godot/servers/rendering/rasterizer_rd/shaders/scene_high_end.glsl
Rémi Verschelde 0be6d925dc Style: clang-format: Disable KeepEmptyLinesAtTheStartOfBlocks
Which means that reduz' beloved style which we all became used to
will now be changed automatically to remove the first empty line.

This makes us lean closer to 1TBS (the one true brace style) instead
of hybridating it with some Allman-inspired spacing.

There's still the case of braces around single-statement blocks that
needs to be addressed (but clang-format can't help with that, but
clang-tidy may if we agree about it).

Part of #33027.
2020-05-14 16:54:55 +02:00

2481 lines
84 KiB
GLSL

/* clang-format off */
[vertex]
#version 450
VERSION_DEFINES
#include "scene_high_end_inc.glsl"
/* INPUT ATTRIBS */
layout(location = 0) in vec3 vertex_attrib;
/* clang-format on */
layout(location = 1) in vec3 normal_attrib;
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 2) in vec4 tangent_attrib;
#endif
#if defined(COLOR_USED)
layout(location = 3) in vec4 color_attrib;
#endif
layout(location = 4) in vec2 uv_attrib;
#if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL)
layout(location = 5) in vec2 uv2_attrib;
#endif
layout(location = 6) in uvec4 bone_attrib; // always bound, even if unused
/* Varyings */
layout(location = 0) out vec3 vertex_interp;
layout(location = 1) out vec3 normal_interp;
#if defined(COLOR_USED)
layout(location = 2) out vec4 color_interp;
#endif
layout(location = 3) out vec2 uv_interp;
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 4) out vec2 uv2_interp;
#endif
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 5) out vec3 tangent_interp;
layout(location = 6) out vec3 binormal_interp;
#endif
#ifdef USE_MATERIAL_UNIFORMS
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
/* clang-format off */
MATERIAL_UNIFORMS
/* clang-format on */
} material;
#endif
/* clang-format off */
VERTEX_SHADER_GLOBALS
/* clang-format on */
// FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now.
// See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316
invariant gl_Position;
layout(location = 7) flat out uint instance_index;
#ifdef MODE_DUAL_PARABOLOID
layout(location = 8) out float dp_clip;
#endif
void main() {
instance_index = draw_call.instance_index;
vec4 instance_custom = vec4(0.0);
#if defined(COLOR_USED)
color_interp = color_attrib;
#endif
mat4 world_matrix = instances.data[instance_index].transform;
mat3 world_normal_matrix = mat3(instances.data[instance_index].normal_transform);
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH)) {
//multimesh, instances are for it
uint offset = (instances.data[instance_index].flags >> INSTANCE_FLAGS_MULTIMESH_STRIDE_SHIFT) & INSTANCE_FLAGS_MULTIMESH_STRIDE_MASK;
offset *= gl_InstanceIndex;
mat4 matrix;
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
offset += 2;
} else {
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0));
offset += 3;
}
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
#ifdef COLOR_USED
color_interp *= transforms.data[offset];
#endif
offset += 1;
}
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
instance_custom = transforms.data[offset];
}
//transpose
matrix = transpose(matrix);
world_matrix = world_matrix * matrix;
world_normal_matrix = world_normal_matrix * mat3(matrix);
} else {
//not a multimesh, instances are for multiple draw calls
instance_index += gl_InstanceIndex;
}
vec3 vertex = vertex_attrib;
vec3 normal = normal_attrib;
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 tangent = tangent_attrib.xyz;
float binormalf = tangent_attrib.a;
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_SKELETON)) {
//multimesh, instances are for it
uvec2 bones_01 = uvec2(bone_attrib.x & 0xFFFF, bone_attrib.x >> 16) * 3;
uvec2 bones_23 = uvec2(bone_attrib.y & 0xFFFF, bone_attrib.y >> 16) * 3;
vec2 weights_01 = unpackUnorm2x16(bone_attrib.z);
vec2 weights_23 = unpackUnorm2x16(bone_attrib.w);
mat4 m = mat4(transforms.data[bones_01.x], transforms.data[bones_01.x + 1], transforms.data[bones_01.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.x;
m += mat4(transforms.data[bones_01.y], transforms.data[bones_01.y + 1], transforms.data[bones_01.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.y;
m += mat4(transforms.data[bones_23.x], transforms.data[bones_23.x + 1], transforms.data[bones_23.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.x;
m += mat4(transforms.data[bones_23.y], transforms.data[bones_23.y + 1], transforms.data[bones_23.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.y;
//reverse order because its transposed
vertex = (vec4(vertex, 1.0) * m).xyz;
normal = (vec4(normal, 0.0) * m).xyz;
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent = (vec4(tangent, 0.0) * m).xyz;
binormal = (vec4(binormal, 0.0) * m).xyz;
#endif
}
uv_interp = uv_attrib;
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
uv2_interp = uv2_attrib;
#endif
#ifdef USE_OVERRIDE_POSITION
vec4 position;
#endif
mat4 projection_matrix = scene_data.projection_matrix;
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = (world_matrix * vec4(vertex, 1.0)).xyz;
normal = world_normal_matrix * normal;
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent = world_normal_matrix * tangent;
binormal = world_normal_matrix * binormal;
#endif
#endif
float roughness = 1.0;
mat4 modelview = scene_data.inv_camera_matrix * world_matrix;
mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix;
{
/* clang-format off */
VERTEX_SHADER_CODE
/* clang-format on */
}
// using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
vertex = (modelview * vec4(vertex, 1.0)).xyz;
normal = modelview_normal * normal;
#endif
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = modelview_normal * binormal;
tangent = modelview_normal * tangent;
#endif
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz;
normal = mat3(scene_data.inverse_normal_matrix) * normal;
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal;
tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent;
#endif
#endif
vertex_interp = vertex;
normal_interp = normal;
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
#ifdef MODE_RENDER_DEPTH
#ifdef MODE_DUAL_PARABOLOID
vertex_interp.z *= scene_data.dual_paraboloid_side;
normal_interp.z *= scene_data.dual_paraboloid_side;
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
vec3 vtx = vertex_interp;
float distance = length(vtx);
vtx = normalize(vtx);
vtx.xy /= 1.0 - vtx.z;
vtx.z = (distance / scene_data.z_far);
vtx.z = vtx.z * 2.0 - 1.0;
vertex_interp = vtx;
#endif
#endif //MODE_RENDER_DEPTH
#ifdef USE_OVERRIDE_POSITION
gl_Position = position;
#else
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif
#ifdef MODE_RENDER_DEPTH
if (scene_data.pancake_shadows) {
if (gl_Position.z <= 0.00001) {
gl_Position.z = 0.00001;
}
}
#endif
#ifdef MODE_RENDER_MATERIAL
if (scene_data.material_uv2_mode) {
gl_Position.xy = (uv2_attrib.xy + draw_call.bake_uv2_offset) * 2.0 - 1.0;
gl_Position.z = 0.00001;
gl_Position.w = 1.0;
}
#endif
}
/* clang-format off */
[fragment]
#version 450
VERSION_DEFINES
#include "scene_high_end_inc.glsl"
/* Varyings */
layout(location = 0) in vec3 vertex_interp;
/* clang-format on */
layout(location = 1) in vec3 normal_interp;
#if defined(COLOR_USED)
layout(location = 2) in vec4 color_interp;
#endif
layout(location = 3) in vec2 uv_interp;
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 4) in vec2 uv2_interp;
#endif
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 5) in vec3 tangent_interp;
