1; // mark as used
dirtyEntries.push_back(DirtyEntry(i, r, d2));
}
else
{
@ -436,11 +447,14 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
}
}
// rcSwap source and dest.
rcSwap(srcReg, dstReg);
rcSwap(srcDist, dstDist);
// Copy entries that differ between src and dst to keep them in sync.
for (int i = 0; i < dirtyEntries.size(); i++) {
int idx = dirtyEntries[i].index;
srcReg[idx] = dirtyEntries[i].region;
srcDist[idx] = dirtyEntries[i].distance2;
}
if (failed*3 == stack.size())
if (failed == stack.size())
break;
if (level > 0)
@ -450,16 +464,14 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
break;
}
}
return srcReg;
}
static void sortCellsByLevel(unsigned short startLevel,
rcCompactHeightfield& chf,
unsigned short* srcReg,
unsigned int nbStacks, rcIntArray* stacks,
const unsigned short* srcReg,
unsigned int nbStacks, rcTempVector<LevelStackEntry>* stacks,
unsigned short loglevelsPerStack) // the levels per stack (2 in our case) as a bit shift
{
const int w = chf.width;
@ -467,7 +479,7 @@ static void sortCellsByLevel(unsigned short startLevel,
startLevel = startLevel >> loglevelsPerStack;
for (unsigned int j=0; j<nbStacks; ++j)
stacks[j].resize(0);
stacks[j].clear();
// put all cells in the level range into the appropriate stacks
for (int y = 0; y < h; ++y)
@ -487,26 +499,23 @@ static void sortCellsByLevel(unsigned short startLevel,
if (sId < 0)
sId = 0;
stacks[sId].push(x);
stacks[sId].push(y);
stacks[sId].push(i);
stacks[sId].push_back(LevelStackEntry(x, y, i));
}
}
}
}
static void appendStacks(rcIntArray& srcStack, rcIntArray& dstStack,
unsigned short* srcReg)
static void appendStacks(const rcTempVector<LevelStackEntry>& srcStack,
rcTempVector<LevelStackEntry>& dstStack,
const unsigned short* srcReg)
{
for (int j=0; j<srcStack.size(); j+=3)
for (int j=0; j<srcStack.size(); j++)
{
int i = srcStack[j+2];
int i = srcStack[j].index;
if ((i < 0) || (srcReg[i] != 0))
continue;
dstStack.push(srcStack[j]);
dstStack.push(srcStack[j+1]);
dstStack.push(srcStack[j+2]);
dstStack.push_back(srcStack[j]);
}
}
@ -671,7 +680,7 @@ static bool isRegionConnectedToBorder(const rcRegion& reg)
return false;
}
static bool isSolidEdge(rcCompactHeightfield& chf, unsigned short* srcReg,
static bool isSolidEdge(rcCompactHeightfield& chf, const unsigned short* srcReg,
int x, int y, int i, int dir)
{
const rcCompactSpan& s = chf.spans[i];
@ -690,7 +699,7 @@ static bool isSolidEdge(rcCompactHeightfield& chf, unsigned short* srcReg,
static void walkContour(int x, int y, int i, int dir,
rcCompactHeightfield& chf,
unsigned short* srcReg,
const unsigned short* srcReg,
rcIntArray& cont)
{
int startDir = dir;
@ -786,16 +795,15 @@ static bool mergeAndFilterRegions(rcContext* ctx, int minRegionArea, int mergeRe
const int h = chf.height;
const int nreg = maxRegionId+1;
rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP);
if (!regions)
{
rcTempVector<rcRegion> regions;
if (!regions.reserve(nreg)) {
ctx->log(RC_LOG_ERROR, "mergeAndFilterRegions: Out of memory 'regions' (%d).", nreg);
return false;
}
// Construct regions
for (int i = 0; i < nreg; ++i)
new(&regions[i]) rcRegion((unsigned short)i);
regions.push_back(rcRegion((unsigned short) i));
// Find edge of a region and find connections around the contour.
for (int y = 0; y < h; ++y)
@ -1021,11 +1029,6 @@ static bool mergeAndFilterRegions(rcContext* ctx, int minRegionArea, int mergeRe
if (regions[i].overlap)
overlaps.push(regions[i].id);
for (int i = 0; i < nreg; ++i)
regions[i].~rcRegion();
rcFree(regions);
return true;
}
@ -1041,22 +1044,21 @@ static void addUniqueConnection(rcRegion& reg, int n)
static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea,
unsigned short& maxRegionId,
rcCompactHeightfield& chf,
unsigned short* srcReg, rcIntArray& /*overlaps*/)
unsigned short* srcReg)
{
const int w = chf.width;
const int h = chf.height;
const int nreg = maxRegionId+1;
rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP);
if (!regions)
{
rcTempVector<rcRegion> regions;
// Construct regions
if (!regions.reserve(nreg)) {
ctx->log(RC_LOG_ERROR, "mergeAndFilterLayerRegions: Out of memory 'regions' (%d).", nreg);
return false;
}
// Construct regions
for (int i = 0; i < nreg; ++i)
new(&regions[i]) rcRegion((unsigned short)i);
regions.push_back(rcRegion((unsigned short) i));
// Find region neighbours and overlapping regions.
