godot/drivers/gles2/rasterizer_gles2.cpp
Juan Linietsky 1a2cb755e2 3D Physics and Other Stuff
-=-=-=-=-=-=-=-=-=-=-=-=-=

-New Vehicle (Based on Bullet's RaycastVehicle) - Vehiclebody/VehicleWheel. Demo will come soon, old vehicle (CarBody) will go away soon too.
-A lot of fixes to the 3D physics engine
-Added KinematicBody with demo
-Fixed the space query API for 2D (demo will come soon). 3D is WIP.
-Fixed long-standing bug with body_enter/body_exit for Area and Area2D
-Performance variables now includes physics (active bodies, collision pairs and islands)
-Ability to see what's inside of instanced scenes!
-Fixed Blend Shapes (no bs+skeleton yet)
-Added an Android JavaClassWrapper singleton for using Android native classes directly from GDScript. This is very Alpha!
2014-09-02 23:13:40 -03:00

8960 lines
240 KiB
C++

/*************************************************************************/
/* rasterizer_gles2.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifdef GLES2_ENABLED
#include "rasterizer_gles2.h"
#include "os/os.h"
#include "globals.h"
#include <stdio.h>
#include "servers/visual/shader_language.h"
#include "servers/visual/particle_system_sw.h"
#include "gl_context/context_gl.h"
#include <string.h>
#ifdef GLEW_ENABLED
#define _GL_HALF_FLOAT_OES 0x140B
#else
#define _GL_HALF_FLOAT_OES 0x8D61
#endif
#define _GL_RGBA16F_EXT 0x881A
#define _GL_RGB16F_EXT 0x881B
#define _GL_RG16F_EXT 0x822F
#define _GL_R16F_EXT 0x822D
#define _GL_R32F_EXT 0x822E
#define _GL_RED_EXT 0x1903
#define _GL_RG_EXT 0x8227
#define _GL_R8_EXT 0x8229
#define _GL_RG8_EXT 0x822B
#define _DEPTH_COMPONENT24_OES 0x81A6
#ifdef GLEW_ENABLED
#define _glClearDepth glClearDepth
#else
#define _glClearDepth glClearDepthf
#endif
//#define DEBUG_OPENGL
#ifdef DEBUG_OPENGL
#define DEBUG_TEST_ERROR(m_section)\
{\
print_line("AT: "+String(m_section)); glFlush();\
uint32_t err = glGetError();\
if (err) {\
print_line("OpenGL Error #"+itos(err)+" at: "+m_section);\
}\
}
#else
#define DEBUG_TEST_ERROR(m_section)
#endif
static RasterizerGLES2* _singleton = NULL;
static const GLenum prim_type[]={GL_POINTS,GL_LINES,GL_TRIANGLES,GL_TRIANGLE_FAN};
_FORCE_INLINE_ static void _set_color_attrib(const Color& p_color) {
GLfloat c[4]= { p_color.r, p_color.g, p_color.b, p_color.a };
glVertexAttrib4fv( VS::ARRAY_COLOR, c );
}
static _FORCE_INLINE_ uint16_t make_half_float(float f) {
union {
float fv;
uint32_t ui;
} ci;
ci.fv=f;
unsigned int x = ci.ui;
unsigned int sign = (unsigned short)(x >> 31);
unsigned int mantissa;
unsigned int exp;
uint16_t hf;
// get mantissa
mantissa = x & ((1 << 23) - 1);
// get exponent bits
exp = x & (0xFF << 23);
if (exp >= 0x47800000)
{
// check if the original single precision float number is a NaN
if (mantissa && (exp == (0xFF << 23)))
{
// we have a single precision NaN
mantissa = (1 << 23) - 1;
}
else
{
// 16-bit half-float representation stores number as Inf
mantissa = 0;
}
hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
(uint16_t)(mantissa >> 13);
}
// check if exponent is <= -15
else if (exp <= 0x38000000)
{
// store a denorm half-float value or zero
exp = (0x38000000 - exp) >> 23;
mantissa >>= (14 + exp);
hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
}
else
{
hf = (((uint16_t)sign) << 15) |
(uint16_t)((exp - 0x38000000) >> 13) |
(uint16_t)(mantissa >> 13);
}
return hf;
}
void RasterizerGLES2::_draw_primitive(int p_points, const Vector3 *p_vertices, const Vector3 *p_normals, const Color* p_colors, const Vector3 *p_uvs,const Plane *p_tangents,int p_instanced) {
ERR_FAIL_COND(!p_vertices);
ERR_FAIL_COND(p_points <1 || p_points>4);
bool quad=false;
GLenum type;
switch(p_points) {
case 1: type=GL_POINTS; break;
