godot/thirdparty/oidn/core/autoencoder.cpp
jfons dd79d1ce78 Upgrade OpenImageDenoise to v1.1.0
Upgrade OIDN to 1.1.0, the latest stable version that doesn't need
the ISPC compiler.

Documented the changes made during the removal of TBB and added a patch
file for them.
2020-06-06 19:03:16 +02:00

536 lines
19 KiB
C++

// ======================================================================== //
// Copyright 2009-2019 Intel Corporation //
// //
// Licensed under the Apache License, Version 2.0 (the "License"); //
// you may not use this file except in compliance with the License. //
// You may obtain a copy of the License at //
// //
// http://www.apache.org/licenses/LICENSE-2.0 //
// //
// Unless required by applicable law or agreed to in writing, software //
// distributed under the License is distributed on an "AS IS" BASIS, //
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. //
// See the License for the specific language governing permissions and //
// limitations under the License. //
// ======================================================================== //
#include "autoencoder.h"
namespace oidn {
// --------------------------------------------------------------------------
// AutoencoderFilter
// --------------------------------------------------------------------------
AutoencoderFilter::AutoencoderFilter(const Ref<Device>& device)
: Filter(device)
{
}
void AutoencoderFilter::setImage(const std::string& name, const Image& data)
{
if (name == "color")
color = data;
else if (name == "albedo")
albedo = data;
else if (name == "normal")
normal = data;
else if (name == "output")
output = data;
dirty = true;
}
void AutoencoderFilter::set1i(const std::string& name, int value)
{
if (name == "hdr")
hdr = value;
else if (name == "srgb")
srgb = value;
else if (name == "maxMemoryMB")
maxMemoryMB = value;
dirty = true;
}
int AutoencoderFilter::get1i(const std::string& name)
{
if (name == "hdr")
return hdr;
else if (name == "srgb")
return srgb;
else if (name == "maxMemoryMB")
return maxMemoryMB;
else if (name == "alignment")
return alignment;
else if (name == "overlap")
return overlap;
else
throw Exception(Error::InvalidArgument, "invalid parameter");
}
void AutoencoderFilter::set1f(const std::string& name, float value)
{
if (name == "hdrScale")
hdrScale = value;
dirty = true;
}
float AutoencoderFilter::get1f(const std::string& name)
{
if (name == "hdrScale")
return hdrScale;
else
throw Exception(Error::InvalidArgument, "invalid parameter");
}
void AutoencoderFilter::commit()
{
if (!dirty)
return;
// -- GODOT start --
//device->executeTask([&]()
//{
// GODOT end --
if (mayiuse(avx512_common))
net = buildNet<16>();
else
net = buildNet<8>();
// GODOT start --
//});
// GODOT end --
dirty = false;
}
void AutoencoderFilter::execute()
{
if (dirty)
throw Exception(Error::InvalidOperation, "changes to the filter are not committed");
if (!net)
return;
// -- GODOT start --
//device->executeTask([&]()
//{
// -- GODOT end --
Progress progress;
progress.func = progressFunc;
progress.userPtr = progressUserPtr;
progress.taskCount = tileCountH * tileCountW;
// Iterate over the tiles
int tileIndex = 0;
for (int i = 0; i < tileCountH; ++i)
{
const int h = i * (tileH - 2*overlap); // input tile position (including overlap)
const int overlapBeginH = i > 0 ? overlap : 0; // overlap on the top
const int overlapEndH = i < tileCountH-1 ? overlap : 0; // overlap on the bottom
const int tileH1 = min(H - h, tileH); // input tile size (including overlap)
const int tileH2 = tileH1 - overlapBeginH - overlapEndH; // output tile size
const int alignOffsetH = tileH - roundUp(tileH1, alignment); // align to the bottom in the tile buffer
for (int j = 0; j < tileCountW; ++j)
{
const int w = j * (tileW - 2*overlap); // input tile position (including overlap)
const int overlapBeginW = j > 0 ? overlap : 0; // overlap on the left
const int overlapEndW = j < tileCountW-1 ? overlap : 0; // overlap on the right
const int tileW1 = min(W - w, tileW); // input tile size (including overlap)