rcIntArray lregs(32);
@ -1234,10 +1236,6 @@ static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea,
srcReg[i] = regions[srcReg[i]].id;
}
for (int i = 0; i < nreg; ++i)
regions[i].~rcRegion();
rcFree(regions);
return true;
}
@ -1391,9 +1389,9 @@ bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++;
paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++;
chf.borderSize = borderSize;
}
chf.borderSize = borderSize;
rcIntArray prev(256);
@ -1535,7 +1533,7 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
const int w = chf.width;
const int h = chf.height;
rcScopedDelete<unsigned short> buf((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*4, RC_ALLOC_TEMP));
rcScopedDelete<unsigned short> buf((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*2, RC_ALLOC_TEMP));
if (!buf)
{
ctx->log(RC_LOG_ERROR, "rcBuildRegions: Out of memory 'tmp' (%d).", chf.spanCount*4);
@ -1546,17 +1544,15 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
const int LOG_NB_STACKS = 3;
const int NB_STACKS = 1 << LOG_NB_STACKS;
rcIntArray lvlStacks[NB_STACKS];
rcTempVector<LevelStackEntry> lvlStacks[NB_STACKS];
for (int i=0; i<NB_STACKS; ++i)
lvlStacks[i].resize(1024);
lvlStacks[i].reserve(256);
rcIntArray stack(1024);
rcIntArray visited(1024);
rcTempVector<LevelStackEntry> stack;
stack.reserve(256);
unsigned short* srcReg = buf;
unsigned short* srcDist = buf+chf.spanCount;
unsigned short* dstReg = buf+chf.spanCount*2;
unsigned short* dstDist = buf+chf.spanCount*3;
memset(srcReg, 0, sizeof(unsigned short)*chf.spanCount);
memset(srcDist, 0, sizeof(unsigned short)*chf.spanCount);
@ -1581,9 +1577,9 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
paintRectRegion(w-bw, w, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
paintRectRegion(0, w, 0, bh, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
paintRectRegion(0, w, h-bh, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
chf.borderSize = borderSize;
}
chf.borderSize = borderSize;
int sId = -1;
while (level > 0)
@ -1604,22 +1600,19 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
rcScopedTimer timerExpand(ctx, RC_TIMER_BUILD_REGIONS_EXPAND);
// Expand current regions until no empty connected cells found.
if (expandRegions(expandIters, level, chf, srcReg, srcDist, dstReg, dstDist, lvlStacks[sId], false) != srcReg)
{
rcSwap(srcReg, dstReg);
rcSwap(srcDist, dstDist);
}
expandRegions(expandIters, level, chf, srcReg, srcDist, lvlStacks[sId], false);
}
{
rcScopedTimer timerFloor(ctx, RC_TIMER_BUILD_REGIONS_FLOOD);
// Mark new regions with IDs.
for (int j = 0; j<lvlStacks[sId].size(); j += 3)
for (int j = 0; j<lvlStacks[sId].size(); j++)
{
int x = lvlStacks[sId][j];
int y = lvlStacks[sId][j+1];
int i = lvlStacks[sId][j+2];
LevelStackEntry current = lvlStacks[sId][j];
int x = current.x;
int y = current.y;
int i = current.index;
if (i >= 0 && srcReg[i] == 0)
{
if (floodRegion(x, y, i, level, regionId, chf, srcReg, srcDist, stack))
@ -1638,11 +1631,7 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
}
// Expand current regions until no empty connected cells found.
if (expandRegions(expandIters*8, 0, chf, srcReg, srcDist, dstReg, dstDist, stack, true) != srcReg)
{
rcSwap(srcReg, dstReg);
rcSwap(srcDist, dstDist);
}
expandRegions(expandIters*8, 0, chf, srcReg, srcDist, stack, true);
ctx->stopTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);
@ -1709,9 +1698,9 @@ bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++;
paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++;
chf.borderSize = borderSize;
}
chf.borderSize = borderSize;
rcIntArray prev(256);
@ -1809,9 +1798,8 @@ bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER);
// Merge monotone regions to layers and remove small regions.
rcIntArray overlaps;
chf.maxRegions = id;
if (!mergeAndFilterLayerRegions(ctx, minRegionArea, chf.maxRegions, chf, srcReg, overlaps))
if (!mergeAndFilterLayerRegions(ctx, minRegionArea, chf.maxRegions, chf, srcReg))
return false;
}