godot/scene/3d/gi_probe.cpp
2016-12-20 00:21:07 -03:00

1249 lines
30 KiB
C++

#include "gi_probe.h"
#include "mesh_instance.h"
enum DataFormat {
DATA_RGBA8,
DATA_DXT5,
DATA_ETC2_EAC,
};
void GIProbeData::set_bounds(const AABB& p_bounds) {
VS::get_singleton()->gi_probe_set_bounds(probe,p_bounds);
}
AABB GIProbeData::get_bounds() const{
return VS::get_singleton()->gi_probe_get_bounds(probe);
}
void GIProbeData::set_cell_size(float p_size) {
VS::get_singleton()->gi_probe_set_cell_size(probe,p_size);
}
float GIProbeData::get_cell_size() const {
return VS::get_singleton()->gi_probe_get_cell_size(probe);
}
void GIProbeData::set_to_cell_xform(const Transform& p_xform) {
VS::get_singleton()->gi_probe_set_to_cell_xform(probe,p_xform);
}
Transform GIProbeData::get_to_cell_xform() const {
return VS::get_singleton()->gi_probe_get_to_cell_xform(probe);
}
void GIProbeData::set_dynamic_data(const DVector<int>& p_data){
VS::get_singleton()->gi_probe_set_dynamic_data(probe,p_data);
}
DVector<int> GIProbeData::get_dynamic_data() const{
return VS::get_singleton()->gi_probe_get_dynamic_data(probe);
}
void GIProbeData::set_dynamic_range(float p_range){
VS::get_singleton()->gi_probe_set_dynamic_range(probe,p_range);
}
float GIProbeData::get_dynamic_range() const{
return VS::get_singleton()->gi_probe_get_dynamic_range(probe);
}
void GIProbeData::set_static_data(const DVector<uint8_t>& p_data,DataFormat p_format,int p_width,int p_height,int p_depth){
VS::get_singleton()->gi_probe_set_static_data(probe,p_data,VS::GIProbeDataFormat(p_format),p_width,p_height,p_depth);
}
DVector<uint8_t> GIProbeData::get_static_data() const{
return VS::get_singleton()->gi_probe_get_static_data(probe);
}
GIProbeData::DataFormat GIProbeData::get_static_data_format() const{
return GIProbeData::DataFormat(VS::get_singleton()->gi_probe_get_static_data_format(probe));
}
int GIProbeData::get_static_data_width() const{
return VS::get_singleton()->gi_probe_get_static_data_width(probe);
}
int GIProbeData::get_static_data_height() const{
return VS::get_singleton()->gi_probe_get_static_data_height(probe);
}
int GIProbeData::get_static_data_depth() const{
return VS::get_singleton()->gi_probe_get_static_data_depth(probe);
}
RID GIProbeData::get_rid() const {
return probe;
}
GIProbeData::GIProbeData() {
probe=VS::get_singleton()->gi_probe_create();
}
GIProbeData::~GIProbeData() {
VS::get_singleton()->free(probe);
}
//////////////////////
//////////////////////
void GIProbe::set_probe_data(const Ref<GIProbeData>& p_data) {
if (p_data.is_valid()) {
VS::get_singleton()->instance_set_base(get_instance(),p_data->get_rid());
} else {
VS::get_singleton()->instance_set_base(get_instance(),RID());
}
probe_data=p_data;
}
Ref<GIProbeData> GIProbe::get_probe_data() const {
return probe_data;
}
void GIProbe::set_subdiv(Subdiv p_subdiv) {
ERR_FAIL_INDEX(p_subdiv,SUBDIV_MAX);
subdiv=p_subdiv;
update_gizmo();
}
GIProbe::Subdiv GIProbe::get_subdiv() const {
return subdiv;
}
void GIProbe::set_extents(const Vector3& p_extents) {
extents=p_extents;
update_gizmo();
}
Vector3 GIProbe::get_extents() const {
return extents;
}
void GIProbe::set_dynamic_range(float p_dynamic_range) {
dynamic_range=p_dynamic_range;
}
float GIProbe::get_dynamic_range() const {
return dynamic_range;
}
#include "math.h"
#define FINDMINMAX(x0,x1,x2,min,max) \
min = max = x0; \
if(x1<min) min=x1;\
if(x1>max) max=x1;\
if(x2<min) min=x2;\
if(x2>max) max=x2;
static bool planeBoxOverlap(Vector3 normal,float d, Vector3 maxbox)
{
int q;
Vector3 vmin,vmax;
for(q=0;q<=2;q++)
{
if(normal[q]>0.0f)
{