layout(location = 6) in vec3 binormal_interp;
#endif
layout(location = 7) flat in uint instance_index;
#ifdef MODE_DUAL_PARABOLOID
layout(location = 8) in float dp_clip;
#endif
//defines to keep compatibility with vertex
#define world_matrix instances.data[instance_index].transform
#define world_normal_matrix instances.data[instance_index].normal_transform
#define projection_matrix scene_data.projection_matrix
#if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE)
//both required for transmittance to be enabled
#define LIGHT_TRANSMITTANCE_USED
#endif
#ifdef USE_MATERIAL_UNIFORMS
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
/* clang-format off */
MATERIAL_UNIFORMS
/* clang-format on */
} material;
#endif
/* clang-format off */
FRAGMENT_SHADER_GLOBALS
/* clang-format on */
#ifdef MODE_RENDER_DEPTH
#ifdef MODE_RENDER_MATERIAL
layout(location = 0) out vec4 albedo_output_buffer;
layout(location = 1) out vec4 normal_output_buffer;
layout(location = 2) out vec4 orm_output_buffer;
layout(location = 3) out vec4 emission_output_buffer;
layout(location = 4) out float depth_output_buffer;
#endif
#ifdef MODE_RENDER_NORMAL
layout(location = 0) out vec4 normal_output_buffer;
#ifdef MODE_RENDER_ROUGHNESS
layout(location = 1) out float roughness_output_buffer;
#endif //MODE_RENDER_ROUGHNESS
#endif //MODE_RENDER_NORMAL
#else // RENDER DEPTH
#ifdef MODE_MULTIPLE_RENDER_TARGETS
layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness
layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter)
#else
layout(location = 0) out vec4 frag_color;
#endif
#endif // RENDER DEPTH
// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
// We're dividing this factor off because the overall term we'll end up looks like
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
//
// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
//
// We're basically regouping this as
//
// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
//
// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
//
// The contents of the D and G (G1) functions (GGX) are taken from
// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
float G_GGX_2cos(float cos_theta_m, float alpha) {
// Schlick's approximation
// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
// It nevertheless approximates GGX well with k = alpha/2.
float k = 0.5 * alpha;
return 0.5 / (cos_theta_m * (1.0 - k) + k);
// float cos2 = cos_theta_m * cos_theta_m;
// float sin2 = (1.0 - cos2);
// return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
}
float D_GGX(float cos_theta_m, float alpha) {
float alpha2 = alpha * alpha;
float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
return alpha2 / (M_PI * d * d);
}
float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float s_x = alpha_x * cos_phi;
float s_y = alpha_y * sin_phi;
return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
}
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float r_x = cos_phi / alpha_x;
float r_y = sin_phi / alpha_y;
float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
}
float SchlickFresnel(float u) {
float m = 1.0 - u;
float m2 = m * m;
return m2 * m2 * m; // pow(m,5)
}
float GTR1(float NdotH, float a) {
if (a >= 1.0)
return 1.0 / M_PI;
float a2 = a * a;
float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
return (a2 - 1.0) / (M_PI * log(a2) * t);
}
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
// see https://google.github.io/filament/Filament.md.html
return mix(vec3(dielectric), albedo, vec3(metallic));
}
void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 shadow_attenuation, vec3 diffuse_color, float roughness, float metallic, float specular, float specular_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
vec4 transmittance_color,
float transmittance_depth,
float transmittance_curve,
float transmittance_boost,
float transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
float clearcoat, float clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
vec3 B, vec3 T, float anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
inout float alpha,
#endif
inout vec3 diffuse_light, inout vec3 specular_light) {
#if defined(USE_LIGHT_SHADER_CODE)
// light is written by the light shader
vec3 normal = N;
vec3 albedo = diffuse_color;
vec3 light = L;
vec3 view = V;
/* clang-format off */
LIGHT_SHADER_CODE
/* clang-format on */
#else
float NdotL = min(A + dot(N, L), 1.0);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
vec3 H = normalize(V + L);
#endif
#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
#endif
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
#endif
if (metallic < 1.0) {
#if defined(DIFFUSE_OREN_NAYAR)
vec3 diffuse_brdf_NL;
#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_OREN_NAYAR)
{
// see http://mimosa-pudica.net/improved-oren-nayar.html
float LdotV = dot(L, V);
float s = LdotV - NdotL * NdotV;
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
float sigma2 = roughness * roughness; // TODO: this needs checking
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
float B = 0.45 * sigma2 / (sigma2 + 0.09);
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
}
#elif defined(DIFFUSE_TOON)
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
#elif defined(DIFFUSE_BURLEY)
{
float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
/*
float energyBias = mix(roughness, 0.0, 0.5);
float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
float f0 = 1.0;
float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
*/
}
#else
// lambert
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
diffuse_light += light_color * diffuse_color * shadow_attenuation * diffuse_brdf_NL * attenuation;
#if defined(LIGHT_BACKLIGHT_USED)
diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
#endif
#if defined(LIGHT_RIM_USED)
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
#ifdef SSS_MODE_SKIN
{
float scale = 8.25 / transmittance_depth;
float d = scale * abs(transmittance_z);
float dd = -d * d;
vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
diffuse_light += profile * transmittance_color.a * diffuse_color * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI) * attenuation;
}
#else
if (transmittance_depth > 0.0) {
float fade = clamp(abs(transmittance_z / transmittance_depth), 0.0, 1.0);
fade = pow(max(0.0, 1.0 - fade), transmittance_curve);
fade *= clamp(transmittance_boost - NdotL, 0.0, 1.0);
diffuse_light += diffuse_color * transmittance_color.rgb * light_color * (1.0 / M_PI) * transmittance_color.a * fade * attenuation;
}
#endif //SSS_MODE_SKIN
#endif //LIGHT_TRANSMITTANCE_USED
}
if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
// D
#if defined(SPECULAR_BLINN)
//normalized blinn
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess) * cNdotL;
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
float intensity = blinn;
specular_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation;
#elif defined(SPECULAR_PHONG)
vec3 R = normalize(-reflect(L, N));
float cRdotV = clamp(A + dot(R, V), 0.0, 1.0);
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float phong = pow(cRdotV, shininess);
phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
specular_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation;
#elif defined(SPECULAR_TOON)
vec3 R = normalize(-reflect(L, N));
float RdotV = dot(R, V);
float mid = 1.0 - roughness;
mid *= mid;
float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
diffuse_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection
#elif defined(SPECULAR_DISABLED)
// none..