case 2: type=GL_LINES; break;
case 4: quad=true; p_points=3;
case 3: type=GL_TRIANGLES; break;
};
glBindBuffer(GL_ARRAY_BUFFER,0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);
GLfloat vert_array[18];
GLfloat normal_array[18];
GLfloat color_array[24];
GLfloat tangent_array[24];
GLfloat uv_array[18];
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer( VS::ARRAY_VERTEX, 3 ,GL_FLOAT, false, 0, vert_array );
for (int i=0;i<p_points;i++) {
vert_array[i*3+0]=p_vertices[i].x;
vert_array[i*3+1]=p_vertices[i].y;
vert_array[i*3+2]=p_vertices[i].z;
if (quad) {
int idx=2+i;
if (idx==4)
idx=0;
vert_array[9+i*3+0]=p_vertices[idx].x;
vert_array[9+i*3+1]=p_vertices[idx].y;
vert_array[9+i*3+2]=p_vertices[idx].z;
}
}
if (p_normals) {
glEnableVertexAttribArray(VS::ARRAY_NORMAL);
glVertexAttribPointer( VS::ARRAY_NORMAL, 3 ,GL_FLOAT, false, 0, normal_array );
for (int i=0;i<p_points;i++) {
normal_array[i*3+0]=p_normals[i].x;
normal_array[i*3+1]=p_normals[i].y;
normal_array[i*3+2]=p_normals[i].z;
if (quad) {
int idx=2+i;
if (idx==4)
idx=0;
normal_array[9+i*3+0]=p_normals[idx].x;
normal_array[9+i*3+1]=p_normals[idx].y;
normal_array[9+i*3+2]=p_normals[idx].z;
}
}
} else {
glDisableVertexAttribArray(VS::ARRAY_NORMAL);
}
if (p_colors) {
glEnableVertexAttribArray(VS::ARRAY_COLOR);
glVertexAttribPointer( VS::ARRAY_COLOR, 4 ,GL_FLOAT, false, 0, color_array );
for (int i=0;i<p_points;i++) {
color_array[i*4+0]=p_colors[i].r;
color_array[i*4+1]=p_colors[i].g;
color_array[i*4+2]=p_colors[i].b;
color_array[i*4+3]=p_colors[i].a;
if (quad) {
int idx=2+i;
if (idx==4)
idx=0;
color_array[12+i*4+0]=p_colors[idx].r;
color_array[12+i*4+1]=p_colors[idx].g;
color_array[12+i*4+2]=p_colors[idx].b;
color_array[12+i*4+3]=p_colors[idx].a;
}
}
} else {
glDisableVertexAttribArray(VS::ARRAY_COLOR);
}
if (p_tangents) {
glEnableVertexAttribArray(VS::ARRAY_TANGENT);
glVertexAttribPointer( VS::ARRAY_TANGENT, 4 ,GL_FLOAT, false, 0, tangent_array );
for (int i=0;i<p_points;i++) {
tangent_array[i*4+0]=p_tangents[i].normal.x;
tangent_array[i*4+1]=p_tangents[i].normal.y;
tangent_array[i*4+2]=p_tangents[i].normal.z;
tangent_array[i*4+3]=p_tangents[i].d;
if (quad) {
int idx=2+i;
if (idx==4)
idx=0;
tangent_array[12+i*4+0]=p_tangents[idx].normal.x;
tangent_array[12+i*4+1]=p_tangents[idx].normal.y;
tangent_array[12+i*4+2]=p_tangents[idx].normal.z;
tangent_array[12+i*4+3]=p_tangents[idx].d;
}
}
} else {
glDisableVertexAttribArray(VS::ARRAY_TANGENT);
}
if (p_uvs) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glVertexAttribPointer( VS::ARRAY_TEX_UV, 3 ,GL_FLOAT, false, 0, uv_array );
for (int i=0;i<p_points;i++) {
uv_array[i*3+0]=p_uvs[i].x;
uv_array[i*3+1]=p_uvs[i].y;
uv_array[i*3+2]=p_uvs[i].z;
if (quad) {
int idx=2+i;
if (idx==4)
idx=0;
uv_array[9+i*3+0]=p_uvs[idx].x;
uv_array[9+i*3+1]=p_uvs[idx].y;
uv_array[9+i*3+2]=p_uvs[idx].z;
}
}
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
}
/*
if (p_instanced>1)
glDrawArraysInstanced(type,0,p_points,p_instanced);
else
*/
glDrawArrays(type,0,quad?6:p_points);
};
/* TEXTURE API */
#define _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
#define _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01
#define _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#define _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03
#define _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
#define _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
#define _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#define _EXT_COMPRESSED_RED_RGTC1_EXT 0x8DBB
#define _EXT_COMPRESSED_RED_RGTC1 0x8DBB
#define _EXT_COMPRESSED_SIGNED_RED_RGTC1 0x8DBC
#define _EXT_COMPRESSED_RG_RGTC2 0x8DBD
#define _EXT_COMPRESSED_SIGNED_RG_RGTC2 0x8DBE