vmin[q]=-maxbox[q];
vmax[q]=maxbox[q];
}
else
{
vmin[q]=maxbox[q];
vmax[q]=-maxbox[q];
}
}
if(normal.dot(vmin)+d>0.0f) return false;
if(normal.dot(vmax)+d>=0.0f) return true;
return false;
}
/*======================== X-tests ========================*/
#define AXISTEST_X01(a, b, fa, fb) \
p0 = a*v0.y - b*v0.z; \
p2 = a*v2.y - b*v2.z; \
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \
rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
#define AXISTEST_X2(a, b, fa, fb) \
p0 = a*v0.y - b*v0.z; \
p1 = a*v1.y - b*v1.z; \
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
/*======================== Y-tests ========================*/
#define AXISTEST_Y02(a, b, fa, fb) \
p0 = -a*v0.x + b*v0.z; \
p2 = -a*v2.x + b*v2.z; \
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
#define AXISTEST_Y1(a, b, fa, fb) \
p0 = -a*v0.x + b*v0.z; \
p1 = -a*v1.x + b*v1.z; \
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
/*======================== Z-tests ========================*/
#define AXISTEST_Z12(a, b, fa, fb) \
p1 = a*v1.x - b*v1.y; \
p2 = a*v2.x - b*v2.y; \
if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
if(min>rad || max<-rad) return false;
#define AXISTEST_Z0(a, b, fa, fb) \
p0 = a*v0.x - b*v0.y; \
p1 = a*v1.x - b*v1.y; \
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
if(min>rad || max<-rad) return false;
static bool fast_tri_box_overlap(const Vector3& boxcenter,const Vector3 boxhalfsize,const Vector3 *triverts) {
/* use separating axis theorem to test overlap between triangle and box */
/* need to test for overlap in these directions: */
/* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
/* we do not even need to test these) */
/* 2) normal of the triangle */
/* 3) crossproduct(edge from tri, {x,y,z}-directin) */
/* this gives 3x3=9 more tests */
Vector3 v0,v1,v2;
float min,max,d,p0,p1,p2,rad,fex,fey,fez;
Vector3 normal,e0,e1,e2;
/* This is the fastest branch on Sun */
/* move everything so that the boxcenter is in (0,0,0) */
v0=triverts[0]-boxcenter;
v1=triverts[1]-boxcenter;
v2=triverts[2]-boxcenter;
/* compute triangle edges */
e0=v1-v0; /* tri edge 0 */
e1=v2-v1; /* tri edge 1 */
e2=v0-v2; /* tri edge 2 */
/* Bullet 3: */
/* test the 9 tests first (this was faster) */
fex = Math::abs(e0.x);
fey = Math::abs(e0.y);
fez = Math::abs(e0.z);
AXISTEST_X01(e0.z, e0.y, fez, fey);
AXISTEST_Y02(e0.z, e0.x, fez, fex);
AXISTEST_Z12(e0.y, e0.x, fey, fex);
fex = Math::abs(e1.x);
fey = Math::abs(e1.y);
fez = Math::abs(e1.z);
AXISTEST_X01(e1.z, e1.y, fez, fey);
AXISTEST_Y02(e1.z, e1.x, fez, fex);
AXISTEST_Z0(e1.y, e1.x, fey, fex);
fex = Math::abs(e2.x);
fey = Math::abs(e2.y);
fez = Math::abs(e2.z);
AXISTEST_X2(e2.z, e2.y, fez, fey);
AXISTEST_Y1(e2.z, e2.x, fez, fex);
AXISTEST_Z12(e2.y, e2.x, fey, fex);
/* Bullet 1: */
/* first test overlap in the {x,y,z}-directions */
/* find min, max of the triangle each direction, and test for overlap in */
/* that direction -- this is equivalent to testing a minimal AABB around */
/* the triangle against the AABB */
/* test in X-direction */
FINDMINMAX(v0.x,v1.x,v2.x,min,max);
if(min>boxhalfsize.x || max<-boxhalfsize.x) return false;
/* test in Y-direction */
FINDMINMAX(v0.y,v1.y,v2.y,min,max);
if(min>boxhalfsize.y || max<-boxhalfsize.y) return false;
/* test in Z-direction */
FINDMINMAX(v0.z,v1.z,v2.z,min,max);
if(min>boxhalfsize.z || max<-boxhalfsize.z) return false;
/* Bullet 2: */
/* test if the box intersects the plane of the triangle */
/* compute plane equation of triangle: normal*x+d=0 */
normal=e0.cross(e1);
d=-normal.dot(v0); /* plane eq: normal.x+d=0 */
