godot/scene/resources/visual_shader_particle_nodes.cpp

1396 lines
46 KiB
C++

/*************************************************************************/
/* visual_shader_particle_nodes.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "visual_shader_particle_nodes.h"
#include "core/core_string_names.h"
// VisualShaderNodeParticleEmitter
int VisualShaderNodeParticleEmitter::get_output_port_count() const {
return 1;
}
VisualShaderNodeParticleEmitter::PortType VisualShaderNodeParticleEmitter::get_output_port_type(int p_port) const {
return PORT_TYPE_VECTOR;
}
String VisualShaderNodeParticleEmitter::get_output_port_name(int p_port) const {
if (p_port == 0) {
return "position";
}
return String();
}
bool VisualShaderNodeParticleEmitter::has_output_port_preview(int p_port) const {
return false;
}
void VisualShaderNodeParticleEmitter::set_mode_2d(bool p_enabled) {
mode_2d = p_enabled;
emit_changed();
}
bool VisualShaderNodeParticleEmitter::is_mode_2d() const {
return mode_2d;
}
Vector<StringName> VisualShaderNodeParticleEmitter::get_editable_properties() const {
Vector<StringName> props;
props.push_back("mode_2d");
return props;
}
Map<StringName, String> VisualShaderNodeParticleEmitter::get_editable_properties_names() const {
Map<StringName, String> names;
names.insert("mode_2d", TTR("2D Mode"));
return names;
}
bool VisualShaderNodeParticleEmitter::is_show_prop_names() const {
return true;
}
void VisualShaderNodeParticleEmitter::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_mode_2d", "enabled"), &VisualShaderNodeParticleEmitter::set_mode_2d);
ClassDB::bind_method(D_METHOD("is_mode_2d"), &VisualShaderNodeParticleEmitter::is_mode_2d);
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "mode_2d"), "set_mode_2d", "is_mode_2d");
}
VisualShaderNodeParticleEmitter::VisualShaderNodeParticleEmitter() {
}
// VisualShaderNodeParticleSphereEmitter
String VisualShaderNodeParticleSphereEmitter::get_caption() const {
return "SphereEmitter";
}
int VisualShaderNodeParticleSphereEmitter::get_input_port_count() const {
return 2;
}
VisualShaderNodeParticleSphereEmitter::PortType VisualShaderNodeParticleSphereEmitter::get_input_port_type(int p_port) const {
return PORT_TYPE_SCALAR;
}
String VisualShaderNodeParticleSphereEmitter::get_input_port_name(int p_port) const {
if (p_port == 0) {
return "radius";
} else if (p_port == 1) {
return "inner_radius";
}
return String();
}
String VisualShaderNodeParticleSphereEmitter::generate_global_per_node(Shader::Mode p_mode, VisualShader::Type p_type, int p_id) const {
String code;
code += "vec2 __get_random_point_in_circle(inout uint seed, float radius, float inner_radius) {\n";
code += " return __get_random_unit_vec2(seed) * __randf_range(seed, inner_radius, radius);\n";
code += "}\n\n";
code += "vec3 __get_random_point_in_sphere(inout uint seed, float radius, float inner_radius) {\n";
code += " return __get_random_unit_vec3(seed) * __randf_range(seed, inner_radius, radius);\n";
code += "}\n\n";
return code;
}
String VisualShaderNodeParticleSphereEmitter::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
String code;
if (mode_2d) {
code += " " + p_output_vars[0] + " = vec3(__get_random_point_in_circle(__seed, " + (p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0]) + ", " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + "), 0.0);\n";
} else {
code += " " + p_output_vars[0] + " = __get_random_point_in_sphere(__seed, " + (p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0]) + ", " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ");\n";
}
return code;
}
VisualShaderNodeParticleSphereEmitter::VisualShaderNodeParticleSphereEmitter() {
set_input_port_default_value(0, 10.0);
set_input_port_default_value(1, 0.0);
}
// VisualShaderNodeParticleBoxEmitter
String VisualShaderNodeParticleBoxEmitter::get_caption() const {
return "BoxEmitter";
}
int VisualShaderNodeParticleBoxEmitter::get_input_port_count() const {
return 1;
}
VisualShaderNodeParticleBoxEmitter::PortType VisualShaderNodeParticleBoxEmitter::get_input_port_type(int p_port) const {
if (p_port == 0) {
return PORT_TYPE_VECTOR;
}
return PORT_TYPE_SCALAR;
}
String VisualShaderNodeParticleBoxEmitter::get_input_port_name(int p_port) const {
if (p_port == 0) {
return "extents";
}
return String();
}
String VisualShaderNodeParticleBoxEmitter::generate_global_per_node(Shader::Mode p_mode, VisualShader::Type p_type, int p_id) const {
String code;
code += "vec2 __get_random_point_in_box2d(inout uint seed, vec2 extents) {\n";
code += " vec2 half_extents = extents / 2.0;\n";
code += " return vec2(__randf_range(seed, -half_extents.x, half_extents.x), __randf_range(seed, -half_extents.y, half_extents.y));\n";
code += "}\n\n";
code += "vec3 __get_random_point_in_box3d(inout uint seed, vec3 extents) {\n";
code += " vec3 half_extents = extents / 2.0;\n";
code += " return vec3(__randf_range(seed, -half_extents.x, half_extents.x), __randf_range(seed, -half_extents.y, half_extents.y), __randf_range(seed, -half_extents.z, half_extents.z));\n";
code += "}\n\n";
return code;
}