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
#if defined(LIGHT_ANISOTROPY_USED)
float alpha_ggx = roughness * roughness;
float aspect = sqrt(1.0 - anisotropy * 0.9);
float ax = alpha_ggx / aspect;
float ay = alpha_ggx * aspect;
float XdotH = dot(T, H);
float YdotH = dot(B, H);
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
#else
float alpha_ggx = roughness * roughness;
float D = D_GGX(cNdotH, alpha_ggx);
float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
#endif
// F
vec3 f0 = F0(metallic, specular, diffuse_color);
float cLdotH5 = SchlickFresnel(cLdotH);
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
vec3 specular_brdf_NL = cNdotL * D * F * G;
specular_light += specular_brdf_NL * light_color * shadow_attenuation * specular_blob_intensity * attenuation;
#endif
#if defined(LIGHT_CLEARCOAT_USED)
#if !defined(SPECULAR_SCHLICK_GGX)
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
float Fr = mix(.04, 1.0, cLdotH5);
float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
specular_light += clearcoat_specular_brdf_NL * light_color * shadow_attenuation * specular_blob_intensity * attenuation;
#endif
}
#ifdef USE_SHADOW_TO_OPACITY
alpha = min(alpha, clamp(1.0 - length(shadow_attenuation * attenuation), 0.0, 1.0));
#endif
#endif //defined(USE_LIGHT_SHADER_CODE)
}
#ifndef USE_NO_SHADOWS
// Produces cheap but low-quality white noise, nothing special
float quick_hash(vec2 pos) {
return fract(sin(dot(pos * 19.19, vec2(49.5791, 97.413))) * 49831.189237);
}
float sample_directional_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
vec2 pos = coord.xy;
float depth = coord.z;
//if only one sample is taken, take it from the center
if (scene_data.directional_soft_shadow_samples == 1) {
return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
}
mat2 disk_rotation;
{
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
float sr = sin(r);
float cr = cos(r);
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
float avg = 0.0;
for (uint i = 0; i < scene_data.directional_soft_shadow_samples; i++) {
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.directional_soft_shadow_kernel[i].xy), depth, 1.0));
}
return avg * (1.0 / float(scene_data.directional_soft_shadow_samples));
}
float sample_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
vec2 pos = coord.xy;
float depth = coord.z;
//if only one sample is taken, take it from the center
if (scene_data.soft_shadow_samples == 1) {
return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
}
mat2 disk_rotation;
{
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
float sr = sin(r);
float cr = cos(r);
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
float avg = 0.0;
for (uint i = 0; i < scene_data.soft_shadow_samples; i++) {
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.soft_shadow_kernel[i].xy), depth, 1.0));
}
return avg * (1.0 / float(scene_data.soft_shadow_samples));
}
float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex_scale) {
//find blocker
float blocker_count = 0.0;
float blocker_average = 0.0;
mat2 disk_rotation;
{
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
float sr = sin(r);
float cr = cos(r);
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) {
vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
float d = textureLod(sampler2D(shadow, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
if (d < pssm_coord.z) {
blocker_average += d;
blocker_count += 1.0;
}
}
if (blocker_count > 0.0) {
//blockers found, do soft shadow
blocker_average /= blocker_count;
float penumbra = (pssm_coord.z - blocker_average) / blocker_average;
tex_scale *= penumbra;
float s = 0.0;
for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) {
vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0));
}
return s / float(scene_data.directional_penumbra_shadow_samples);
} else {
//no blockers found, so no shadow
return 1.0;
}
}
#endif //USE_NO_SHADOWS
void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 albedo, float roughness, float metallic, float specular, float p_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
vec4 transmittance_color,
float transmittance_depth,
float transmittance_curve,
float transmittance_boost,
#endif
#ifdef LIGHT_RIM_USED
float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
float clearcoat, float clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
vec3 binormal, vec3 tangent, float anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
inout float alpha,
#endif
inout vec3 diffuse_light, inout vec3 specular_light) {
vec3 light_rel_vec = lights.data[idx].position - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length * lights.data[idx].inv_radius;
vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy);
float omni_attenuation = pow(max(1.0 - normalized_distance, 0.0), attenuation_energy.x);
float light_attenuation = omni_attenuation;
vec3 shadow_attenuation = vec3(1.0);
vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular);
color_specular.rgb *= attenuation_energy.y;
float size_A = 0.0;
if (lights.data[idx].size > 0.0) {
float t = lights.data[idx].size / max(0.001, light_length);
size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
}
#ifdef LIGHT_TRANSMITTANCE_USED
float transmittance_z = transmittance_depth; //no transmittance by default
#endif
#ifndef USE_NO_SHADOWS
vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled);
if (shadow_color_enabled.w > 0.5) {
// there is a shadowmap
vec4 v = vec4(vertex, 1.0);
vec4 splane = (lights.data[idx].shadow_matrix * v);
float shadow_len = length(splane.xyz); //need to remember shadow len from here
{
vec3 nofs = normal_interp * lights.data[idx].shadow_normal_bias / lights.data[idx].inv_radius;
nofs *= (1.0 - max(0.0, dot(normalize(light_rel_vec), normalize(normal_interp))));
v.xyz += nofs;
splane = (lights.data[idx].shadow_matrix * v);
}
float shadow;
if (lights.data[idx].soft_shadow_size > 0.0) {
//soft shadow
//find blocker
float blocker_count = 0.0;
float blocker_average = 0.0;
mat2 disk_rotation;
{
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
float sr = sin(r);
float cr = cos(r);
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
vec3 normal = normalize(splane.xyz);
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
vec3 tangent = normalize(cross(v0, normal));
vec3 bitangent = normalize(cross(tangent, normal));
float z_norm = shadow_len * lights.data[idx].inv_radius;
tangent *= lights.data[idx].soft_shadow_size * lights.data[idx].soft_shadow_scale;
bitangent *= lights.data[idx].soft_shadow_size * lights.data[idx].soft_shadow_scale;
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy;
vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;
pos = normalize(pos);
vec4 uv_rect = lights.data[idx].atlas_rect;
if (pos.z >= 0.0) {
pos.z += 1.0;
uv_rect.y += uv_rect.w;
} else {
pos.z = 1.0 - pos.z;
}
pos.xy /= pos.z;
pos.xy = pos.xy * 0.5 + 0.5;
pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), pos.xy, 0.0).r;
if (d < z_norm) {
blocker_average += d;
blocker_count += 1.0;
}
}
if (blocker_count > 0.0) {
//blockers found, do soft shadow
blocker_average /= blocker_count;
float penumbra = (z_norm - blocker_average) / blocker_average;
tangent *= penumbra;
bitangent *= penumbra;
z_norm -= lights.data[idx].inv_radius * lights.data[idx].shadow_bias;
shadow = 0.0;
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy;
vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;
pos = normalize(pos);
vec4 uv_rect = lights.data[idx].atlas_rect;
if (pos.z >= 0.0) {
pos.z += 1.0;
uv_rect.y += uv_rect.w;
} else {
pos.z = 1.0 - pos.z;
}
pos.xy /= pos.z;
pos.xy = pos.xy * 0.5 + 0.5;
pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(pos.xy, z_norm, 1.0));
}
shadow /= float(scene_data.penumbra_shadow_samples);
} else {
//no blockers found, so no shadow
shadow = 1.0;
}
} else {
splane.xyz = normalize(splane.xyz);
vec4 clamp_rect = lights.data[idx].atlas_rect;
if (splane.z >= 0.0) {
splane.z += 1.0;
clamp_rect.y += clamp_rect.w;
} else {
splane.z = 1.0 - splane.z;
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.z = (shadow_len - lights.data[idx].shadow_bias) * lights.data[idx].inv_radius;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
splane.w = 1.0; //needed? i think it should be 1 already
shadow = sample_pcf_shadow(shadow_atlas, lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, splane);
}
#ifdef LIGHT_TRANSMITTANCE_USED
{
vec4 clamp_rect = lights.data[idx].atlas_rect;
//redo shadowmapping, but shrink the model a bit to avoid arctifacts
splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0));
shadow_len = length(splane.xyz);
splane = normalize(splane.xyz);
if (splane.z >= 0.0) {
splane.z += 1.0;
} else {
splane.z = 1.0 - splane.z;
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.z = shadow_len * lights.data[idx].inv_radius;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
splane.w = 1.0; //needed? i think it should be 1 already
float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
transmittance_z = (splane.z - shadow_z) / lights.data[idx].inv_radius;
}
#endif
vec3 no_shadow = vec3(1.0);
if (lights.data[idx].projector_rect != vec4(0.0)) {
vec3 local_v = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
local_v = normalize(local_v);
vec4 atlas_rect = lights.data[idx].projector_rect;
if (local_v.z >= 0.0) {
local_v.z += 1.0;
atlas_rect.y += atlas_rect.w;
} else {
local_v.z = 1.0 - local_v.z;
}
local_v.xy /= local_v.z;
local_v.xy = local_v.xy * 0.5 + 0.5;
vec2 proj_uv = local_v.xy * atlas_rect.zw;
vec2 proj_uv_ddx;
vec2 proj_uv_ddy;
{
vec3 local_v_ddx = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz;
local_v_ddx = normalize(local_v_ddx);
if (local_v_ddx.z >= 0.0) {
local_v_ddx.z += 1.0;
} else {
local_v_ddx.z = 1.0 - local_v_ddx.z;
}
local_v_ddx.xy /= local_v_ddx.z;
local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5;
proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv;
vec3 local_v_ddy = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz;
local_v_ddy = normalize(local_v_ddy);
if (local_v_ddy.z >= 0.0) {
local_v_ddy.z += 1.0;
} else {
local_v_ddy.z = 1.0 - local_v_ddy.z;
}
local_v_ddy.xy /= local_v_ddy.z;
local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5;
proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv;
}
vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy);
no_shadow = mix(no_shadow, proj.rgb, proj.a);
}
shadow_attenuation = mix(shadow_color_enabled.rgb, no_shadow, shadow);
}
#endif //USE_NO_SHADOWS
light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_curve,
transmittance_boost,
transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
rim * omni_attenuation, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
alpha,
#endif
diffuse_light,
specular_light);
}
void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 albedo, float roughness, float metallic, float specular, float p_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
vec4 transmittance_color,
float transmittance_depth,
float transmittance_curve,
float transmittance_boost,
#endif
#ifdef LIGHT_RIM_USED
float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
float clearcoat, float clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
vec3 binormal, vec3 tangent, float anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
inout float alpha,
#endif
inout vec3 diffuse_light,
inout vec3 specular_light) {
vec3 light_rel_vec = lights.data[idx].position - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length * lights.data[idx].inv_radius;
vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy);
float spot_attenuation = pow(max(1.0 - normalized_distance, 0.001), attenuation_energy.x);
vec3 spot_dir = lights.data[idx].direction;
vec2 spot_att_angle = unpackHalf2x16(lights.data[idx].cone_attenuation_angle);
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_att_angle.y);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_att_angle.y));
spot_attenuation *= 1.0 - pow(spot_rim, spot_att_angle.x);
float light_attenuation = spot_attenuation;
vec3 shadow_attenuation = vec3(1.0);
vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular);
color_specular.rgb *= attenuation_energy.y;
float size_A = 0.0;
if (lights.data[idx].size > 0.0) {
float t = lights.data[idx].size / max(0.001, light_length);
size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
}
/*
if (lights.data[idx].atlas_rect!=vec4(0.0)) {
//use projector texture
}
*/
#ifdef LIGHT_TRANSMITTANCE_USED
float transmittance_z = transmittance_depth;
#endif
#ifndef USE_NO_SHADOWS
vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled);
if (shadow_color_enabled.w > 0.5) {
//there is a shadowmap
vec4 v = vec4(vertex, 1.0);
v.xyz -= spot_dir * lights.data[idx].shadow_bias;
float z_norm = dot(spot_dir, -light_rel_vec) * lights.data[idx].inv_radius;
float depth_bias_scale = 1.0 / (max(0.0001, z_norm)); //the closer to the light origin, the more you have to offset to reach 1px in the map
vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(spot_dir, -normalize(normal_interp)))) * lights.data[idx].shadow_normal_bias * depth_bias_scale;
normal_bias -= spot_dir * dot(spot_dir, normal_bias); //only XY, no Z
v.xyz += normal_bias;
//adjust with bias
z_norm = dot(spot_dir, v.xyz - lights.data[idx].position) * lights.data[idx].inv_radius;
float shadow;
vec4 splane = (lights.data[idx].shadow_matrix * v);
splane /= splane.w;
if (lights.data[idx].soft_shadow_size > 0.0) {
//soft shadow
//find blocker
vec2 shadow_uv = splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy;
float blocker_count = 0.0;
float blocker_average = 0.0;
mat2 disk_rotation;
{
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
float sr = sin(r);
float cr = cos(r);
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
float uv_size = lights.data[idx].soft_shadow_size * z_norm * lights.data[idx].soft_shadow_scale;
vec2 clamp_max = lights.data[idx].atlas_rect.xy + lights.data[idx].atlas_rect.zw;
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
suv = clamp(suv, lights.data[idx].atlas_rect.xy, clamp_max);
float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
if (d < z_norm) {
blocker_average += d;
blocker_count += 1.0;
}
}
if (blocker_count > 0.0) {
//blockers found, do soft shadow
blocker_average /= blocker_count;
float penumbra = (z_norm - blocker_average) / blocker_average;
uv_size *= penumbra;
shadow = 0.0;
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
suv = clamp(suv, lights.data[idx].atlas_rect.xy, clamp_max);
shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, z_norm, 1.0));
}
shadow /= float(scene_data.penumbra_shadow_samples);
} else {
//no blockers found, so no shadow
shadow = 1.0;
}
} else {
//hard shadow
vec4 shadow_uv = vec4(splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy, z_norm, 1.0);
shadow = sample_pcf_shadow(shadow_atlas, lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv);
}
vec3 no_shadow = vec3(1.0);
if (lights.data[idx].projector_rect != vec4(0.0)) {
splane = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0));
splane /= splane.w;
vec2 proj_uv = splane.xy * lights.data[idx].projector_rect.zw;
//ensure we have proper mipmaps
vec4 splane_ddx = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0));