if(!planeBoxOverlap(normal,d,boxhalfsize)) return false;
return true; /* box and triangle overlaps */
}
static _FORCE_INLINE_ Vector2 get_uv(const Vector3& p_pos, const Vector3 *p_vtx, const Vector2* p_uv) {
if (p_pos.distance_squared_to(p_vtx[0])<CMP_EPSILON2)
return p_uv[0];
if (p_pos.distance_squared_to(p_vtx[1])<CMP_EPSILON2)
return p_uv[1];
if (p_pos.distance_squared_to(p_vtx[2])<CMP_EPSILON2)
return p_uv[2];
Vector3 v0 = p_vtx[1] - p_vtx[0];
Vector3 v1 = p_vtx[2] - p_vtx[0];
Vector3 v2 = p_pos - p_vtx[0];
float d00 = v0.dot( v0);
float d01 = v0.dot( v1);
float d11 = v1.dot( v1);
float d20 = v2.dot( v0);
float d21 = v2.dot( v1);
float denom = (d00 * d11 - d01 * d01);
if (denom==0)
return p_uv[0];
float v = (d11 * d20 - d01 * d21) / denom;
float w = (d00 * d21 - d01 * d20) / denom;
float u = 1.0f - v - w;
return p_uv[0]*u + p_uv[1]*v + p_uv[2]*w;
}
void GIProbe::_plot_face(int p_idx, int p_level,int p_x,int p_y,int p_z, const Vector3 *p_vtx, const Vector2* p_uv, const Baker::MaterialCache& p_material, const AABB &p_aabb,Baker *p_baker) {
if (p_level==p_baker->cell_subdiv-1) {
//plot the face by guessing it's albedo and emission value
//find best axis to map to, for scanning values
int closest_axis;
float closest_dot;
Vector3 normal = Plane(p_vtx[0],p_vtx[1],p_vtx[2]).normal;
for(int i=0;i<3;i++) {
Vector3 axis;
axis[i]=1.0;
float dot=ABS(normal.dot(axis));
if (i==0 || dot>closest_dot) {
closest_axis=i;
closest_dot=dot;
}
}
Vector3 axis;
axis[closest_axis]=1.0;
Vector3 t1;
t1[(closest_axis+1)%3]=1.0;
Vector3 t2;
t2[(closest_axis+2)%3]=1.0;
t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width);
t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width);
Color albedo_accum;
Color emission_accum;
float alpha=0.0;
//map to a grid average in the best axis for this face
for(int i=0;i<color_scan_cell_width;i++) {
Vector3 ofs_i=float(i)*t1;
for(int j=0;j<color_scan_cell_width;j++) {
Vector3 ofs_j=float(j)*t2;
Vector3 from = p_aabb.pos+ofs_i+ofs_j;
Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
Vector3 half = (to-from)*0.5;
//is in this cell?
if (!fast_tri_box_overlap(from+half,half,p_vtx)) {
continue; //face does not span this cell
}
//go from -size to +size*2 to avoid skipping collisions
Vector3 ray_from = from + (t1+t2)*0.5 - axis * p_aabb.size[closest_axis];
Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis]*2;
Vector3 intersection;
if (!Geometry::ray_intersects_triangle(ray_from,ray_to,p_vtx[0],p_vtx[1],p_vtx[2],&intersection)) {
//no intersect? look in edges
float closest_dist=1e20;
for(int j=0;j<3;j++) {
Vector3 c;
Vector3 inters;
Geometry::get_closest_points_between_segments(p_vtx[j],p_vtx[(j+1)%3],ray_from,ray_to,inters,c);
float d=c.distance_to(intersection);
if (j==0 || d<closest_dist) {
closest_dist=d;
intersection=inters;
}
}
}
Vector2 uv = get_uv(intersection,p_vtx,p_uv);
int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1);
int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1);
int ofs = uv_y*bake_texture_size+uv_x;
albedo_accum.r+=p_material.albedo[ofs].r;
albedo_accum.g+=p_material.albedo[ofs].g;
albedo_accum.b+=p_material.albedo[ofs].b;
albedo_accum.a+=p_material.albedo[ofs].a;
emission_accum.r+=p_material.emission[ofs].r;
emission_accum.g+=p_material.emission[ofs].g;
emission_accum.b+=p_material.emission[ofs].b;
alpha+=1.0;
}
}
if (alpha==0) {
//could not in any way get texture information.. so use closest point to center
Face3 f( p_vtx[0],p_vtx[1],p_vtx[2]);
Vector3 inters = f.get_closest_point_to(p_aabb.pos+p_aabb.size*0.5);