String VisualShaderNodeParticleBoxEmitter::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
String code;
if (mode_2d) {
code += " " + p_output_vars[0] + " = vec3(__get_random_point_in_box2d(__seed, " + (p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0]) + ".xy), 0.0);\n";
} else {
code += " " + p_output_vars[0] + " = __get_random_point_in_box3d(__seed, " + (p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0]) + ");\n";
}
return code;
}
VisualShaderNodeParticleBoxEmitter::VisualShaderNodeParticleBoxEmitter() {
set_input_port_default_value(0, Vector3(1.0, 1.0, 1.0));
}
// VisualShaderNodeParticleRingEmitter
String VisualShaderNodeParticleRingEmitter::get_caption() const {
return "RingEmitter";
}
int VisualShaderNodeParticleRingEmitter::get_input_port_count() const {
return 3;
}
VisualShaderNodeParticleRingEmitter::PortType VisualShaderNodeParticleRingEmitter::get_input_port_type(int p_port) const {
return PORT_TYPE_SCALAR;
}
String VisualShaderNodeParticleRingEmitter::get_input_port_name(int p_port) const {
if (p_port == 0) {
return "radius";
} else if (p_port == 1) {
return "inner_radius";
} else if (p_port == 2) {
return "height";
}
return String();
}
String VisualShaderNodeParticleRingEmitter::generate_global_per_node(Shader::Mode p_mode, VisualShader::Type p_type, int p_id) const {
String code;
code += "vec2 __get_random_point_on_ring2d(inout uint seed, float radius, float inner_radius) {\n";
code += " float angle = __rand_from_seed(seed) * TAU;\n";
code += " vec2 ring = vec2(sin(angle), cos(angle)) * __randf_range(seed, inner_radius, radius);\n";
code += " return vec2(ring.x, ring.y);\n";
code += "}\n\n";
code += "vec3 __get_random_point_on_ring3d(inout uint seed, float radius, float inner_radius, float height) {\n";
code += " float angle = __rand_from_seed(seed) * TAU;\n";
code += " vec2 ring = vec2(sin(angle), cos(angle)) * __randf_range(seed, inner_radius, radius);\n";
code += " return vec3(ring.x, __randf_range(seed, min(0.0, height), max(0.0, height)), ring.y);\n";
code += "}\n\n";
return code;
}
String VisualShaderNodeParticleRingEmitter::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
String code;
if (mode_2d) {
code = " " + p_output_vars[0] + " = vec3(__get_random_point_on_ring2d(__seed, " + (p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0]) + ", " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + "), 0.0);\n";
} else {
code = " " + p_output_vars[0] + " = __get_random_point_on_ring3d(__seed, " + (p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0]) + ", " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ", " + (p_input_vars[2].is_empty() ? (String)get_input_port_default_value(2) : p_input_vars[2]) + ");\n";
}
return code;
}
VisualShaderNodeParticleRingEmitter::VisualShaderNodeParticleRingEmitter() {
set_input_port_default_value(0, 10.0);
set_input_port_default_value(1, 0.0);
set_input_port_default_value(2, 0.0);
}
// VisualShaderNodeParticleMeshEmitter
String VisualShaderNodeParticleMeshEmitter::get_caption() const {
return "MeshEmitter";
}
int VisualShaderNodeParticleMeshEmitter::get_output_port_count() const {
return 2;
}
VisualShaderNodeParticleBoxEmitter::PortType VisualShaderNodeParticleMeshEmitter::get_output_port_type(int p_port) const {
switch (p_port) {
case 0:
return PORT_TYPE_VECTOR; // position
case 1:
return PORT_TYPE_VECTOR; // normal
}
return PORT_TYPE_SCALAR;
}
String VisualShaderNodeParticleMeshEmitter::get_output_port_name(int p_port) const {
switch (p_port) {
case 0:
return "position";
case 1:
return "normal";
}
return String();
}
int VisualShaderNodeParticleMeshEmitter::get_input_port_count() const {
return 0;
}
VisualShaderNodeParticleBoxEmitter::PortType VisualShaderNodeParticleMeshEmitter::get_input_port_type(int p_port) const {
return PORT_TYPE_SCALAR;
}
String VisualShaderNodeParticleMeshEmitter::get_input_port_name(int p_port) const {
return String();
}
String VisualShaderNodeParticleMeshEmitter::generate_global_per_node(Shader::Mode p_mode, VisualShader::Type p_type, int p_id) const {
String code;
if (mesh.is_valid()) {
code += "uniform sampler2D " + make_unique_id(p_type, p_id, "mesh_vx") + ";\n";
code += "uniform sampler2D " + make_unique_id(p_type, p_id, "mesh_nm") + ";\n";
}
return code;
}
String VisualShaderNodeParticleMeshEmitter::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
String code;
code += " __scalar_ibuff = int(__rand_from_seed(__seed) * 65535.0) % " + itos(position_texture->get_width()) + ";\n";
if (position_texture->get_width() == 0) {
code += " " + p_output_vars[0] + " = vec3(0.0);\n";
} else {
if (mode_2d) {
code += " " + p_output_vars[0] + " = vec3(";
code += "texelFetch(";
code += make_unique_id(p_type, p_id, "mesh_vx") + ", ";
code += "ivec2(__scalar_ibuff, 0), 0).xy, 0.0);\n";
} else {
code += " " + p_output_vars[0] + " = texelFetch(";
code += make_unique_id(p_type, p_id, "mesh_vx") + ", ";
code += "ivec2(__scalar_ibuff, 0), 0).xyz;\n";
}
}
if (normal_texture->get_width() == 0) {
code += " " + p_output_vars[1] + " = vec3(0.0);\n";
} else {
if (mode_2d) {
code += " " + p_output_vars[1] + " = vec3(";