#define _EXT_COMPRESSED_SIGNED_RED_RGTC1_EXT 0x8DBC
#define _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT 0x8DBD
#define _EXT_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT 0x8DBE
#define _EXT_ETC1_RGB8_OES 0x8D64
#define _EXT_ATC_RGB_AMD 0x8C92
#define _EXT_ATC_RGBA_EXPLICIT_ALPHA_AMD 0x8C93
#define _EXT_ATC_RGBA_INTERPOLATED_ALPHA_AMD 0x87EE
/* TEXTURE API */
Image RasterizerGLES2::_get_gl_image_and_format(const Image& p_image, Image::Format p_format, uint32_t p_flags,GLenum& r_gl_format,int &r_gl_components,bool &r_has_alpha_cache,bool &r_compressed) {
r_has_alpha_cache=false;
r_compressed=false;
Image image=p_image;
switch(p_format) {
case Image::FORMAT_GRAYSCALE: {
r_gl_components=1;
r_gl_format=GL_LUMINANCE;
} break;
case Image::FORMAT_INTENSITY: {
if (!image.empty())
image.convert(Image::FORMAT_RGBA);
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} break;
case Image::FORMAT_GRAYSCALE_ALPHA: {
//image.convert(Image::FORMAT_RGBA);
r_gl_components=2;
r_gl_format=GL_LUMINANCE_ALPHA;
r_has_alpha_cache=true;
} break;
case Image::FORMAT_INDEXED: {
if (!image.empty())
image.convert(Image::FORMAT_RGB);
r_gl_components=3;
r_gl_format=GL_RGB;
} break;
case Image::FORMAT_INDEXED_ALPHA: {
if (!image.empty())
image.convert(Image::FORMAT_RGBA);
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} break;
case Image::FORMAT_RGB: {
r_gl_components=3;
r_gl_format=GL_RGB;
} break;
case Image::FORMAT_RGBA: {
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} break;
case Image::FORMAT_BC1: {
if (!s3tc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} else {
r_gl_components=1; //doesn't matter much
r_gl_format=_EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT;
r_compressed=true;
};
} break;
case Image::FORMAT_BC2: {
if (!s3tc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} else {
r_gl_components=1; //doesn't matter much
r_gl_format=_EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT;
r_has_alpha_cache=true;
r_compressed=true;
};
} break;
case Image::FORMAT_BC3: {
if (!s3tc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} else {
r_gl_components=1; //doesn't matter much
r_gl_format=_EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT;
r_has_alpha_cache=true;
r_compressed=true;
};
} break;
case Image::FORMAT_BC4: {
if (!s3tc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} else {
r_gl_format=_EXT_COMPRESSED_RED_RGTC1;
r_gl_components=1; //doesn't matter much
r_compressed=true;
};
} break;
case Image::FORMAT_BC5: {
if (!s3tc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} else {
r_gl_format=_EXT_COMPRESSED_RG_RGTC2;
r_gl_components=1; //doesn't matter much
r_compressed=true;
};
} break;
case Image::FORMAT_PVRTC2: {
if (!pvr_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} else {
r_gl_format=_EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
r_gl_components=1; //doesn't matter much
r_compressed=true;
}
} break;
case Image::FORMAT_PVRTC2_ALPHA: {
if (!pvr_supported) {
if (!image.empty())
image.decompress();
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} else {
r_gl_format=_EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
r_gl_components=1; //doesn't matter much
r_compressed=true;
}
} break;
case Image::FORMAT_PVRTC4: {
if (!pvr_supported) {
if (!image.empty())
image.decompress();
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} else {
r_gl_format=_EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
r_gl_components=1; //doesn't matter much
r_compressed=true;
}
} break;
case Image::FORMAT_PVRTC4_ALPHA: {
if (!pvr_supported) {
if (!image.empty())
image.decompress();
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} else {