Vector2 uv = get_uv(inters,p_vtx,p_uv);
int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1);
int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1);
int ofs = uv_y*bake_texture_size+uv_x;
alpha = 1.0/(color_scan_cell_width*color_scan_cell_width);
albedo_accum.r=p_material.albedo[ofs].r*alpha;
albedo_accum.g=p_material.albedo[ofs].g*alpha;
albedo_accum.b=p_material.albedo[ofs].b*alpha;
albedo_accum.a=p_material.albedo[ofs].a*alpha;
emission_accum.r=p_material.emission[ofs].r*alpha;
emission_accum.g=p_material.emission[ofs].g*alpha;
emission_accum.b=p_material.emission[ofs].b*alpha;
} else {
float accdiv = 1.0/(color_scan_cell_width*color_scan_cell_width);
alpha*=accdiv;
albedo_accum.r*=accdiv;
albedo_accum.g*=accdiv;
albedo_accum.b*=accdiv;
albedo_accum.a*=accdiv;
emission_accum.r*=accdiv;
emission_accum.g*=accdiv;
emission_accum.b*=accdiv;
}
//put this temporarily here, corrected in a later step
p_baker->bake_cells[p_idx].albedo[0]+=albedo_accum.r;
p_baker->bake_cells[p_idx].albedo[1]+=albedo_accum.g;
p_baker->bake_cells[p_idx].albedo[2]+=albedo_accum.b;
p_baker->bake_cells[p_idx].emission[0]+=emission_accum.r;
p_baker->bake_cells[p_idx].emission[1]+=emission_accum.g;
p_baker->bake_cells[p_idx].emission[2]+=emission_accum.b;
p_baker->bake_cells[p_idx].alpha+=alpha;
static const Vector3 side_normals[6]={
Vector3(-1, 0, 0),
Vector3( 1, 0, 0),
Vector3( 0,-1, 0),
Vector3( 0, 1, 0),
Vector3( 0, 0,-1),
Vector3( 0, 0, 1),
};
for(int i=0;i<6;i++) {
if (normal.dot(side_normals[i])>CMP_EPSILON) {
p_baker->bake_cells[p_idx].used_sides|=(1<<i);
}
}
} else {
//go down
int half = (1<<(p_baker->cell_subdiv-1)) >> (p_level+1);
for(int i=0;i<8;i++) {
AABB aabb=p_aabb;
aabb.size*=0.5;
int nx=p_x;
int ny=p_y;
int nz=p_z;
if (i&1) {
aabb.pos.x+=aabb.size.x;
nx+=half;
}
if (i&2) {
aabb.pos.y+=aabb.size.y;
ny+=half;
}
if (i&4) {
aabb.pos.z+=aabb.size.z;
nz+=half;
}
//make sure to not plot beyond limits
if (nx<0 || nx>=p_baker->axis_cell_size[0] || ny<0 || ny>=p_baker->axis_cell_size[1] || nz<0 || nz>=p_baker->axis_cell_size[2])
continue;
{
AABB test_aabb=aabb;
//test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
Vector3 qsize = test_aabb.size*0.5; //quarter size, for fast aabb test
if (!fast_tri_box_overlap(test_aabb.pos+qsize,qsize,p_vtx)) {
//if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
//does not fit in child, go on
continue;
}
}
if (p_baker->bake_cells[p_idx].childs[i]==Baker::CHILD_EMPTY) {
//sub cell must be created
p_baker->bake_cells[p_idx].childs[i]=p_baker->bake_cells.size();
p_baker->bake_cells.resize( p_baker->bake_cells.size() + 1);
}
_plot_face(p_baker->bake_cells[p_idx].childs[i],p_level+1,nx,ny,nz,p_vtx,p_uv,p_material,aabb,p_baker);
}
}
}
void GIProbe::_fixup_plot(int p_idx, int p_level,int p_x,int p_y, int p_z,Baker *p_baker) {
if (p_level==p_baker->cell_subdiv-1) {
p_baker->leaf_voxel_count++;
float alpha = p_baker->bake_cells[p_idx].alpha;
p_baker->bake_cells[p_idx].albedo[0]/=alpha;
p_baker->bake_cells[p_idx].albedo[1]/=alpha;
p_baker->bake_cells[p_idx].albedo[2]/=alpha;
//transfer emission to light
p_baker->bake_cells[p_idx].emission[0]/=alpha;
p_baker->bake_cells[p_idx].emission[1]/=alpha;
p_baker->bake_cells[p_idx].emission[2]/=alpha;
p_baker->bake_cells[p_idx].alpha=1.0;
//remove neighbours from used sides
for(int n=0;n<6;n++) {
int ofs[3]={0,0,0};
ofs[n/2]=(n&1)?1:-1;
//convert to x,y,z on this level
int x=p_x;
int y=p_y;
int z=p_z;
x+=ofs[0];
y+=ofs[1];
z+=ofs[2];
int ofs_x=0;
int ofs_y=0;
int ofs_z=0;
int size = 1<<p_level;
int half=size/2;