splane_ddx /= splane_ddx.w;
vec2 proj_uv_ddx = splane_ddx.xy * lights.data[idx].projector_rect.zw - proj_uv;
vec4 splane_ddy = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0));
splane_ddy /= splane_ddy.w;
vec2 proj_uv_ddy = splane_ddy.xy * lights.data[idx].projector_rect.zw - proj_uv;
vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + lights.data[idx].projector_rect.xy, proj_uv_ddx, proj_uv_ddy);
no_shadow = mix(no_shadow, proj.rgb, proj.a);
}
shadow_attenuation = mix(shadow_color_enabled.rgb, no_shadow, shadow);
#ifdef LIGHT_TRANSMITTANCE_USED
{
splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0));
splane /= splane.w;
splane.xy = splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy;
float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
//reconstruct depth
shadow_z / lights.data[idx].inv_radius;
//distance to light plane
float z = dot(spot_dir, -light_rel_vec);
transmittance_z = z - shadow_z;
}
#endif //LIGHT_TRANSMITTANCE_USED
}
#endif //USE_NO_SHADOWS
light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_curve,
transmittance_boost,
transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
rim * spot_attenuation, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
alpha,
#endif
diffuse_light, specular_light);
}
void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughness, vec3 ambient_light, vec3 specular_light, inout vec4 ambient_accum, inout vec4 reflection_accum) {
vec3 box_extents = reflections.data[ref_index].box_extents;
vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz;
if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
return;
}
vec3 ref_vec = normalize(reflect(vertex, normal));
vec3 inner_pos = abs(local_pos / box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
//make blend more rounded
blend = mix(length(inner_pos), blend, blend);
blend *= blend;
blend = max(0.0, 1.0 - blend);
if (reflections.data[ref_index].params.x > 0.0) { // compute reflection
vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz;
if (reflections.data[ref_index].params.w > 0.5) { //box project
vec3 nrdir = normalize(local_ref_vec);
vec3 rbmax = (box_extents - local_pos) / nrdir;
vec3 rbmin = (-box_extents - local_pos) / nrdir;
vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));
float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
vec3 posonbox = local_pos + nrdir * fa;
local_ref_vec = posonbox - reflections.data[ref_index].box_offset;
}
vec4 reflection;
reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb;
if (reflections.data[ref_index].params.z < 0.5) {
reflection.rgb = mix(specular_light, reflection.rgb, blend);
}
reflection.rgb *= reflections.data[ref_index].params.x;
reflection.a = blend;
reflection.rgb *= reflection.a;
reflection_accum += reflection;
}
#if !defined(USE_LIGHTMAP) && !defined(USE_VOXEL_CONE_TRACING)
if (reflections.data[ref_index].ambient.a > 0.0) { //compute ambient using skybox
vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz;
vec4 ambient_out;
ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb;
ambient_out.a = blend;
ambient_out.rgb = mix(reflections.data[ref_index].ambient.rgb, ambient_out.rgb, reflections.data[ref_index].ambient.a);
if (reflections.data[ref_index].params.z < 0.5) {
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
}
ambient_out.rgb *= ambient_out.a;
ambient_accum += ambient_out;
} else {
vec4 ambient_out;
ambient_out.a = blend;
ambient_out.rgb = reflections.data[ref_index].ambient.rgb;
if (reflections.data[ref_index].params.z < 0.5) {
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
}
ambient_out.rgb *= ambient_out.a;
ambient_accum += ambient_out;
}
#endif //USE_LIGHTMAP or VCT
}
#ifdef USE_VOXEL_CONE_TRACING
//standard voxel cone trace
vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
float dist = p_bias;
vec4 color = vec4(0.0);
while (dist < max_distance && color.a < 0.95) {
float diameter = max(1.0, 2.0 * tan_half_angle * dist);
vec3 uvw_pos = (pos + dist * direction) * cell_size;
float half_diameter = diameter * 0.5;
//check if outside, then break
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) {
break;
}
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2(diameter));
float a = (1.0 - color.a);
color += a * scolor;
dist += half_diameter;
}
return color;
}
#ifndef GI_PROBE_HIGH_QUALITY
//faster version for 45 degrees
#ifdef GI_PROBE_USE_ANISOTROPY
vec4 voxel_cone_trace_anisotropic_45_degrees(texture3D probe, texture3D aniso_pos, texture3D aniso_neg, vec3 normal, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
float dist = p_bias;
vec4 color = vec4(0.0);
float radius = max(0.5, tan_half_angle * dist);
float lod_level = log2(radius * 2.0);
while (dist < max_distance && color.a < 0.95) {
vec3 uvw_pos = (pos + dist * direction) * cell_size;
//check if outside, then break
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) {
break;
}
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level);
vec3 aniso_neg = textureLod(sampler3D(aniso_neg, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level).rgb;
vec3 aniso_pos = textureLod(sampler3D(aniso_pos, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level).rgb;
scolor.rgb *= dot(max(vec3(0.0), (normal * aniso_pos)), vec3(1.0)) + dot(max(vec3(0.0), (-normal * aniso_neg)), vec3(1.0));
lod_level += 1.0;
float a = (1.0 - color.a);
scolor *= a;
color += scolor;
dist += radius;
radius = max(0.5, tan_half_angle * dist);
}
return color;
}
#else
vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
float dist = p_bias;
vec4 color = vec4(0.0);
float radius = max(0.5, tan_half_angle * dist);
float lod_level = log2(radius * 2.0);
while (dist < max_distance && color.a < 0.95) {
vec3 uvw_pos = (pos + dist * direction) * cell_size;
//check if outside, then break
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) {
break;
}
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level);
lod_level += 1.0;
float a = (1.0 - color.a);
scolor *= a;
color += scolor;
dist += radius;
radius = max(0.5, tan_half_angle * dist);
}
return color;
}
#endif
#elif defined(GI_PROBE_USE_ANISOTROPY)
//standard voxel cone trace
vec4 voxel_cone_trace_anisotropic(texture3D probe, texture3D aniso_pos, texture3D aniso_neg, vec3 normal, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
float dist = p_bias;
vec4 color = vec4(0.0);
while (dist < max_distance && color.a < 0.95) {
float diameter = max(1.0, 2.0 * tan_half_angle * dist);
vec3 uvw_pos = (pos + dist * direction) * cell_size;
float half_diameter = diameter * 0.5;
//check if outside, then break
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) {
break;
}
float log2_diameter = log2(diameter);
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter);
vec3 aniso_neg = textureLod(sampler3D(aniso_neg, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter).rgb;
vec3 aniso_pos = textureLod(sampler3D(aniso_pos, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter).rgb;
scolor.rgb *= dot(max(vec3(0.0), (normal * aniso_pos)), vec3(1.0)) + dot(max(vec3(0.0), (-normal * aniso_neg)), vec3(1.0));
float a = (1.0 - color.a);
scolor *= a;
color += scolor;
dist += half_diameter;
}
return color;
}
#endif
void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3 normal_xform, float roughness, vec3 ambient, vec3 environment, inout vec4 out_spec, inout vec4 out_diff) {
position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz;
ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz);
normal = normalize((gi_probes.data[index].xform * vec4(normal, 0.0)).xyz);
position += normal * gi_probes.data[index].normal_bias;
//this causes corrupted pixels, i have no idea why..