r_gl_format=_EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
r_gl_components=1; //doesn't matter much
r_compressed=true;
}
} break;
case Image::FORMAT_ETC: {
if (!etc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components=3;
r_gl_format=GL_RGB;
} else {
r_gl_format=_EXT_ETC1_RGB8_OES;
r_gl_components=1; //doesn't matter much
r_compressed=true;
}
} break;
case Image::FORMAT_ATC: {
if (!atitc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components=3;
r_gl_format=GL_RGB;
} else {
r_gl_format=_EXT_ATC_RGB_AMD;
r_gl_components=1; //doesn't matter much
r_compressed=true;
}
} break;
case Image::FORMAT_ATC_ALPHA_EXPLICIT: {
if (!atitc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components=4;
r_gl_format=GL_RGBA;
} else {
r_gl_format=_EXT_ATC_RGBA_EXPLICIT_ALPHA_AMD;
r_gl_components=1; //doesn't matter much
r_compressed=true;
}
} break;
case Image::FORMAT_ATC_ALPHA_INTERPOLATED: {
if (!atitc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components=4;
r_gl_format=GL_RGBA;
} else {
r_gl_format=_EXT_ATC_RGBA_INTERPOLATED_ALPHA_AMD;
r_gl_components=1; //doesn't matter much
r_compressed=true;
}
} break;
case Image::FORMAT_YUV_422:
case Image::FORMAT_YUV_444: {
if (!image.empty())
image.convert(Image::FORMAT_RGB);
r_gl_format=GL_RGB;
r_gl_components=3;
} break;
default: {
ERR_FAIL_V(Image());
}
}
return image;
}
static const GLenum _cube_side_enum[6]={
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
};
RID RasterizerGLES2::texture_create() {
Texture *texture = memnew(Texture);
ERR_FAIL_COND_V(!texture,RID());
glGenTextures(1, &texture->tex_id);
texture->active=false;
texture->total_data_size=0;
return texture_owner.make_rid( texture );
}
void RasterizerGLES2::texture_allocate(RID p_texture,int p_width, int p_height,Image::Format p_format,uint32_t p_flags) {
bool has_alpha_cache;
int components;
GLenum format;
bool compressed;
int po2_width = nearest_power_of_2(p_width);
int po2_height = nearest_power_of_2(p_height);
if (p_flags&VS::TEXTURE_FLAG_VIDEO_SURFACE) {
p_flags&=~VS::TEXTURE_FLAG_MIPMAPS; // no mipies for video
}
Texture *texture = texture_owner.get( p_texture );
ERR_FAIL_COND(!texture);
texture->width=p_width;
texture->height=p_height;
texture->format=p_format;
texture->flags=p_flags;
texture->target = (p_flags & VS::TEXTURE_FLAG_CUBEMAP) ? GL_TEXTURE_CUBE_MAP : GL_TEXTURE_2D;
_get_gl_image_and_format(Image(),texture->format,texture->flags,format,components,has_alpha_cache,compressed);
bool scale_textures = !compressed && !(p_flags&VS::TEXTURE_FLAG_VIDEO_SURFACE) && (!npo2_textures_available || p_flags&VS::TEXTURE_FLAG_MIPMAPS);
if (scale_textures) {
texture->alloc_width = po2_width;
texture->alloc_height = po2_height;
// print_line("scale because npo2: "+itos(npo2_textures_available)+" mm: "+itos(p_format&VS::TEXTURE_FLAG_MIPMAPS)+" "+itos(p_mipmap_count) );
} else {
texture->alloc_width = texture->width;
texture->alloc_height = texture->height;
};
texture->gl_components_cache=components;
texture->gl_format_cache=format;
texture->format_has_alpha=has_alpha_cache;
texture->compressed=compressed;
texture->has_alpha=false; //by default it doesn't have alpha unless something with alpha is blitteds
texture->data_size=0;
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
if (p_flags&VS::TEXTURE_FLAG_VIDEO_SURFACE) {
//prealloc if video
glTexImage2D(texture->target, 0, format, p_width, p_height, 0, format, GL_UNSIGNED_BYTE,NULL);
}
texture->active=true;
}
void RasterizerGLES2::texture_set_data(RID p_texture,const Image& p_image,VS::CubeMapSide p_cube_side) {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(!texture->active);
ERR_FAIL_COND(texture->render_target);
ERR_FAIL_COND(texture->format != p_image.get_format() );