if (x<0 || x>=size || y<0 || y>=size || z<0 || z>=size) {
//neighbour is out, can't use it
p_baker->bake_cells[p_idx].used_sides&=~(1<<uint32_t(n));
continue;
}
uint32_t neighbour=0;
for(int i=0;i<p_baker->cell_subdiv-1;i++) {
Baker::Cell *bc = &p_baker->bake_cells[neighbour];
int child = 0;
if (x >= ofs_x + half) {
child|=1;
ofs_x+=half;
}
if (y >= ofs_y + half) {
child|=2;
ofs_y+=half;
}
if (z >= ofs_z + half) {
child|=4;
ofs_z+=half;
}
neighbour = bc->childs[child];
if (neighbour==Baker::CHILD_EMPTY) {
break;
}
half>>=1;
}
if (neighbour!=Baker::CHILD_EMPTY) {
p_baker->bake_cells[p_idx].used_sides&=~(1<<uint32_t(n));
}
}
} else {
//go down
float alpha_average=0;
int half = (1<<(p_baker->cell_subdiv-1)) >> (p_level+1);
for(int i=0;i<8;i++) {
uint32_t child = p_baker->bake_cells[p_idx].childs[i];
if (child==Baker::CHILD_EMPTY)
continue;
int nx=p_x;
int ny=p_y;
int nz=p_z;
if (i&1)
nx+=half;
if (i&2)
ny+=half;
if (i&4)
nz+=half;
_fixup_plot(child,p_level+1,nx,ny,nz,p_baker);
alpha_average+=p_baker->bake_cells[child].alpha;
}
p_baker->bake_cells[p_idx].alpha=alpha_average/8.0;
p_baker->bake_cells[p_idx].emission[0]=0;
p_baker->bake_cells[p_idx].emission[1]=0;
p_baker->bake_cells[p_idx].emission[2]=0;
p_baker->bake_cells[p_idx].albedo[0]=0;
p_baker->bake_cells[p_idx].albedo[1]=0;
p_baker->bake_cells[p_idx].albedo[2]=0;
}
}
Vector<Color> GIProbe::_get_bake_texture(Image &p_image,const Color& p_color) {
Vector<Color> ret;
if (p_image.empty()) {
ret.resize(bake_texture_size*bake_texture_size);
for(int i=0;i<bake_texture_size*bake_texture_size;i++) {
ret[i]=p_color;
}
return ret;
}
p_image.convert(Image::FORMAT_RGBA8);
p_image.resize(bake_texture_size,bake_texture_size,Image::INTERPOLATE_CUBIC);
DVector<uint8_t>::Read r = p_image.get_data().read();
ret.resize(bake_texture_size*bake_texture_size);
for(int i=0;i<bake_texture_size*bake_texture_size;i++) {
Color c;
c.r = r[i*4+0]/255.0;
c.g = r[i*4+1]/255.0;
c.b = r[i*4+2]/255.0;
c.a = r[i*4+3]/255.0;
ret[i]=c;
}
return ret;
}
GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_material,Baker *p_baker) {
//this way of obtaining materials is inaccurate and also does not support some compressed formats very well
Ref<FixedSpatialMaterial> mat = p_material;
Ref<Material> material = mat; //hack for now
if (p_baker->material_cache.has(material)) {
return p_baker->material_cache[material];
}
Baker::MaterialCache mc;
if (mat.is_valid()) {
Ref<ImageTexture> albedo_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_ALBEDO);
Image img_albedo;
if (albedo_tex.is_valid()) {
img_albedo = albedo_tex->get_data();
}
mc.albedo=_get_bake_texture(img_albedo,mat->get_albedo());
Ref<ImageTexture> emission_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_EMISSION);
Color emission_col = mat->get_emission();
emission_col.r*=mat->get_emission_energy();
emission_col.g*=mat->get_emission_energy();
emission_col.b*=mat->get_emission_energy();
Image img_emission;
if (emission_tex.is_valid()) {
img_emission = emission_tex->get_data();
}
mc.emission=_get_bake_texture(img_emission,emission_col);
} else {
Image empty;
mc.albedo=_get_bake_texture(empty,Color(0.7,0.7,0.7));
mc.emission=_get_bake_texture(empty,Color(0,0,0));
}
p_baker->material_cache[p_material]=mc;
return mc;
}
void GIProbe::_plot_mesh(const Transform& p_xform, Ref<Mesh>& p_mesh, Baker *p_baker) {
for(int i=0;i<p_mesh->get_surface_count();i++) {
if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES)
continue; //only triangles
Baker::MaterialCache material = _get_material_cache(p_mesh->surface_get_material(i),p_baker);