if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, gi_probes.data[index].bounds))))) {
return;
}
vec3 blendv = abs(position / gi_probes.data[index].bounds * 2.0 - 1.0);
float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
//float blend=1.0;
float max_distance = length(gi_probes.data[index].bounds);
vec3 cell_size = 1.0 / gi_probes.data[index].bounds;
//radiance
#ifdef GI_PROBE_HIGH_QUALITY
#define MAX_CONE_DIRS 6
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
vec3(0.0, 0.0, 1.0),
vec3(0.866025, 0.0, 0.5),
vec3(0.267617, 0.823639, 0.5),
vec3(-0.700629, 0.509037, 0.5),
vec3(-0.700629, -0.509037, 0.5),
vec3(0.267617, -0.823639, 0.5));
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
float cone_angle_tan = 0.577;
#elif defined(GI_PROBE_LOW_QUALITY)
#define MAX_CONE_DIRS 1
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
vec3(0.0, 0.0, 1.0));
float cone_weights[MAX_CONE_DIRS] = float[](1.0);
float cone_angle_tan = 4; //~76 degrees
#else // MEDIUM QUALITY
#define MAX_CONE_DIRS 4
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
vec3(0.707107, 0.0, 0.707107),
vec3(0.0, 0.707107, 0.707107),
vec3(-0.707107, 0.0, 0.707107),
vec3(0.0, -0.707107, 0.707107));
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
float cone_angle_tan = 0.98269;
#endif
vec3 light = vec3(0.0);
for (int i = 0; i < MAX_CONE_DIRS; i++) {
vec3 dir = normalize((gi_probes.data[index].xform * vec4(normal_xform * cone_dirs[i], 0.0)).xyz);
#if defined(GI_PROBE_HIGH_QUALITY) || defined(GI_PROBE_LOW_QUALITY)
#ifdef GI_PROBE_USE_ANISOTROPY
vec4 cone_light = voxel_cone_trace_anisotropic(gi_probe_textures[gi_probes.data[index].texture_slot], gi_probe_textures[gi_probes.data[index].texture_slot + 1], gi_probe_textures[gi_probes.data[index].texture_slot + 2], normalize(mix(dir, normal, gi_probes.data[index].anisotropy_strength)), cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
#else
vec4 cone_light = voxel_cone_trace(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
#endif // GI_PROBE_USE_ANISOTROPY
#else
#ifdef GI_PROBE_USE_ANISOTROPY
vec4 cone_light = voxel_cone_trace_anisotropic_45_degrees(gi_probe_textures[gi_probes.data[index].texture_slot], gi_probe_textures[gi_probes.data[index].texture_slot + 1], gi_probe_textures[gi_probes.data[index].texture_slot + 2], normalize(mix(dir, normal, gi_probes.data[index].anisotropy_strength)), cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
#else
vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
#endif // GI_PROBE_USE_ANISOTROPY
#endif
if (gi_probes.data[index].blend_ambient) {
cone_light.rgb = mix(ambient, cone_light.rgb, min(1.0, cone_light.a / 0.95));
}
light += cone_weights[i] * cone_light.rgb;
}
light *= gi_probes.data[index].dynamic_range;
if (gi_probes.data[index].ambient_occlusion > 0.001) {
float size = 1.0 + gi_probes.data[index].ambient_occlusion_size * 7.0;
float taps, blend;
blend = modf(size, taps);
float ao = 0.0;
for (float i = 1.0; i <= taps; i++) {
vec3 ofs = (position + normal * (i * 0.5 + 1.0)) * cell_size;
ao += textureLod(sampler3D(gi_probe_textures[gi_probes.data[index].texture_slot], material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ofs, i - 1.0).a * i;
}
if (blend > 0.001) {
vec3 ofs = (position + normal * ((taps + 1.0) * 0.5 + 1.0)) * cell_size;
ao += textureLod(sampler3D(gi_probe_textures[gi_probes.data[index].texture_slot], material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ofs, taps).a * (taps + 1.0) * blend;
}
ao = 1.0 - min(1.0, ao);
light = mix(scene_data.ao_color.rgb, light, mix(1.0, ao, gi_probes.data[index].ambient_occlusion));
}
out_diff += vec4(light * blend, blend);
//irradiance
#ifndef GI_PROBE_LOW_QUALITY
vec4 irr_light = voxel_cone_trace(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias);
if (gi_probes.data[index].blend_ambient) {
irr_light.rgb = mix(environment, irr_light.rgb, min(1.0, irr_light.a / 0.95));
}
irr_light.rgb *= gi_probes.data[index].dynamic_range;
//irr_light=vec3(0.0);
out_spec += vec4(irr_light.rgb * blend, blend);
#endif
}
#endif //USE_VOXEL_CONE_TRACING
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
void main() {
#ifdef MODE_DUAL_PARABOLOID
if (dp_clip > 0.0)
discard;
#endif
//lay out everything, whathever is unused is optimized away anyway
vec3 vertex = vertex_interp;
vec3 view = -normalize(vertex_interp);
vec3 albedo = vec3(1.0);
vec3 backlight = vec3(0.0);
vec4 transmittance_color = vec4(0.0);
float transmittance_depth = 0.0;
float transmittance_curve = 1.0;
float transmittance_boost = 0.0;
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
float clearcoat_gloss = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
#if defined(AO_USED)
float ao = 1.0;
float ao_light_affect = 0.0;
#endif
float alpha = 1.0;
#if defined(ALPHA_SCISSOR_USED)
float alpha_scissor = 0.5;
#endif
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 binormal = normalize(binormal_interp);
vec3 tangent = normalize(tangent_interp);
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
vec3 normal = normalize(normal_interp);
#if defined(DO_SIDE_CHECK)
if (!gl_FrontFacing) {
normal = -normal;
}
#endif
vec2 uv = uv_interp;
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
vec2 uv2 = uv2_interp;
#endif
#if defined(COLOR_USED)
vec4 color = color_interp;
#endif
#if defined(NORMALMAP_USED)
vec3 normalmap = vec3(0.5);
#endif
float normaldepth = 1.0;
vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center
float sss_strength = 0.0;
{
/* clang-format off */
FRAGMENT_SHADER_CODE
/* clang-format on */
}
#if defined(LIGHT_TRANSMITTANCE_USED)
#ifdef SSS_MODE_SKIN
transmittance_color.a = sss_strength;
#else
transmittance_color.a *= sss_strength;
#endif
#endif
#if !defined(USE_SHADOW_TO_OPACITY)
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#endif // ALPHA_SCISSOR_USED
#ifdef USE_OPAQUE_PREPASS
if (alpha < opaque_prepass_threshold) {
discard;
}
#endif // USE_OPAQUE_PREPASS
#endif // !USE_SHADOW_TO_OPACITY
#if defined(NORMALMAP_USED)
normalmap.xy = normalmap.xy * 2.0 - 1.0;
normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
normal = normalize(mix(normal, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth));
#endif
#if defined(LIGHT_ANISOTROPY_USED)
if (anisotropy > 0.01) {
//rotation matrix
mat3 rot = mat3(tangent, binormal, normal);
//make local to space
tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
}
#endif
#ifdef ENABLE_CLIP_ALPHA
if (albedo.a < 0.99) {
//used for doublepass and shadowmapping
discard;
}
#endif
/////////////////////// DECALS ////////////////////////////////
#ifndef MODE_RENDER_DEPTH
uvec4 cluster_cell = texture(usampler3D(cluster_texture, material_samplers[SAMPLER_NEAREST_CLAMP]), vec3(screen_uv, (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near)));
//used for interpolating anything cluster related
vec3 vertex_ddx = dFdx(vertex);
vec3 vertex_ddy = dFdy(vertex);
{ // process decals
uint decal_count = cluster_cell.w >> CLUSTER_COUNTER_SHIFT;
uint decal_pointer = cluster_cell.w & CLUSTER_POINTER_MASK;
//do outside for performance and avoiding arctifacts
for (uint i = 0; i < decal_count; i++) {
uint decal_index = cluster_data.indices[decal_pointer + i];
if (!bool(decals.data[decal_index].mask & instances.data[instance_index].layer_mask)) {
continue; //not masked
}
vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz;
if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) {
continue; //out of decal
}
//we need ddx/ddy for mipmaps, so simulate them
vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz;
vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz;