code += "texelFetch(";
code += make_unique_id(p_type, p_id, "mesh_nm") + ", ";
code += "ivec2(__scalar_ibuff, 0), 0).xy, 0.0);\n";
} else {
code += " " + p_output_vars[1] + " = texelFetch(";
code += make_unique_id(p_type, p_id, "mesh_nm") + ", ";
code += "ivec2(__scalar_ibuff, 0), 0).xyz;\n";
}
}
return code;
}
Vector<VisualShader::DefaultTextureParam> VisualShaderNodeParticleMeshEmitter::get_default_texture_parameters(VisualShader::Type p_type, int p_id) const {
VisualShader::DefaultTextureParam dtp_vx;
dtp_vx.name = make_unique_id(p_type, p_id, "mesh_vx");
dtp_vx.param = position_texture;
VisualShader::DefaultTextureParam dtp_nm;
dtp_nm.name = make_unique_id(p_type, p_id, "mesh_nm");
dtp_nm.param = normal_texture;
Vector<VisualShader::DefaultTextureParam> ret;
ret.push_back(dtp_vx);
ret.push_back(dtp_nm);
return ret;
}
void VisualShaderNodeParticleMeshEmitter::update_texture() {
if (!mesh.is_valid()) {
return;
}
Vector<Vector3> vertices;
Vector<Vector3> normals;
if (use_all_surfaces) {
for (int i = 0; i < max_surface_index; i++) {
Array vertex_array = mesh->surface_get_arrays(i)[Mesh::ARRAY_VERTEX];
for (int j = 0; j < vertex_array.size(); j++) {
vertices.push_back((Vector3)vertex_array[j]);
}
Array normal_array = mesh->surface_get_arrays(i)[Mesh::ARRAY_NORMAL];
for (int j = 0; j < vertex_array.size(); j++) {
normals.push_back((Vector3)vertex_array[j]);
}
}
} else {
Array vertex_array = mesh->surface_get_arrays(surface_index)[Mesh::ARRAY_VERTEX];
for (int i = 0; i < vertex_array.size(); i++) {
vertices.push_back((Vector3)vertex_array[i]);
}
Array normal_array = mesh->surface_get_arrays(surface_index)[Mesh::ARRAY_NORMAL];
for (int i = 0; i < normal_array.size(); i++) {
normals.push_back((Vector3)normal_array[i]);
}
}
// vertices
{
Ref<Image> image;
image.instantiate();
image->create(vertices.size(), 1, false, Image::Format::FORMAT_RGBF);
for (int i = 0; i < vertices.size(); i++) {
Vector3 v = vertices[i];
image->set_pixel(i, 0, Color(v.x, v.y, v.z));
}
if (position_texture->get_width() != vertices.size()) {
position_texture->create_from_image(image);
} else {
position_texture->update(image);
}
}
// normals
{
Ref<Image> image;
image.instantiate();
image->create(normals.size(), 1, false, Image::Format::FORMAT_RGBF);
for (int i = 0; i < normals.size(); i++) {
Vector3 v = normals[i];
image->set_pixel(i, 0, Color(v.x, v.y, v.z));
}
if (normal_texture->get_width() != normals.size()) {
normal_texture->create_from_image(image);
} else {
normal_texture->update(image);
}
}
}
void VisualShaderNodeParticleMeshEmitter::set_mesh(Ref<Mesh> p_mesh) {
if (mesh == p_mesh) {
return;
}
if (p_mesh.is_valid()) {
max_surface_index = p_mesh->get_surface_count();
} else {
max_surface_index = 0;
}
if (mesh.is_valid()) {
Callable callable = callable_mp(this, &VisualShaderNodeParticleMeshEmitter::update_texture);
if (mesh->is_connected(CoreStringNames::get_singleton()->changed, callable)) {
mesh->disconnect(CoreStringNames::get_singleton()->changed, callable);
}
}
mesh = p_mesh;
if (mesh.is_valid()) {
Callable callable = callable_mp(this, &VisualShaderNodeParticleMeshEmitter::update_texture);
if (!mesh->is_connected(CoreStringNames::get_singleton()->changed, callable)) {
mesh->connect(CoreStringNames::get_singleton()->changed, callable);
}
}
emit_changed();
}
Ref<Mesh> VisualShaderNodeParticleMeshEmitter::get_mesh() const {
return mesh;
}
void VisualShaderNodeParticleMeshEmitter::set_use_all_surfaces(bool p_enabled) {
if (use_all_surfaces == p_enabled) {
return;
}
use_all_surfaces = p_enabled;
emit_changed();
}
bool VisualShaderNodeParticleMeshEmitter::is_use_all_surfaces() const {
return use_all_surfaces;
}
void VisualShaderNodeParticleMeshEmitter::set_surface_index(int p_surface_index) {
if (p_surface_index == surface_index || p_surface_index < 0 || p_surface_index >= max_surface_index) {
return;
}
surface_index = p_surface_index;
emit_changed();
}
int VisualShaderNodeParticleMeshEmitter::get_surface_index() const {
return surface_index;
}
Vector<StringName> VisualShaderNodeParticleMeshEmitter::get_editable_properties() const {
Vector<StringName> props = VisualShaderNodeParticleEmitter::get_editable_properties();
props.push_back("mesh");
props.push_back("use_all_surfaces");
if (!use_all_surfaces) {
props.push_back("surface_index");
}
return props;
}
Map<StringName, String> VisualShaderNodeParticleMeshEmitter::get_editable_properties_names() const {
Map<StringName, String> names = VisualShaderNodeParticleEmitter::get_editable_properties_names();
names.insert("mesh", TTR("Mesh"));
names.insert("use_all_surfaces", TTR("Use All Surfaces"));
if (!use_all_surfaces) {
names.insert("surface_index", TTR("Surface Index"));
}
return names;
}
void VisualShaderNodeParticleMeshEmitter::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_mesh", "mesh"), &VisualShaderNodeParticleMeshEmitter::set_mesh);
ClassDB::bind_method(D_METHOD("get_mesh"), &VisualShaderNodeParticleMeshEmitter::get_mesh);
ClassDB::bind_method(D_METHOD("set_use_all_surfaces", "enabled"), &VisualShaderNodeParticleMeshEmitter::set_use_all_surfaces);