ERR_FAIL_COND( p_image.empty() );
int components;
GLenum format;
bool alpha;
bool compressed;
if (keep_copies && !(texture->flags&VS::TEXTURE_FLAG_VIDEO_SURFACE) && !(use_reload_hooks && texture->reloader)) {
texture->image[p_cube_side]=p_image;
}
Image img = _get_gl_image_and_format(p_image, p_image.get_format(),texture->flags,format,components,alpha,compressed);
if (texture->alloc_width != img.get_width() || texture->alloc_height != img.get_height()) {
if (img.get_format() <= Image::FORMAT_INDEXED_ALPHA)
img.resize(texture->alloc_width, texture->alloc_height, Image::INTERPOLATE_BILINEAR);
};
if (img.detect_alpha()==Image::ALPHA_BLEND) {
texture->has_alpha=true;
}
GLenum blit_target = (texture->target == GL_TEXTURE_CUBE_MAP)?_cube_side_enum[p_cube_side]:GL_TEXTURE_2D;
texture->data_size=img.get_data().size();
DVector<uint8_t>::Read read = img.get_data().read();
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
texture->ignore_mipmaps = compressed && img.get_mipmaps()==0;
if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS && !texture->ignore_mipmaps)
glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,use_fast_texture_filter?GL_LINEAR_MIPMAP_NEAREST:GL_LINEAR_MIPMAP_LINEAR);
else
glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
if (texture->flags&VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_LINEAR); // Linear Filtering
} else {
glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_NEAREST); // raw Filtering
}
bool force_clamp_to_edge = !(texture->flags&VS::TEXTURE_FLAG_MIPMAPS && !texture->ignore_mipmaps) && (nearest_power_of_2(texture->alloc_height)!=texture->alloc_height || nearest_power_of_2(texture->alloc_width)!=texture->alloc_width);
if (!force_clamp_to_edge && texture->flags&VS::TEXTURE_FLAG_REPEAT && texture->target != GL_TEXTURE_CUBE_MAP) {
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf( texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameterf( texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
}
int mipmaps= (texture->flags&VS::TEXTURE_FLAG_MIPMAPS && img.get_mipmaps()>0) ? img.get_mipmaps() +1 : 1;
int w=img.get_width();
int h=img.get_height();
int tsize=0;
for(int i=0;i<mipmaps;i++) {
int size,ofs;
img.get_mipmap_offset_and_size(i,ofs,size);
if (texture->compressed) {
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glCompressedTexImage2D( blit_target, i, format,w,h,0,size,&read[ofs] );
} else {
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
if (texture->flags&VS::TEXTURE_FLAG_VIDEO_SURFACE) {
glTexSubImage2D( blit_target, i, 0,0,w,h,format,GL_UNSIGNED_BYTE,&read[ofs] );
} else {
glTexImage2D(blit_target, i, format, w, h, 0, format, GL_UNSIGNED_BYTE,&read[ofs]);
}
}
tsize+=size;
w = MAX(1,w>>1);
h = MAX(1,h>>1);
}
_rinfo.texture_mem-=texture->total_data_size;
texture->total_data_size=tsize;
_rinfo.texture_mem+=texture->total_data_size;
//printf("texture: %i x %i - size: %i - total: %i\n",texture->width,texture->height,tsize,_rinfo.texture_mem);
if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS && mipmaps==1 && !texture->ignore_mipmaps) {
//generate mipmaps if they were requested and the image does not contain them
glGenerateMipmap(texture->target);
}
if (mipmaps>1) {
//glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, mipmaps-1 ); - assumed to have all, always
}
//texture_set_flags(p_texture,texture->flags);
}
Image RasterizerGLES2::texture_get_data(RID p_texture,VS::CubeMapSide p_cube_side) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,Image());
ERR_FAIL_COND_V(!texture->active,Image());
ERR_FAIL_COND_V(texture->data_size==0,Image());
ERR_FAIL_COND_V(texture->render_target,Image());