Array a = p_mesh->surface_get_arrays(i);
DVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
DVector<Vector3>::Read vr=vertices.read();
DVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
DVector<Vector2>::Read uvr;
DVector<int> index = a[Mesh::ARRAY_INDEX];
bool read_uv=false;
if (uv.size()) {
uvr=uv.read();
read_uv=true;
}
if (index.size()) {
int facecount = index.size()/3;
DVector<int>::Read ir=index.read();
for(int j=0;j<facecount;j++) {
Vector3 vtxs[3];
Vector2 uvs[3];
for(int k=0;k<3;k++) {
vtxs[k]=p_xform.xform(vr[ir[j*3+k]]);
}
if (read_uv) {
for(int k=0;k<3;k++) {
uvs[k]=uvr[ir[j*3+k]];
}
}
//test against original bounds
if (!fast_tri_box_overlap(-extents,extents*2,vtxs))
continue;
//plot
_plot_face(0,0,0,0,0,vtxs,uvs,material,p_baker->po2_bounds,p_baker);
}
} else {
int facecount = vertices.size()/3;
for(int j=0;j<facecount;j++) {
Vector3 vtxs[3];
Vector2 uvs[3];
for(int k=0;k<3;k++) {
vtxs[k]=p_xform.xform(vr[j*3+k]);
}
if (read_uv) {
for(int k=0;k<3;k++) {
uvs[k]=uvr[j*3+k];
}
}
//test against original bounds
if (!fast_tri_box_overlap(-extents,extents*2,vtxs))
continue;
//plot face
_plot_face(0,0,0,0,0,vtxs,uvs,material,p_baker->po2_bounds,p_baker);
}
}
}
}
void GIProbe::_find_meshes(Node *p_at_node,Baker *p_baker){
MeshInstance *mi = p_at_node->cast_to<MeshInstance>();
if (mi && mi->get_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT)) {
Ref<Mesh> mesh = mi->get_mesh();
if (mesh.is_valid()) {
AABB aabb = mesh->get_aabb();
Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform();
if (AABB(-extents,extents*2).intersects(xf.xform(aabb))) {
Baker::PlotMesh pm;
pm.local_xform=xf;
pm.mesh=mesh;
p_baker->mesh_list.push_back(pm);
}
}
}
for(int i=0;i<p_at_node->get_child_count();i++) {
Node *child = p_at_node->get_child(i);
if (!child->get_owner())
continue; //maybe a helper
_find_meshes(child,p_baker);
}
}
void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug){
Baker baker;
static const int subdiv_value[SUBDIV_MAX]={7,8,9,10};
baker.cell_subdiv=subdiv_value[subdiv];
baker.bake_cells.resize(1);
//find out the actual real bounds, power of 2, which gets the highest subdivision
baker.po2_bounds=AABB(-extents,extents*2.0);
int longest_axis = baker.po2_bounds.get_longest_axis_index();
baker.axis_cell_size[longest_axis]=(1<<(baker.cell_subdiv-1));
baker.leaf_voxel_count=0;
for(int i=0;i<3;i++) {
if (i==longest_axis)
continue;
baker.axis_cell_size[i]=baker.axis_cell_size[longest_axis];
float axis_size = baker.po2_bounds.size[longest_axis];
//shrink until fit subdiv
while (axis_size/2.0 >= baker.po2_bounds.size[i]) {
axis_size/=2.0;
baker.axis_cell_size[i]>>=1;
}
baker.po2_bounds.size[i]=baker.po2_bounds.size[longest_axis];
}
Transform to_bounds;
to_bounds.basis.scale(Vector3(baker.po2_bounds.size[longest_axis],baker.po2_bounds.size[longest_axis],baker.po2_bounds.size[longest_axis]));
to_bounds.origin=baker.po2_bounds.pos;
Transform to_grid;
to_grid.basis.scale(Vector3(baker.axis_cell_size[longest_axis],baker.axis_cell_size[longest_axis],baker.axis_cell_size[longest_axis]));
baker.to_cell_space = to_grid * to_bounds.affine_inverse();
_find_meshes(p_from_node?p_from_node:get_parent(),&baker);
int pmc=0;
for(List<Baker::PlotMesh>::Element *E=baker.mesh_list.front();E;E=E->next()) {
print_line("plotting mesh "+itos(pmc++)+"/"+itos(baker.mesh_list.size()));
_plot_mesh(E->get().local_xform,E->get().mesh,&baker);
}
_fixup_plot(0,0,0,0,0,&baker);
//create the data for visual server
DVector<int> data;
data.resize( 16+(8+1+1+1+1)*baker.bake_cells.size() ); //4 for header, rest for rest.