ClassDB::bind_method(D_METHOD("is_use_all_surfaces"), &VisualShaderNodeParticleMeshEmitter::is_use_all_surfaces);
ClassDB::bind_method(D_METHOD("set_surface_index", "surface_index"), &VisualShaderNodeParticleMeshEmitter::set_surface_index);
ClassDB::bind_method(D_METHOD("get_surface_index"), &VisualShaderNodeParticleMeshEmitter::get_surface_index);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "mesh", PROPERTY_HINT_RESOURCE_TYPE, "Mesh"), "set_mesh", "get_mesh");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_all_surfaces"), "set_use_all_surfaces", "is_use_all_surfaces");
ADD_PROPERTY(PropertyInfo(Variant::INT, "surface_index"), "set_surface_index", "get_surface_index");
}
VisualShaderNodeParticleMeshEmitter::VisualShaderNodeParticleMeshEmitter() {
connect(CoreStringNames::get_singleton()->changed, callable_mp(this, &VisualShaderNodeParticleMeshEmitter::update_texture));
position_texture.instantiate();
normal_texture.instantiate();
}
// VisualShaderNodeParticleMultiplyByAxisAngle
void VisualShaderNodeParticleMultiplyByAxisAngle::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_degrees_mode", "enabled"), &VisualShaderNodeParticleMultiplyByAxisAngle::set_degrees_mode);
ClassDB::bind_method(D_METHOD("is_degrees_mode"), &VisualShaderNodeParticleMultiplyByAxisAngle::is_degrees_mode);
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "degrees_mode"), "set_degrees_mode", "is_degrees_mode");
}
String VisualShaderNodeParticleMultiplyByAxisAngle::get_caption() const {
return "MultiplyByAxisAngle";
}
int VisualShaderNodeParticleMultiplyByAxisAngle::get_input_port_count() const {
return 3;
}
VisualShaderNodeParticleMultiplyByAxisAngle::PortType VisualShaderNodeParticleMultiplyByAxisAngle::get_input_port_type(int p_port) const {
if (p_port == 0 || p_port == 1) { // position, rotation_axis
return PORT_TYPE_VECTOR;
}
return PORT_TYPE_SCALAR; // angle (degrees/radians)
}
String VisualShaderNodeParticleMultiplyByAxisAngle::get_input_port_name(int p_port) const {
if (p_port == 0) {
return "position";
}
if (p_port == 1) {
return "axis";
}
if (p_port == 2) {
if (degrees_mode) {
return "angle (degrees)";
} else {
return "angle (radians)";
}
}
return String();
}
bool VisualShaderNodeParticleMultiplyByAxisAngle::is_show_prop_names() const {
return true;
}
int VisualShaderNodeParticleMultiplyByAxisAngle::get_output_port_count() const {
return 1;
}
VisualShaderNodeParticleMultiplyByAxisAngle::PortType VisualShaderNodeParticleMultiplyByAxisAngle::get_output_port_type(int p_port) const {
return PORT_TYPE_VECTOR;
}
String VisualShaderNodeParticleMultiplyByAxisAngle::get_output_port_name(int p_port) const {
return "position";
}
String VisualShaderNodeParticleMultiplyByAxisAngle::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
String code;
if (degrees_mode) {
code += " " + p_output_vars[0] + " = __build_rotation_mat3(" + (p_input_vars[1].is_empty() ? ("vec3" + (String)get_input_port_default_value(1)) : p_input_vars[1]) + ", radians(" + (p_input_vars[2].is_empty() ? (String)get_input_port_default_value(2) : p_input_vars[2]) + ")) * " + (p_input_vars[0].is_empty() ? "vec3(0.0)" : p_input_vars[0]) + ";\n";
} else {
code += " " + p_output_vars[0] + " = __build_rotation_mat3(" + (p_input_vars[1].is_empty() ? ("vec3" + (String)get_input_port_default_value(1)) : p_input_vars[1]) + ", " + (p_input_vars[2].is_empty() ? (String)get_input_port_default_value(2) : p_input_vars[2]) + ") * " + (p_input_vars[0].is_empty() ? "vec3(0.0)" : p_input_vars[0]) + ";\n";
}
return code;
}
void VisualShaderNodeParticleMultiplyByAxisAngle::set_degrees_mode(bool p_enabled) {
degrees_mode = p_enabled;
emit_changed();
}
bool VisualShaderNodeParticleMultiplyByAxisAngle::is_degrees_mode() const {
return degrees_mode;
}
Vector<StringName> VisualShaderNodeParticleMultiplyByAxisAngle::get_editable_properties() const {
Vector<StringName> props;
props.push_back("degrees_mode");
return props;
}
bool VisualShaderNodeParticleMultiplyByAxisAngle::has_output_port_preview(int p_port) const {
return false;
}
VisualShaderNodeParticleMultiplyByAxisAngle::VisualShaderNodeParticleMultiplyByAxisAngle() {
set_input_port_default_value(1, Vector3(1, 0, 0));
set_input_port_default_value(2, 0.0);
}
// VisualShaderNodeParticleConeVelocity
String VisualShaderNodeParticleConeVelocity::get_caption() const {
return "ConeVelocity";
}
int VisualShaderNodeParticleConeVelocity::get_input_port_count() const {
return 2;
}
VisualShaderNodeParticleConeVelocity::PortType VisualShaderNodeParticleConeVelocity::get_input_port_type(int p_port) const {
if (p_port == 0) {
return PORT_TYPE_VECTOR;
} else if (p_port == 1) {
return PORT_TYPE_SCALAR;
}
return PORT_TYPE_SCALAR;
}
String VisualShaderNodeParticleConeVelocity::get_input_port_name(int p_port) const {
if (p_port == 0) {
return "direction";
} else if (p_port == 1) {
return "spread(degrees)";
}
return String();
}
int VisualShaderNodeParticleConeVelocity::get_output_port_count() const {
return 1;
}
VisualShaderNodeParticleConeVelocity::PortType VisualShaderNodeParticleConeVelocity::get_output_port_type(int p_port) const {