return texture->image[p_cube_side];
#if 0
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,Image());
ERR_FAIL_COND_V(!texture->active,Image());
ERR_FAIL_COND_V(texture->data_size==0,Image());
DVector<uint8_t> data;
GLenum format,type=GL_UNSIGNED_BYTE;
Image::Format fmt;
int pixelsize=0;
int pixelshift=0;
int minw=1,minh=1;
bool compressed=false;
fmt=texture->format;
switch(texture->format) {
case Image::FORMAT_GRAYSCALE: {
format=GL_LUMINANCE;
type=GL_UNSIGNED_BYTE;
data.resize(texture->alloc_width*texture->alloc_height);
pixelsize=1;
} break;
case Image::FORMAT_INTENSITY: {
return Image();
} break;
case Image::FORMAT_GRAYSCALE_ALPHA: {
format=GL_LUMINANCE_ALPHA;
type=GL_UNSIGNED_BYTE;
pixelsize=2;
} break;
case Image::FORMAT_RGB: {
format=GL_RGB;
type=GL_UNSIGNED_BYTE;
pixelsize=3;
} break;
case Image::FORMAT_RGBA: {
format=GL_RGBA;
type=GL_UNSIGNED_BYTE;
pixelsize=4;
} break;
case Image::FORMAT_INDEXED: {
format=GL_RGB;
type=GL_UNSIGNED_BYTE;
fmt=Image::FORMAT_RGB;
pixelsize=3;
} break;
case Image::FORMAT_INDEXED_ALPHA: {
format=GL_RGBA;
type=GL_UNSIGNED_BYTE;
fmt=Image::FORMAT_RGBA;
pixelsize=4;
} break;
case Image::FORMAT_BC1: {
pixelsize=1; //doesn't matter much
format=GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
compressed=true;
pixelshift=1;
minw=minh=4;
} break;
case Image::FORMAT_BC2: {
pixelsize=1; //doesn't matter much
format=GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
compressed=true;
minw=minh=4;
} break;
case Image::FORMAT_BC3: {
pixelsize=1; //doesn't matter much
format=GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
compressed=true;
minw=minh=4;
} break;
case Image::FORMAT_BC4: {
format=GL_COMPRESSED_RED_RGTC1;
pixelsize=1; //doesn't matter much
compressed=true;
pixelshift=1;
minw=minh=4;
} break;
case Image::FORMAT_BC5: {
format=GL_COMPRESSED_RG_RGTC2;
pixelsize=1; //doesn't matter much
compressed=true;
minw=minh=4;
} break;
default:{}
}
data.resize(texture->data_size);
DVector<uint8_t>::Write wb = data.write();
glActiveTexture(GL_TEXTURE0);
int ofs=0;
glBindTexture(texture->target,texture->tex_id);
int w=texture->alloc_width;
int h=texture->alloc_height;
for(int i=0;i<texture->mipmaps+1;i++) {
if (compressed) {
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glGetCompressedTexImage(texture->target,i,&wb[ofs]);
} else {
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glGetTexImage(texture->target,i,format,type,&wb[ofs]);
}
int size = (w*h*pixelsize)>>pixelshift;
ofs+=size;
w=MAX(minw,w>>1);
h=MAX(minh,h>>1);
}
wb=DVector<uint8_t>::Write();
Image img(texture->alloc_width,texture->alloc_height,texture->mipmaps,fmt,data);
if (texture->format<Image::FORMAT_INDEXED && (texture->alloc_width!=texture->width || texture->alloc_height!=texture->height))
img.resize(texture->width,texture->height);
return img;
#endif
}
void RasterizerGLES2::texture_set_flags(RID p_texture,uint32_t p_flags) {
Texture *texture = texture_owner.get( p_texture );
ERR_FAIL_COND(!texture);
if (texture->render_target) {
p_flags&=VS::TEXTURE_FLAG_FILTER;//can change only filter
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
uint32_t cube = texture->flags & VS::TEXTURE_FLAG_CUBEMAP;
texture->flags=p_flags|cube; // can't remove a cube from being a cube
bool force_clamp_to_edge = !(p_flags&VS::TEXTURE_FLAG_MIPMAPS && !texture->ignore_mipmaps) && (nearest_power_of_2(texture->alloc_height)!=texture->alloc_height || nearest_power_of_2(texture->alloc_width)!=texture->alloc_width);
if (!force_clamp_to_edge && texture->flags&VS::TEXTURE_FLAG_REPEAT && texture->target != GL_TEXTURE_CUBE_MAP) {
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf( texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameterf( texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