const int tileW2 = tileW1 - overlapBeginW - overlapEndW; // output tile size
const int alignOffsetW = tileW - roundUp(tileW1, alignment); // align to the right in the tile buffer
// Set the input tile
inputReorder->setTile(h, w,
alignOffsetH, alignOffsetW,
tileH1, tileW1);
// Set the output tile
outputReorder->setTile(alignOffsetH + overlapBeginH, alignOffsetW + overlapBeginW,
h + overlapBeginH, w + overlapBeginW,
tileH2, tileW2);
//printf("Tile: %d %d -> %d %d\n", w+overlapBeginW, h+overlapBeginH, w+overlapBeginW+tileW2, h+overlapBeginH+tileH2);
// Denoise the tile
net->execute(progress, tileIndex);
// Next tile
tileIndex++;
}
}
// -- GODOT start --
//});
// -- GODOT end --
}
void AutoencoderFilter::computeTileSize()
{
const int minTileSize = 3*overlap;
const int estimatedBytesPerPixel = mayiuse(avx512_common) ? estimatedBytesPerPixel16 : estimatedBytesPerPixel8;
const int64_t maxTilePixels = (int64_t(maxMemoryMB)*1024*1024 - estimatedBytesBase) / estimatedBytesPerPixel;
tileCountH = 1;
tileCountW = 1;
tileH = roundUp(H, alignment);
tileW = roundUp(W, alignment);
// Divide the image into tiles until the tile size gets below the threshold
while (int64_t(tileH) * tileW > maxTilePixels)
{
if (tileH > minTileSize && tileH > tileW)
{
tileCountH++;
tileH = max(roundUp(ceilDiv(H - 2*overlap, tileCountH), alignment) + 2*overlap, minTileSize);
}
else if (tileW > minTileSize)
{
tileCountW++;
tileW = max(roundUp(ceilDiv(W - 2*overlap, tileCountW), alignment) + 2*overlap, minTileSize);
}
else
break;
}
// Compute the final number of tiles
tileCountH = (H > tileH) ? ceilDiv(H - 2*overlap, tileH - 2*overlap) : 1;
tileCountW = (W > tileW) ? ceilDiv(W - 2*overlap, tileW - 2*overlap) : 1;
if (device->isVerbose(2))
{
std::cout << "Tile size : " << tileW << "x" << tileH << std::endl;
std::cout << "Tile count: " << tileCountW << "x" << tileCountH << std::endl;
}
}
template<int K>
std::shared_ptr<Executable> AutoencoderFilter::buildNet()
{
H = color.height;
W = color.width;
// Configure the network
int inputC;
void* weightPtr;
if (srgb && hdr)
throw Exception(Error::InvalidOperation, "srgb and hdr modes cannot be enabled at the same time");
if (color && !albedo && !normal && weightData.hdr)
{
inputC = 3;
weightPtr = hdr ? weightData.hdr : weightData.ldr;
}
else if (color && albedo && !normal && weightData.hdr_alb)
{
inputC = 6;
weightPtr = hdr ? weightData.hdr_alb : weightData.ldr_alb;
}
else if (color && albedo && normal && weightData.hdr_alb_nrm)
{
inputC = 9;
weightPtr = hdr ? weightData.hdr_alb_nrm : weightData.ldr_alb_nrm;
}
else
{
throw Exception(Error::InvalidOperation, "unsupported combination of input features");
}
if (!output)
throw Exception(Error::InvalidOperation, "output image not specified");
if ((color.format != Format::Float3)
|| (albedo && albedo.format != Format::Float3)
|| (normal && normal.format != Format::Float3)
|| (output.format != Format::Float3))
throw Exception(Error::InvalidOperation, "unsupported image format");
if ((albedo && (albedo.width != W || albedo.height != H))
|| (normal && (normal.width != W || normal.height != H))
|| (output.width != W || output.height != H))
throw Exception(Error::InvalidOperation, "image size mismatch");
// Compute the tile size
computeTileSize();
// If the image size is zero, there is nothing else to do
if (H <= 0 || W <= 0)
return nullptr;
// Parse the weights
const auto weightMap = parseTensors(weightPtr);
// Create the network
std::shared_ptr<Network<K>> net = std::make_shared<Network<K>>(device, weightMap);
// Compute the tensor sizes
const auto inputDims = memory::dims({1, inputC, tileH, tileW});
const auto inputReorderDims = net->getInputReorderDims(inputDims, alignment); //-> concat0
const auto conv1Dims = net->getConvDims("conv1", inputReorderDims); //-> temp0
const auto conv1bDims = net->getConvDims("conv1b", conv1Dims); //-> temp1
const auto pool1Dims = net->getPoolDims(conv1bDims); //-> concat1
const auto conv2Dims = net->getConvDims("conv2", pool1Dims); //-> temp0
const auto pool2Dims = net->getPoolDims(conv2Dims); //-> concat2
const auto conv3Dims = net->getConvDims("conv3", pool2Dims); //-> temp0