return PORT_TYPE_VECTOR;
}
String VisualShaderNodeParticleConeVelocity::get_output_port_name(int p_port) const {
if (p_port == 0) {
return "velocity";
}
return String();
}
bool VisualShaderNodeParticleConeVelocity::has_output_port_preview(int p_port) const {
return false;
}
String VisualShaderNodeParticleConeVelocity::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
String code;
code += " __radians = radians(" + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ");\n";
code += " __scalar_buff1 = __rand_from_seed_m1_p1(__seed) * __radians;\n";
code += " __scalar_buff2 = __rand_from_seed_m1_p1(__seed) * __radians;\n";
code += " __vec3_buff1 = " + (p_input_vars[0].is_empty() ? "vec3" + (String)get_input_port_default_value(0) : p_input_vars[0]) + ";\n";
code += " __scalar_buff1 += __vec3_buff1.z != 0.0 ? atan(__vec3_buff1.x, __vec3_buff1.z) : sign(__vec3_buff1.x) * (PI / 2.0);\n";
code += " __scalar_buff2 += __vec3_buff1.z != 0.0 ? atan(__vec3_buff1.y, abs(__vec3_buff1.z)) : (__vec3_buff1.x != 0.0 ? atan(__vec3_buff1.y, abs(__vec3_buff1.x)) : sign(__vec3_buff1.y) * (PI / 2.0));\n";
code += " __vec3_buff1 = vec3(sin(__scalar_buff1), 0.0, cos(__scalar_buff1));\n";
code += " __vec3_buff2 = vec3(0.0, sin(__scalar_buff2), cos(__scalar_buff2));\n";
code += " __vec3_buff2.z = __vec3_buff2.z / max(0.0001, sqrt(abs(__vec3_buff2.z)));\n";
code += " " + p_output_vars[0] + " = normalize(vec3(__vec3_buff1.x * __vec3_buff2.z, __vec3_buff2.y, __vec3_buff1.z * __vec3_buff2.z));\n";
return code;
}
VisualShaderNodeParticleConeVelocity::VisualShaderNodeParticleConeVelocity() {
set_input_port_default_value(0, Vector3(1, 0, 0));
set_input_port_default_value(1, 45.0);
}
// VisualShaderNodeParticleRandomness
void VisualShaderNodeParticleRandomness::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_op_type", "type"), &VisualShaderNodeParticleRandomness::set_op_type);
ClassDB::bind_method(D_METHOD("get_op_type"), &VisualShaderNodeParticleRandomness::get_op_type);
ADD_PROPERTY(PropertyInfo(Variant::INT, "op_type", PROPERTY_HINT_ENUM, "Scalar,Vector"), "set_op_type", "get_op_type");
BIND_ENUM_CONSTANT(OP_TYPE_SCALAR);
BIND_ENUM_CONSTANT(OP_TYPE_VECTOR);
BIND_ENUM_CONSTANT(OP_TYPE_MAX);
}
Vector<StringName> VisualShaderNodeParticleRandomness::get_editable_properties() const {
Vector<StringName> props;
props.push_back("op_type");
return props;
}
String VisualShaderNodeParticleRandomness::get_caption() const {
return "ParticleRandomness";
}
int VisualShaderNodeParticleRandomness::get_output_port_count() const {
return 1;
}
VisualShaderNodeParticleRandomness::PortType VisualShaderNodeParticleRandomness::get_output_port_type(int p_port) const {
if (op_type == OP_TYPE_VECTOR) {
return PORT_TYPE_VECTOR;
}
return PORT_TYPE_SCALAR;
}
String VisualShaderNodeParticleRandomness::get_output_port_name(int p_port) const {
return "random";
}
int VisualShaderNodeParticleRandomness::get_input_port_count() const {
return 2;
}
VisualShaderNodeParticleRandomness::PortType VisualShaderNodeParticleRandomness::get_input_port_type(int p_port) const {
if (op_type == OP_TYPE_VECTOR) {
return PORT_TYPE_VECTOR;
}
return PORT_TYPE_SCALAR;
}
String VisualShaderNodeParticleRandomness::get_input_port_name(int p_port) const {
if (p_port == 0) {
return "min";
} else if (p_port == 1) {
return "max";
}
return String();
}
String VisualShaderNodeParticleRandomness::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
String code;
if (op_type == OP_TYPE_SCALAR) {
code += vformat(" %s = __randf_range(__seed, %s, %s);\n", p_output_vars[0], p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0], p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]);
} else if (op_type == OP_TYPE_VECTOR) {
code += vformat(" %s = __randv_range(__seed, %s, %s);\n", p_output_vars[0], p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0], p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]);
}
return code;
}
void VisualShaderNodeParticleRandomness::set_op_type(OpType p_op_type) {
ERR_FAIL_INDEX(int(p_op_type), int(OP_TYPE_MAX));
if (op_type == p_op_type) {
return;
}
if (p_op_type == OP_TYPE_SCALAR) {
set_input_port_default_value(0, 0.0);
set_input_port_default_value(1, 1.0);
} else {
set_input_port_default_value(0, Vector3(-1.0, -1.0, -1.0));
set_input_port_default_value(1, Vector3(1.0, 1.0, 1.0));
}
op_type = p_op_type;
emit_changed();
}
VisualShaderNodeParticleRandomness::OpType VisualShaderNodeParticleRandomness::get_op_type() const {
return op_type;
}
bool VisualShaderNodeParticleRandomness::has_output_port_preview(int p_port) const {
return false;
}
VisualShaderNodeParticleRandomness::VisualShaderNodeParticleRandomness() {
set_input_port_default_value(0, 0.0);
set_input_port_default_value(1, 1.0);
}
// VisualShaderNodeParticleAccelerator
void VisualShaderNodeParticleAccelerator::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_mode", "mode"), &VisualShaderNodeParticleAccelerator::set_mode);
ClassDB::bind_method(D_METHOD("get_mode"), &VisualShaderNodeParticleAccelerator::get_mode);
ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Linear,Radial,Tangential"), "set_mode", "get_mode");
BIND_ENUM_CONSTANT(MODE_LINEAR);
BIND_ENUM_CONSTANT(MODE_RADIAL)
BIND_ENUM_CONSTANT(MODE_TANGENTIAL);
BIND_ENUM_CONSTANT(MODE_MAX);
}
Vector<StringName> VisualShaderNodeParticleAccelerator::get_editable_properties() const {
Vector<StringName> props;
props.push_back("mode");
return props;
}
String VisualShaderNodeParticleAccelerator::get_caption() const {
return "ParticleAccelerator";
}
int VisualShaderNodeParticleAccelerator::get_output_port_count() const {
return 1;
}
VisualShaderNodeParticleAccelerator::PortType VisualShaderNodeParticleAccelerator::get_output_port_type(int p_port) const {
return PORT_TYPE_VECTOR;
}
String VisualShaderNodeParticleAccelerator::get_output_port_name(int p_port) const {
return String();
}
int VisualShaderNodeParticleAccelerator::get_input_port_count() const {
return 3;
}
VisualShaderNodeParticleAccelerator::PortType VisualShaderNodeParticleAccelerator::get_input_port_type(int p_port) const {
if (p_port == 0) {
return PORT_TYPE_VECTOR;
} else if (p_port == 1) {
return PORT_TYPE_SCALAR;
} else if (p_port == 2) {
return PORT_TYPE_VECTOR;
}
return PORT_TYPE_SCALAR;
}
String VisualShaderNodeParticleAccelerator::get_input_port_name(int p_port) const {
if (p_port == 0) {
return "amount";
} else if (p_port == 1) {
return "randomness";
} else if (p_port == 2) {
return "axis";
}
return String();
}
String VisualShaderNodeParticleAccelerator::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
String code;
switch (mode) {
case MODE_LINEAR:
code += " " + p_output_vars[0] + " = length(VELOCITY) > 0.0 ? " + "normalize(VELOCITY) * " + (p_input_vars[0].is_empty() ? "vec3" + (String)get_input_port_default_value(0) : p_input_vars[0]) + " * mix(1.0, __rand_from_seed(__seed), " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ") : vec3(0.0);\n";
break;
case MODE_RADIAL:
code += " " + p_output_vars[0] + " = length(__diff) > 0.0 ? __ndiff * " + (p_input_vars[0].is_empty() ? "vec3" + (String)get_input_port_default_value(0) : p_input_vars[0]) + " * mix(1.0, __rand_from_seed(__seed), " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ") : vec3(0.0);\n";
break;
case MODE_TANGENTIAL:
code += " __vec3_buff1 = cross(__ndiff, normalize(" + (p_input_vars[2].is_empty() ? "vec3" + (String)get_input_port_default_value(2) : p_input_vars[2]) + "));\n";
code += " " + p_output_vars[0] + " = length(__vec3_buff1) > 0.0 ? normalize(__vec3_buff1) * (" + (p_input_vars[0].is_empty() ? "vec3" + (String)get_input_port_default_value(0) : p_input_vars[0]) + " * mix(1.0, __rand_from_seed(__seed), " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ")) : vec3(0.0);\n";
break;
default:
break;
}
return code;
}
void VisualShaderNodeParticleAccelerator::set_mode(Mode p_mode) {
ERR_FAIL_INDEX(int(p_mode), int(MODE_MAX));
if (mode == p_mode) {
return;
}
mode = p_mode;
emit_changed();
}
VisualShaderNodeParticleAccelerator::Mode VisualShaderNodeParticleAccelerator::get_mode() const {
return mode;
}
bool VisualShaderNodeParticleAccelerator::has_output_port_preview(int p_port) const {
return false;
}
VisualShaderNodeParticleAccelerator::VisualShaderNodeParticleAccelerator() {
set_input_port_default_value(0, Vector3(1, 1, 1));
set_input_port_default_value(1, 0.0);
set_input_port_default_value(2, Vector3(0, -9.8, 0));
}
// VisualShaderNodeParticleOutput
String VisualShaderNodeParticleOutput::get_caption() const {
if (shader_type == VisualShader::TYPE_START) {
return "StartOutput";
} else if (shader_type == VisualShader::TYPE_PROCESS) {
return "ProcessOutput";
} else if (shader_type == VisualShader::TYPE_COLLIDE) {
return "CollideOutput";
} else if (shader_type == VisualShader::TYPE_START_CUSTOM) {
return "CustomStartOutput";
} else if (shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
return "CustomProcessOutput";
}
return String();
}
int VisualShaderNodeParticleOutput::get_input_port_count() const {
if (shader_type == VisualShader::TYPE_START) {
return 8;
} else if (shader_type == VisualShader::TYPE_COLLIDE) {
return 5;
} else if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
return 6;
} else { // TYPE_PROCESS
return 7;
}
return 0;
}
VisualShaderNodeParticleOutput::PortType VisualShaderNodeParticleOutput::get_input_port_type(int p_port) const {
switch (p_port) {
case 0:
if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
return PORT_TYPE_VECTOR; // custom.rgb
}
return PORT_TYPE_BOOLEAN; // active
case 1:
if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
break; // custom.a (scalar)
}
return PORT_TYPE_VECTOR; // velocity
case 2:
return PORT_TYPE_VECTOR; // color & velocity
case 3:
if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
return PORT_TYPE_VECTOR; // color
}
break; // alpha (scalar)
case 4:
if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
break; // alpha
}
if (shader_type == VisualShader::TYPE_PROCESS) {
break; // scale
}
if (shader_type == VisualShader::TYPE_COLLIDE) {
return PORT_TYPE_TRANSFORM; // transform
}
return PORT_TYPE_VECTOR; // position
case 5:
if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
return PORT_TYPE_TRANSFORM; // transform
}
if (shader_type == VisualShader::TYPE_PROCESS) {
return PORT_TYPE_VECTOR; // rotation_axis
}
break; // scale (scalar)
case 6:
if (shader_type == VisualShader::TYPE_START) {
return PORT_TYPE_VECTOR; // rotation_axis
}
break;
case 7:
break; // angle (scalar)
}
return PORT_TYPE_SCALAR;
}
String VisualShaderNodeParticleOutput::get_input_port_name(int p_port) const {
String port_name;
switch (p_port) {
case 0:
if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
port_name = "custom";
break;
}
port_name = "active";
break;
case 1:
if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
port_name = "custom_alpha";
break;
}
port_name = "velocity";
break;
case 2:
if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
port_name = "velocity";
break;
}
port_name = "color";
break;
case 3:
if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
port_name = "color";
break;
}
port_name = "alpha";
break;
case 4:
if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
port_name = "alpha";
break;
}
if (shader_type == VisualShader::TYPE_PROCESS) {
port_name = "scale";
break;
}
if (shader_type == VisualShader::TYPE_COLLIDE) {
port_name = "transform";
break;
}
port_name = "position";
break;
case 5:
if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
port_name = "transform";
break;
}
if (shader_type == VisualShader::TYPE_PROCESS) {
port_name = "rotation_axis";
break;
}
port_name = "scale";
break;
case 6:
if (shader_type == VisualShader::TYPE_PROCESS) {
port_name = "angle_in_radians";
break;
}
port_name = "rotation_axis";
break;
case 7:
port_name = "angle_in_radians";
break;
default:
break;
}
if (!port_name.is_empty()) {
return port_name.capitalize();
}
return String();
}
bool VisualShaderNodeParticleOutput::is_port_separator(int p_index) const {
if (shader_type == VisualShader::TYPE_START || shader_type == VisualShader::TYPE_PROCESS) {
String name = get_input_port_name(p_index);
return bool(name == "Scale");
}
if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
String name = get_input_port_name(p_index);
return bool(name == "Velocity");
}
return false;
}
String VisualShaderNodeParticleOutput::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
String code;
String tab = " ";
if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
if (!p_input_vars[0].is_empty()) { // custom.rgb
code += tab + "CUSTOM.rgb = " + p_input_vars[0] + ";\n";
}
if (!p_input_vars[1].is_empty()) { // custom.a
code += tab + "CUSTOM.a = " + p_input_vars[1] + ";\n";
}
if (!p_input_vars[2].is_empty()) { // velocity
code += tab + "VELOCITY = " + p_input_vars[2] + ";\n";
}
if (!p_input_vars[3].is_empty()) { // color.rgb
code += tab + "COLOR.rgb = " + p_input_vars[3] + ";\n";
}
if (!p_input_vars[4].is_empty()) { // color.a
code += tab + "COLOR.a = " + p_input_vars[4] + ";\n";
}
if (!p_input_vars[5].is_empty()) { // transform
code += tab + "TRANSFORM = " + p_input_vars[5] + ";\n";
}
} else {
if (!p_input_vars[0].is_empty()) { // active (begin)
code += tab + "ACTIVE = " + p_input_vars[0] + ";\n";
code += tab + "if(ACTIVE) {\n";
tab += " ";
}
if (!p_input_vars[1].is_empty()) { // velocity
code += tab + "VELOCITY = " + p_input_vars[1] + ";\n";
}
if (!p_input_vars[2].is_empty()) { // color
code += tab + "COLOR.rgb = " + p_input_vars[2] + ";\n";
}
if (!p_input_vars[3].is_empty()) { // alpha
code += tab + "COLOR.a = " + p_input_vars[3] + ";\n";
}
// position
if (shader_type == VisualShader::TYPE_START) {
code += tab + "if (RESTART_POSITION) {\n";
if (!p_input_vars[4].is_empty()) {
code += tab + " TRANSFORM = mat4(vec4(1.0, 0.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(" + p_input_vars[4] + ", 1.0));\n";
} else {
code += tab + " TRANSFORM = mat4(vec4(1.0, 0.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));\n";
}
code += tab + " if (RESTART_VELOCITY) {\n";
code += tab + " VELOCITY = (EMISSION_TRANSFORM * vec4(VELOCITY, 0.0)).xyz;\n";
code += tab + " }\n";
code += tab + " TRANSFORM = EMISSION_TRANSFORM * TRANSFORM;\n";
code += tab + "}\n";
} else if (shader_type == VisualShader::TYPE_COLLIDE) { // position
if (!p_input_vars[4].is_empty()) {
code += tab + "TRANSFORM = " + p_input_vars[4] + ";\n";
}
}
if (shader_type == VisualShader::TYPE_START || shader_type == VisualShader::TYPE_PROCESS) {
int scale = 5;
int rotation_axis = 6;
int rotation = 7;
if (shader_type == VisualShader::TYPE_PROCESS) {
scale = 4;
rotation_axis = 5;
rotation = 6;
}
String op;
if (shader_type == VisualShader::TYPE_START) {
op = "*=";
} else {
op = "=";
}
if (!p_input_vars[rotation].is_empty()) { // rotation_axis & angle_in_radians
String axis;
if (p_input_vars[rotation_axis].is_empty()) {
axis = "vec3(0, 1, 0)";
} else {
axis = p_input_vars[rotation_axis];
}
code += tab + "TRANSFORM " + op + " __build_rotation_mat4(" + axis + ", " + p_input_vars[rotation] + ");\n";
}
if (!p_input_vars[scale].is_empty()) { // scale
code += tab + "TRANSFORM " + op + " mat4(vec4(" + p_input_vars[scale] + ", 0, 0, 0), vec4(0, " + p_input_vars[scale] + ", 0, 0), vec4(0, 0, " + p_input_vars[scale] + ", 0), vec4(0, 0, 0, 1));\n";