{
DVector<int>::Write w = data.write();
uint32_t * w32 = (uint32_t*)w.ptr();
w32[0]=0;//version
w32[1]=baker.cell_subdiv; //subdiv
w32[2]=baker.axis_cell_size[0];
w32[3]=baker.axis_cell_size[1];
w32[4]=baker.axis_cell_size[2];
w32[5]=baker.bake_cells.size();
w32[6]=baker.leaf_voxel_count;
int ofs=16;
for(int i=0;i<baker.bake_cells.size();i++) {
for(int j=0;j<8;j++) {
w32[ofs++]=baker.bake_cells[i].childs[j];
}
{ //albedo
uint32_t rgba=uint32_t(CLAMP(baker.bake_cells[i].albedo[0]*255.0,0,255))<<16;
rgba|=uint32_t(CLAMP(baker.bake_cells[i].albedo[1]*255.0,0,255))<<8;
rgba|=uint32_t(CLAMP(baker.bake_cells[i].albedo[2]*255.0,0,255))<<0;
w32[ofs++]=rgba;
}
{ //emission
Vector3 e(baker.bake_cells[i].emission[0],baker.bake_cells[i].emission[1],baker.bake_cells[i].emission[2]);
float l = e.length();
if (l>0) {
e.normalize();
l=CLAMP(l/8.0,0,1.0);
}
uint32_t em=uint32_t(CLAMP(e[0]*255,0,255))<<24;
em|=uint32_t(CLAMP(e[1]*255,0,255))<<16;
em|=uint32_t(CLAMP(e[2]*255,0,255))<<8;
em|=uint32_t(CLAMP(l*255,0,255));
w32[ofs++]=em;
}
w32[ofs++]=baker.bake_cells[i].used_sides;
w32[ofs++]=uint32_t(baker.bake_cells[i].alpha*65535.0);
}
}
Ref<GIProbeData> probe_data;
probe_data.instance();
probe_data->set_bounds(AABB(-extents,extents*2.0));
probe_data->set_cell_size(baker.po2_bounds.size[longest_axis]/baker.axis_cell_size[longest_axis]);
probe_data->set_dynamic_data(data);
probe_data->set_to_cell_xform(baker.to_cell_space);
set_probe_data(probe_data);
if (p_create_visual_debug) {
// _create_debug_mesh(&baker);
}
}
void GIProbe::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb,Ref<MultiMesh> &p_multimesh,int &idx,Baker *p_baker) {
if (p_level==p_baker->cell_subdiv-1) {
Vector3 center = p_aabb.pos+p_aabb.size*0.5;
Transform xform;
xform.origin=center;
xform.basis.scale(p_aabb.size*0.5);
p_multimesh->set_instance_transform(idx,xform);
Color col=Color(p_baker->bake_cells[p_idx].albedo[0],p_baker->bake_cells[p_idx].albedo[1],p_baker->bake_cells[p_idx].albedo[2]);
p_multimesh->set_instance_color(idx,col);
idx++;
} else {
for(int i=0;i<8;i++) {
if (p_baker->bake_cells[p_idx].childs[i]==Baker::CHILD_EMPTY)
continue;
AABB aabb=p_aabb;
aabb.size*=0.5;
if (i&1)
aabb.pos.x+=aabb.size.x;
if (i&2)
aabb.pos.y+=aabb.size.y;
if (i&4)
aabb.pos.z+=aabb.size.z;
_debug_mesh(p_baker->bake_cells[p_idx].childs[i],p_level+1,aabb,p_multimesh,idx,p_baker);
}
}
}
void GIProbe::_create_debug_mesh(Baker *p_baker) {
Ref<MultiMesh> mm;
mm.instance();
mm->set_transform_format(MultiMesh::TRANSFORM_3D);
mm->set_color_format(MultiMesh::COLOR_8BIT);
print_line("leaf voxels: "+itos(p_baker->leaf_voxel_count));
mm->set_instance_count(p_baker->leaf_voxel_count);
Ref<Mesh> mesh;
mesh.instance();
{
Array arr;
arr.resize(Mesh::ARRAY_MAX);
DVector<Vector3> vertices;
DVector<Color> colors;
int vtx_idx=0;
#define ADD_VTX(m_idx);\
vertices.push_back( face_points[m_idx] );\
colors.push_back( Color(1,1,1,1) );\
vtx_idx++;\
for (int i=0;i<6;i++) {
Vector3 face_points[4];
for (int j=0;j<4;j++) {
float v[3];
v[0]=1.0;
v[1]=1-2*((j>>1)&1);