const auto pool3Dims = net->getPoolDims(conv3Dims); //-> concat3
const auto conv4Dims = net->getConvDims("conv4", pool3Dims); //-> temp0
const auto pool4Dims = net->getPoolDims(conv4Dims); //-> concat4
const auto conv5Dims = net->getConvDims("conv5", pool4Dims); //-> temp0
const auto pool5Dims = net->getPoolDims(conv5Dims); //-> temp1
const auto upsample4Dims = net->getUpsampleDims(pool5Dims); //-> concat4
const auto concat4Dims = net->getConcatDims(upsample4Dims, pool4Dims);
const auto conv6Dims = net->getConvDims("conv6", concat4Dims); //-> temp0
const auto conv6bDims = net->getConvDims("conv6b", conv6Dims); //-> temp1
const auto upsample3Dims = net->getUpsampleDims(conv6bDims); //-> concat3
const auto concat3Dims = net->getConcatDims(upsample3Dims, pool3Dims);
const auto conv7Dims = net->getConvDims("conv7", concat3Dims); //-> temp0
const auto conv7bDims = net->getConvDims("conv7b", conv7Dims); //-> temp1
const auto upsample2Dims = net->getUpsampleDims(conv7bDims); //-> concat2
const auto concat2Dims = net->getConcatDims(upsample2Dims, pool2Dims);
const auto conv8Dims = net->getConvDims("conv8", concat2Dims); //-> temp0
const auto conv8bDims = net->getConvDims("conv8b", conv8Dims); //-> temp1
const auto upsample1Dims = net->getUpsampleDims(conv8bDims); //-> concat1
const auto concat1Dims = net->getConcatDims(upsample1Dims, pool1Dims);
const auto conv9Dims = net->getConvDims("conv9", concat1Dims); //-> temp0
const auto conv9bDims = net->getConvDims("conv9b", conv9Dims); //-> temp1
const auto upsample0Dims = net->getUpsampleDims(conv9bDims); //-> concat0
const auto concat0Dims = net->getConcatDims(upsample0Dims, inputReorderDims);
const auto conv10Dims = net->getConvDims("conv10", concat0Dims); //-> temp0
const auto conv10bDims = net->getConvDims("conv10b", conv10Dims); //-> temp1
const auto conv11Dims = net->getConvDims("conv11", conv10bDims); //-> temp0
const auto outputDims = memory::dims({1, 3, tileH, tileW});
// Allocate two temporary ping-pong buffers to decrease memory usage
const auto temp0Dims = getMaxTensorDims({
conv1Dims,
conv2Dims,
conv3Dims,
conv4Dims,
conv5Dims,
conv6Dims,
conv7Dims,
conv8Dims,
conv9Dims,
conv10Dims,
conv11Dims
});
const auto temp1Dims = getMaxTensorDims({
conv1bDims,
pool5Dims,
conv6bDims,
conv7bDims,
conv8bDims,
conv9bDims,
conv10bDims,
});
auto temp0 = net->allocTensor(temp0Dims);
auto temp1 = net->allocTensor(temp1Dims);
// Allocate enough memory to hold the concat outputs. Then use the first
// half to hold the previous conv output and the second half to hold the
// pool/orig image output. This works because everything is C dimension
// outermost, padded to K floats, and all the concats are on the C dimension.
auto concat0Dst = net->allocTensor(concat0Dims);
auto concat1Dst = net->allocTensor(concat1Dims);
auto concat2Dst = net->allocTensor(concat2Dims);
auto concat3Dst = net->allocTensor(concat3Dims);
auto concat4Dst = net->allocTensor(concat4Dims);
// Transfer function
std::shared_ptr<TransferFunction> transferFunc = makeTransferFunc();
// Autoexposure
if (auto tf = std::dynamic_pointer_cast<HDRTransferFunction>(transferFunc))
{
if (isnan(hdrScale))
net->addAutoexposure(color, tf);
else
tf->setExposure(hdrScale);
}
// Input reorder
auto inputReorderDst = net->castTensor(inputReorderDims, concat0Dst, upsample0Dims);
inputReorder = net->addInputReorder(color, albedo, normal,
transferFunc,
alignment, inputReorderDst);
// conv1
auto conv1 = net->addConv("conv1", inputReorder->getDst(), temp0);
// conv1b
auto conv1b = net->addConv("conv1b", conv1->getDst(), temp1);
// pool1
// Adjust pointer for pool1 to eliminate concat1
auto pool1Dst = net->castTensor(pool1Dims, concat1Dst, upsample1Dims);
auto pool1 = net->addPool(conv1b->getDst(), pool1Dst);
// conv2
auto conv2 = net->addConv("conv2", pool1->getDst(), temp0);
// pool2
// Adjust pointer for pool2 to eliminate concat2
auto pool2Dst = net->castTensor(pool2Dims, concat2Dst, upsample2Dims);
auto pool2 = net->addPool(conv2->getDst(), pool2Dst);
// conv3