float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade);
if (decals.data[decal_index].normal_fade > 0.0) {
fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5);
}
if (decals.data[decal_index].albedo_rect != vec4(0.0)) {
//has albedo
vec4 decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw);
decal_albedo *= decals.data[decal_index].modulate;
decal_albedo.a *= fade;
albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix);
if (decals.data[decal_index].normal_rect != vec4(0.0)) {
vec3 decal_normal = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz;
decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software
decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy)));
//convert to view space, use xzy because y is up
decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz;
normal = normalize(mix(normal, decal_normal, decal_albedo.a));
}
if (decals.data[decal_index].orm_rect != vec4(0.0)) {
vec3 decal_orm = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz;
#if defined(AO_USED)
ao = mix(ao, decal_orm.r, decal_albedo.a);
#endif
roughness = mix(roughness, decal_orm.g, decal_albedo.a);
metallic = mix(metallic, decal_orm.b, decal_albedo.a);
}
}
if (decals.data[decal_index].emission_rect != vec4(0.0)) {
//emission is additive, so its independent from albedo
emission += textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade;
}
}
}
#endif //not render depth
/////////////////////// LIGHTING //////////////////////////////
//apply energy conservation
vec3 specular_light = vec3(0.0, 0.0, 0.0);
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
if (scene_data.roughness_limiter_enabled) {
float limit = texelFetch(sampler2D(roughness_buffer, material_samplers[SAMPLER_NEAREST_CLAMP]), ivec2(gl_FragCoord.xy), 0).r;
roughness = max(roughness, limit);
}
if (scene_data.use_reflection_cubemap) {
vec3 ref_vec = reflect(-view, normal);
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
float lod, blend;
blend = modf(roughness * MAX_ROUGHNESS_LOD, lod);
specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb;
specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend);
#else
specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
specular_light *= scene_data.ambient_light_color_energy.a;
}
#ifndef USE_LIGHTMAP
//lightmap overrides everything
if (scene_data.use_ambient_light) {
ambient_light = scene_data.ambient_light_color_energy.rgb;
if (scene_data.use_ambient_cubemap) {
vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb;
#else
vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
}
}
#endif // USE_LIGHTMAP
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
//radiance
float specular_blob_intensity = 1.0;
#if defined(SPECULAR_TOON)
specular_blob_intensity *= specular * 2.0;
#endif
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
//gi probes
#ifdef USE_LIGHTMAP
//lightmap
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture
uint index = instances.data[instance_index].gi_offset;
vec3 wnormal = mat3(scene_data.camera_matrix) * normal;
const float c1 = 0.429043;
const float c2 = 0.511664;
const float c3 = 0.743125;
const float c4 = 0.886227;
const float c5 = 0.247708;
ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) +
c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z +
c4 * lightmap_captures.data[index].sh[0].rgb -
c5 * lightmap_captures.data[index].sh[6].rgb +
2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y +
2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z +
2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z +
2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x +
2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y +
2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z);
} else if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap
bool uses_sh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP);
uint ofs = instances.data[instance_index].gi_offset & 0xFFF;
vec3 uvw;
uvw.xy = uv2 * instances.data[instance_index].lightmap_uv_scale.zw + instances.data[instance_index].lightmap_uv_scale.xy;
uvw.z = float((instances.data[instance_index].gi_offset >> 12) & 0xFF);
if (uses_sh) {
uvw.z *= 4.0; //SH textures use 4 times more data
vec3 lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb;
vec3 lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb;
vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb;
vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb;
uint idx = instances.data[instance_index].gi_offset >> 20;
vec3 n = normalize(lightmaps.data[idx].normal_xform * normal);
ambient_light += lm_light_l0 * 0.282095f;
ambient_light += lm_light_l1n1 * 0.32573 * n.y;
ambient_light += lm_light_l1_0 * 0.32573 * n.z;
ambient_light += lm_light_l1p1 * 0.32573 * n.x;
if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick
vec3 r = reflect(normalize(-vertex), normal);
specular_light += lm_light_l1n1 * 0.32573 * r.y;
specular_light += lm_light_l1_0 * 0.32573 * r.z;
specular_light += lm_light_l1p1 * 0.32573 * r.x;
}
} else {
ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb;
}
}
#endif
//lightmap capture
#ifdef USE_VOXEL_CONE_TRACING
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
vec3 ref_vec = normalize(reflect(normalize(vertex), normal));
//find arbitrary tangent and bitangent, then build a matrix
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
vec3 tangent = normalize(cross(v0, normal));
vec3 bitangent = normalize(cross(tangent, normal));
mat3 normal_mat = mat3(tangent, bitangent, normal);
vec4 amb_accum = vec4(0.0);
vec4 spec_accum = vec4(0.0);
gi_probe_compute(index1, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
uint index2 = instances.data[instance_index].gi_offset >> 16;
if (index2 != 0xFFFF) {
gi_probe_compute(index2, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
}
if (amb_accum.a > 0.0) {
amb_accum.rgb /= amb_accum.a;
}
if (spec_accum.a > 0.0) {
spec_accum.rgb /= spec_accum.a;
}
specular_light = spec_accum.rgb;
ambient_light = amb_accum.rgb;
}
#endif
{ // process reflections
vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
uint reflection_probe_count = cluster_cell.z >> CLUSTER_COUNTER_SHIFT;
uint reflection_probe_pointer = cluster_cell.z & CLUSTER_POINTER_MASK;
for (uint i = 0; i < reflection_probe_count; i++) {
uint ref_index = cluster_data.indices[reflection_probe_pointer + i];
reflection_process(ref_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
}
if (reflection_accum.a > 0.0) {
specular_light = reflection_accum.rgb / reflection_accum.a;
}
#if !defined(USE_LIGHTMAP)
if (ambient_accum.a > 0.0) {
ambient_light = ambient_accum.rgb / ambient_accum.a;
}
#endif
}
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
// scales the specular reflections, needs to be be computed before lighting happens,
// but after environment, GI, and reflection probes are added
// Environment brdf approximation (Lazarov 2013)
// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float ndotv = clamp(dot(normal, view), 0.0, 1.0);
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
vec3 f0 = F0(metallic, specular, albedo);
specular_light *= env.x * f0 + env.y;
#endif
}
{ //directional light
for (uint i = 0; i < scene_data.directional_light_count; i++) {
if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
continue; //not masked
}
vec3 shadow_attenuation = vec3(1.0);
#ifdef LIGHT_TRANSMITTANCE_USED
float transmittance_z = transmittance_depth;
#endif
if (directional_lights.data[i].shadow_enabled) {
float depth_z = -vertex.z;
vec4 pssm_coord;
vec3 shadow_color = vec3(0.0);
vec3 light_dir = directional_lights.data[i].direction;