}
}
if (!p_input_vars[0].is_empty()) { // active (end)
code += " }\n";
}
}
return code;
}
VisualShaderNodeParticleOutput::VisualShaderNodeParticleOutput() {
}
// EmitParticle
Vector<StringName> VisualShaderNodeParticleEmit::get_editable_properties() const {
Vector<StringName> props;
props.push_back("flags");
return props;
}
void VisualShaderNodeParticleEmit::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_flags", "flags"), &VisualShaderNodeParticleEmit::set_flags);
ClassDB::bind_method(D_METHOD("get_flags"), &VisualShaderNodeParticleEmit::get_flags);
ADD_PROPERTY(PropertyInfo(Variant::INT, "flags", PROPERTY_HINT_FLAGS, "Position,RotScale,Velocity,Color,Custom"), "set_flags", "get_flags");
BIND_ENUM_CONSTANT(EMIT_FLAG_POSITION);
BIND_ENUM_CONSTANT(EMIT_FLAG_ROT_SCALE);
BIND_ENUM_CONSTANT(EMIT_FLAG_VELOCITY);
BIND_ENUM_CONSTANT(EMIT_FLAG_COLOR);
BIND_ENUM_CONSTANT(EMIT_FLAG_CUSTOM);
}
String VisualShaderNodeParticleEmit::get_caption() const {
return "EmitParticle";
}
int VisualShaderNodeParticleEmit::get_input_port_count() const {
return 7;
}
VisualShaderNodeParticleEmit::PortType VisualShaderNodeParticleEmit::get_input_port_type(int p_port) const {
switch (p_port) {
case 0:
return PORT_TYPE_BOOLEAN;
case 1:
return PORT_TYPE_TRANSFORM;
case 2:
return PORT_TYPE_VECTOR;
case 3:
return PORT_TYPE_VECTOR;
case 4:
return PORT_TYPE_SCALAR;
case 5:
return PORT_TYPE_VECTOR;
case 6:
return PORT_TYPE_SCALAR;
}
return PORT_TYPE_SCALAR;
}
String VisualShaderNodeParticleEmit::get_input_port_name(int p_port) const {
switch (p_port) {
case 0:
return "condition";
case 1:
return "transform";
case 2:
return "velocity";
case 3:
return "color";
case 4:
return "alpha";
case 5:
return "custom";
case 6:
return "custom_alpha";
}
return String();
}
int VisualShaderNodeParticleEmit::get_output_port_count() const {
return 0;
}
VisualShaderNodeParticleEmit::PortType VisualShaderNodeParticleEmit::get_output_port_type(int p_port) const {
return PORT_TYPE_SCALAR;
}
String VisualShaderNodeParticleEmit::get_output_port_name(int p_port) const {
return String();
}
void VisualShaderNodeParticleEmit::add_flag(EmitFlags p_flag) {
flags |= p_flag;
emit_changed();
}
bool VisualShaderNodeParticleEmit::has_flag(EmitFlags p_flag) const {
return flags & p_flag;
}
void VisualShaderNodeParticleEmit::set_flags(EmitFlags p_flags) {
flags = (int)p_flags;
emit_changed();
}
VisualShaderNodeParticleEmit::EmitFlags VisualShaderNodeParticleEmit::get_flags() const {
return EmitFlags(flags);
}
bool VisualShaderNodeParticleEmit::is_show_prop_names() const {
return true;
}
bool VisualShaderNodeParticleEmit::is_generate_input_var(int p_port) const {
if (p_port == 0) {
if (!is_input_port_connected(0)) {
return false;
}
}
return true;
}
String VisualShaderNodeParticleEmit::get_input_port_default_hint(int p_port) const {
switch (p_port) {
case 1:
return "default";
case 2:
return "default";
case 3:
return "default";
case 4:
return "default";
case 5:
return "default";
case 6:
return "default";
}
return String();
}
String VisualShaderNodeParticleEmit::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
String code;
String tab;
bool default_condition = false;
if (!is_input_port_connected(0)) {
default_condition = true;
if (get_input_port_default_value(0)) {
tab = " ";
} else {
return code;
}
} else {
tab = " ";
}
String transform;
if (p_input_vars[1].is_empty()) {
transform = "TRANSFORM";
} else {
transform = p_input_vars[1];
}
String velocity;
if (p_input_vars[2].is_empty()) {
velocity = "VELOCITY";
} else {
velocity = p_input_vars[2];
}
String color;
if (p_input_vars[3].is_empty()) {
color = "COLOR.rgb";
} else {
color = p_input_vars[3];
}
String alpha;
if (p_input_vars[4].is_empty()) {
alpha = "COLOR.a";
} else {
alpha = p_input_vars[4];
}
String custom;
if (p_input_vars[5].is_empty()) {
custom = "CUSTOM.rgb";
} else {
custom = p_input_vars[5];
}
String custom_alpha;
if (p_input_vars[6].is_empty()) {
custom_alpha = "CUSTOM.a";
} else {
custom_alpha = p_input_vars[6];
}
List<String> flags_arr;
if (has_flag(EmitFlags::EMIT_FLAG_POSITION)) {
flags_arr.push_back("FLAG_EMIT_POSITION");
}
if (has_flag(EmitFlags::EMIT_FLAG_ROT_SCALE)) {
flags_arr.push_back("FLAG_EMIT_ROT_SCALE");
}
if (has_flag(EmitFlags::EMIT_FLAG_VELOCITY)) {
flags_arr.push_back("FLAG_EMIT_VELOCITY");
}
if (has_flag(EmitFlags::EMIT_FLAG_COLOR)) {
flags_arr.push_back("FLAG_EMIT_COLOR");
}
if (has_flag(EmitFlags::EMIT_FLAG_CUSTOM)) {
flags_arr.push_back("FLAG_EMIT_CUSTOM");
}
String flags;
for (int i = 0; i < flags_arr.size(); i++) {
if (i > 0) {
flags += "|";
}
flags += flags_arr[i];
}
if (flags.is_empty()) {
flags = "uint(0)";
}
if (!default_condition) {
code += " if (" + p_input_vars[0] + ") {\n";
}
code += tab + "emit_subparticle(" + transform + ", " + velocity + ", vec4(" + color + ", " + alpha + "), vec4(" + custom + ", " + custom_alpha + "), " + flags + ");\n";
if (!default_condition) {
code += " }\n";
}
return code;
}
VisualShaderNodeParticleEmit::VisualShaderNodeParticleEmit() {
set_input_port_default_value(0, true);
}