v[2]=v[1]*(1-2*(j&1));
for (int k=0;k<3;k++) {
if (i<3)
face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1);
else
face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1);
}
}
//tri 1
ADD_VTX(0);
ADD_VTX(1);
ADD_VTX(2);
//tri 2
ADD_VTX(2);
ADD_VTX(3);
ADD_VTX(0);
}
arr[Mesh::ARRAY_VERTEX]=vertices;
arr[Mesh::ARRAY_COLOR]=colors;
mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES,arr);
}
{
Ref<FixedSpatialMaterial> fsm;
fsm.instance();
fsm->set_flag(FixedSpatialMaterial::FLAG_SRGB_VERTEX_COLOR,true);
fsm->set_flag(FixedSpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR,true);
fsm->set_flag(FixedSpatialMaterial::FLAG_UNSHADED,true);
fsm->set_albedo(Color(1,1,1,1));
mesh->surface_set_material(0,fsm);
}
mm->set_mesh(mesh);
int idx=0;
_debug_mesh(0,0,p_baker->po2_bounds,mm,idx,p_baker);
MultiMeshInstance *mmi = memnew( MultiMeshInstance );
mmi->set_multimesh(mm);
add_child(mmi);
if (get_tree()->get_edited_scene_root()==this){
mmi->set_owner(this);
} else {
mmi->set_owner(get_owner());
}
}
void GIProbe::_debug_bake() {
bake(NULL,true);
}
AABB GIProbe::get_aabb() const {
return AABB(-extents,extents*2);
}
DVector<Face3> GIProbe::get_faces(uint32_t p_usage_flags) const {
return DVector<Face3>();
}
void GIProbe::_bind_methods() {
ObjectTypeDB::bind_method(_MD("set_probe_data","data"),&GIProbe::set_probe_data);
ObjectTypeDB::bind_method(_MD("get_probe_data"),&GIProbe::get_probe_data);
ObjectTypeDB::bind_method(_MD("set_subdiv","subdiv"),&GIProbe::set_subdiv);
ObjectTypeDB::bind_method(_MD("get_subdiv"),&GIProbe::get_subdiv);
ObjectTypeDB::bind_method(_MD("set_extents","extents"),&GIProbe::set_extents);
ObjectTypeDB::bind_method(_MD("get_extents"),&GIProbe::get_extents);
ObjectTypeDB::bind_method(_MD("set_dynamic_range","max"),&GIProbe::set_dynamic_range);
ObjectTypeDB::bind_method(_MD("get_dynamic_range"),&GIProbe::get_dynamic_range);
ObjectTypeDB::bind_method(_MD("bake","from_node","create_visual_debug"),&GIProbe::bake,DEFVAL(Variant()),DEFVAL(false));
ObjectTypeDB::bind_method(_MD("debug_bake"),&GIProbe::_debug_bake);
ObjectTypeDB::set_method_flags(get_type_static(),_SCS("debug_bake"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
ADD_PROPERTY( PropertyInfo(Variant::INT,"subdiv",PROPERTY_HINT_ENUM,"64,128,256,512"),_SCS("set_subdiv"),_SCS("get_subdiv"));
ADD_PROPERTY( PropertyInfo(Variant::VECTOR3,"extents"),_SCS("set_extents"),_SCS("get_extents"));
ADD_PROPERTY( PropertyInfo(Variant::REAL,"dynamic_range",PROPERTY_HINT_RANGE,"0,8,0.01"),_SCS("set_dynamic_range"),_SCS("get_dynamic_range"));
ADD_PROPERTY( PropertyInfo(Variant::OBJECT,"data",PROPERTY_HINT_RESOURCE_TYPE,"GIProbeData"),_SCS("set_probe_data"),_SCS("get_probe_data"));
BIND_CONSTANT( SUBDIV_64 );
BIND_CONSTANT( SUBDIV_128 );
BIND_CONSTANT( SUBDIV_256 );
BIND_CONSTANT( SUBDIV_MAX );
}
GIProbe::GIProbe() {
subdiv=SUBDIV_128;
dynamic_range=1.0;
extents=Vector3(10,10,10);
color_scan_cell_width=4;
bake_texture_size=128;
gi_probe = VS::get_singleton()->gi_probe_create();
}
GIProbe::~GIProbe() {
}