#define BIAS_FUNC(m_var, m_idx) \
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \
normal_bias -= light_dir * dot(light_dir, normal_bias); \
m_var.xyz += normal_bias;
float shadow = 0.0;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.x;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
shadow_color = directional_lights.data[i].shadow_color1.rgb;
#ifdef LIGHT_TRANSMITTANCE_USED
{
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex;
trans_coord /= trans_coord.w;
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x;
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x;
transmittance_z = z - shadow_z;
}
#endif
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
shadow_color = directional_lights.data[i].shadow_color2.rgb;
#ifdef LIGHT_TRANSMITTANCE_USED
{
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0);
vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex;
trans_coord /= trans_coord.w;
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y;
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y;
transmittance_z = z - shadow_z;
}
#endif
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
shadow_color = directional_lights.data[i].shadow_color3.rgb;
#ifdef LIGHT_TRANSMITTANCE_USED
{
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0);
vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex;
trans_coord /= trans_coord.w;
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z;
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z;
transmittance_z = z - shadow_z;
}
#endif
} else {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
shadow_color = directional_lights.data[i].shadow_color4.rgb;
#ifdef LIGHT_TRANSMITTANCE_USED
{
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex;
trans_coord /= trans_coord.w;
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w;
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w;
transmittance_z = z - shadow_z;
}
#endif
}
if (directional_lights.data[i].blend_splits) {
vec3 shadow_color_blend = vec3(0.0);
float pssm_blend;
float shadow2;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
shadow_color_blend = directional_lights.data[i].shadow_color2.rgb;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
shadow_color_blend = directional_lights.data[i].shadow_color3.rgb;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
shadow_color_blend = directional_lights.data[i].shadow_color4.rgb;
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
}
pssm_blend = sqrt(pssm_blend);
shadow = mix(shadow, shadow2, pssm_blend);
shadow_color = mix(shadow_color, shadow_color_blend, pssm_blend);
}
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
shadow_attenuation = mix(shadow_color, vec3(1.0), shadow);
#undef BIAS_FUNC
}
light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].size, directional_lights.data[i].color * directional_lights.data[i].energy, 1.0, shadow_attenuation, albedo, roughness, metallic, specular, directional_lights.data[i].specular * specular_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_curve,
transmittance_boost,
transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
rim, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
alpha,
#endif
diffuse_light,
specular_light);
}
}
{ //omni lights
uint omni_light_count = cluster_cell.x >> CLUSTER_COUNTER_SHIFT;
uint omni_light_pointer = cluster_cell.x & CLUSTER_POINTER_MASK;
for (uint i = 0; i < omni_light_count; i++) {
uint light_index = cluster_data.indices[omni_light_pointer + i];
if (!bool(lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
continue; //not masked
}
light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, albedo, roughness, metallic, specular, specular_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_curve,
transmittance_boost,
#endif
#ifdef LIGHT_RIM_USED
rim,
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
tangent, binormal, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
alpha,
#endif
diffuse_light, specular_light);
}
}
{ //spot lights
uint spot_light_count = cluster_cell.y >> CLUSTER_COUNTER_SHIFT;
uint spot_light_pointer = cluster_cell.y & CLUSTER_POINTER_MASK;
for (uint i = 0; i < spot_light_count; i++) {
uint light_index = cluster_data.indices[spot_light_pointer + i];
if (!bool(lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
continue; //not masked
}
light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, albedo, roughness, metallic, specular, specular_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_curve,
transmittance_boost,
#endif
#ifdef LIGHT_RIM_USED
rim,
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
tangent, binormal, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
alpha,
#endif
diffuse_light, specular_light);
}
}
#ifdef USE_SHADOW_TO_OPACITY
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#endif // ALPHA_SCISSOR_USED
#ifdef USE_OPAQUE_PREPASS
if (alpha < opaque_prepass_threshold) {
discard;
}
#endif // USE_OPAQUE_PREPASS
#endif // USE_SHADOW_TO_OPACITY
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifdef MODE_RENDER_DEPTH
#ifdef MODE_RENDER_MATERIAL
albedo_output_buffer.rgb = albedo;
albedo_output_buffer.a = alpha;
normal_output_buffer.rgb = normal * 0.5 + 0.5;
normal_output_buffer.a = 0.0;
depth_output_buffer.r = -vertex.z;
#if defined(AO_USED)
orm_output_buffer.r = ao;
#else
orm_output_buffer.r = 0.0;
#endif
orm_output_buffer.g = roughness;
orm_output_buffer.b = metallic;
orm_output_buffer.a = sss_strength;
emission_output_buffer.rgb = emission;
emission_output_buffer.a = 0.0;
#endif
#ifdef MODE_RENDER_NORMAL
normal_output_buffer = vec4(normal * 0.5 + 0.5, 0.0);
#ifdef MODE_RENDER_ROUGHNESS
roughness_output_buffer = roughness;
#endif //MODE_RENDER_ROUGHNESS
#endif //MODE_RENDER_NORMAL
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else
specular_light *= scene_data.reflection_multiplier;
ambient_light *= albedo; //ambient must be multiplied by albedo at the end
//ambient occlusion
#if defined(AO_USED)
if (scene_data.ssao_enabled && scene_data.ssao_ao_affect > 0.0) {
float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
ao = mix(ao, min(ao, ssao), scene_data.ssao_ao_affect);
ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect);
}
ambient_light = mix(scene_data.ao_color.rgb, ambient_light, ao);
ao_light_affect = mix(1.0, ao, ao_light_affect);
specular_light = mix(scene_data.ao_color.rgb, specular_light, ao_light_affect);
diffuse_light = mix(scene_data.ao_color.rgb, diffuse_light, ao_light_affect);
#else
if (scene_data.ssao_enabled) {
float ao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
ambient_light = mix(scene_data.ao_color.rgb, ambient_light, ao);
float ao_light_affect = mix(1.0, ao, scene_data.ssao_light_affect);
specular_light = mix(scene_data.ao_color.rgb, specular_light, ao_light_affect);
diffuse_light = mix(scene_data.ao_color.rgb, diffuse_light, ao_light_affect);
}
#endif // AO_USED
// base color remapping
diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
ambient_light *= 1.0 - metallic;
//fog
#ifdef MODE_MULTIPLE_RENDER_TARGETS
#ifdef MODE_UNSHADED
diffuse_buffer = vec4(albedo.rgb, 0.0);
specular_buffer = vec4(0.0);
#else
#ifdef SSS_MODE_SKIN
sss_strength = -sss_strength;
#endif
diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength);
specular_buffer = vec4(specular_light, metallic);
#endif
#else //MODE_MULTIPLE_RENDER_TARGETS
#ifdef MODE_UNSHADED
frag_color = vec4(albedo, alpha);
#else
frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
//frag_color = vec4(1.0);
#endif //USE_NO_SHADING
#endif //MODE_MULTIPLE_RENDER_TARGETS
#endif //MODE_RENDER_DEPTH
}