auto conv3 = net->addConv("conv3", pool2->getDst(), temp0);
// pool3
// Adjust pointer for pool3 to eliminate concat3
auto pool3Dst = net->castTensor(pool3Dims, concat3Dst, upsample3Dims);
auto pool3 = net->addPool(conv3->getDst(), pool3Dst);
// conv4
auto conv4 = net->addConv("conv4", pool3->getDst(), temp0);
// pool4
// Adjust pointer for pool4 to eliminate concat4
auto pool4Dst = net->castTensor(pool4Dims, concat4Dst, upsample4Dims);
auto pool4 = net->addPool(conv4->getDst(), pool4Dst);
// conv5
auto conv5 = net->addConv("conv5", pool4->getDst(), temp0);
// pool5
auto pool5 = net->addPool(conv5->getDst(), temp1);
// upsample4
auto upsample4Dst = net->castTensor(upsample4Dims, concat4Dst);
auto upsample4 = net->addUpsample(pool5->getDst(), upsample4Dst);
// conv6
auto conv6 = net->addConv("conv6", concat4Dst, temp0);
// conv6b
auto conv6b = net->addConv("conv6b", conv6->getDst(), temp1);
// upsample3
auto upsample3Dst = net->castTensor(upsample3Dims, concat3Dst);
auto upsample3 = net->addUpsample(conv6b->getDst(), upsample3Dst);
// conv7
auto conv7 = net->addConv("conv7", concat3Dst, temp0);
// conv7b
auto conv7b = net->addConv("conv7b", conv7->getDst(), temp1);
// upsample2
auto upsample2Dst = net->castTensor(upsample2Dims, concat2Dst);
auto upsample2 = net->addUpsample(conv7b->getDst(), upsample2Dst);
// conv8
auto conv8 = net->addConv("conv8", concat2Dst, temp0);
// conv8b
auto conv8b = net->addConv("conv8b", conv8->getDst(), temp1);
// upsample1
auto upsample1Dst = net->castTensor(upsample1Dims, concat1Dst);
auto upsample1 = net->addUpsample(conv8b->getDst(), upsample1Dst);
// conv9
auto conv9 = net->addConv("conv9", concat1Dst, temp0);
// conv9b
auto conv9b = net->addConv("conv9b", conv9->getDst(), temp1);
// upsample0
auto upsample0Dst = net->castTensor(upsample0Dims, concat0Dst);
auto upsample0 = net->addUpsample(conv9b->getDst(), upsample0Dst);
// conv10
auto conv10 = net->addConv("conv10", concat0Dst, temp0);
// conv10b
auto conv10b = net->addConv("conv10b", conv10->getDst(), temp1);
// conv11
auto conv11 = net->addConv("conv11", conv10b->getDst(), temp0, false /* no relu */);
// Output reorder
outputReorder = net->addOutputReorder(conv11->getDst(), transferFunc, output);
net->finalize();
return net;
}
std::shared_ptr<TransferFunction> AutoencoderFilter::makeTransferFunc()
{
if (hdr)
return std::make_shared<PQXTransferFunction>();
else if (srgb)
return std::make_shared<LinearTransferFunction>();
else
return std::make_shared<GammaTransferFunction>();
}
// -- GODOT start --
// Godot doesn't need Raytracing filters. Removing them saves space in the weights files.
#if 0
// -- GODOT end --
// --------------------------------------------------------------------------
// RTFilter
// --------------------------------------------------------------------------
namespace weights
{
// LDR
extern unsigned char rt_ldr[]; // color
extern unsigned char rt_ldr_alb[]; // color, albedo
extern unsigned char rt_ldr_alb_nrm[]; // color, albedo, normal
// HDR
extern unsigned char rt_hdr[]; // color
extern unsigned char rt_hdr_alb[]; // color, albedo
extern unsigned char rt_hdr_alb_nrm[]; // color, albedo, normal
}
RTFilter::RTFilter(const Ref<Device>& device)
: AutoencoderFilter(device)
{
weightData.ldr = weights::rt_ldr;
weightData.ldr_alb = weights::rt_ldr_alb;
weightData.ldr_alb_nrm = weights::rt_ldr_alb_nrm;
weightData.hdr = weights::rt_hdr;
weightData.hdr_alb = weights::rt_hdr_alb;
weightData.hdr_alb_nrm = weights::rt_hdr_alb_nrm;
}
// -- GODOT start --
#endif
// -- GODOT end --
// --------------------------------------------------------------------------
// RTLightmapFilter
// --------------------------------------------------------------------------
namespace weights
{
// HDR
extern unsigned char rtlightmap_hdr[]; // color
}
RTLightmapFilter::RTLightmapFilter(const Ref<Device>& device)
: AutoencoderFilter(device)
{
weightData.hdr = weights::rtlightmap_hdr;
hdr = true;
}
std::shared_ptr<TransferFunction> RTLightmapFilter::makeTransferFunc()
{
return std::make_shared<LogTransferFunction>();
}
} // namespace oidn