}
if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS && !texture->ignore_mipmaps)
glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,use_fast_texture_filter?GL_LINEAR_MIPMAP_NEAREST:GL_LINEAR_MIPMAP_LINEAR);
else
glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
if (texture->flags&VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_LINEAR); // Linear Filtering
} else {
glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_NEAREST); // raw Filtering
}
}
uint32_t RasterizerGLES2::texture_get_flags(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,0);
return texture->flags;
}
Image::Format RasterizerGLES2::texture_get_format(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,Image::FORMAT_GRAYSCALE);
return texture->format;
}
uint32_t RasterizerGLES2::texture_get_width(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,0);
return texture->width;
}
uint32_t RasterizerGLES2::texture_get_height(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,0);
return texture->height;
}
bool RasterizerGLES2::texture_has_alpha(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,0);
return texture->has_alpha;
}
void RasterizerGLES2::texture_set_size_override(RID p_texture,int p_width, int p_height) {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(texture->render_target);
ERR_FAIL_COND(p_width<=0 || p_width>16384);
ERR_FAIL_COND(p_height<=0 || p_height>16384);
//real texture size is in alloc width and height
texture->width=p_width;
texture->height=p_height;
}
void RasterizerGLES2::texture_set_reload_hook(RID p_texture,ObjectID p_owner,const StringName& p_function) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(texture->render_target);
texture->reloader=p_owner;
texture->reloader_func=p_function;
if (use_reload_hooks && p_owner && keep_copies) {
for(int i=0;i<6;i++)
texture->image[i]=Image();
}
}
GLuint RasterizerGLES2::_texture_get_name(RID p_tex) {
Texture * texture = texture_owner.get(p_tex);
ERR_FAIL_COND_V(!texture, 0);
return texture->tex_id;
};
/* SHADER API */
RID RasterizerGLES2::shader_create(VS::ShaderMode p_mode) {
Shader *shader = memnew( Shader );
shader->mode=p_mode;
RID rid = shader_owner.make_rid(shader);
shader_set_mode(rid,p_mode);
_shader_make_dirty(shader);
return rid;
}
void RasterizerGLES2::shader_set_mode(RID p_shader,VS::ShaderMode p_mode) {
ERR_FAIL_INDEX(p_mode,3);
Shader *shader=shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
if (shader->custom_code_id && p_mode==shader->mode)
return;
if (shader->custom_code_id) {
switch(shader->mode) {
case VS::SHADER_MATERIAL: {
material_shader.free_custom_shader(shader->custom_code_id);
} break;
}
shader->custom_code_id=0;
}
shader->mode=p_mode;
switch(shader->mode) {
case VS::SHADER_MATERIAL: {
shader->custom_code_id=material_shader.create_custom_shader();
} break;
}
_shader_make_dirty(shader);
}
VS::ShaderMode RasterizerGLES2::shader_get_mode(RID p_shader) const {
Shader *shader=shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader,VS::SHADER_MATERIAL);
return shader->mode;
}
void RasterizerGLES2::shader_set_code(RID p_shader, const String& p_vertex, const String& p_fragment,const String& p_light,int p_vertex_ofs,int p_fragment_ofs,int p_light_ofs) {
Shader *shader=shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
#ifdef DEBUG_ENABLED
if (shader->vertex_code==p_vertex && shader->fragment_code==p_fragment && shader->light_code==p_light)
return;
#endif
shader->fragment_code=p_fragment;
shader->vertex_code=p_vertex;
shader->light_code=p_light;
shader->fragment_line=p_fragment_ofs;
shader->vertex_line=p_vertex_ofs;
shader->light_line=p_light_ofs;
_shader_make_dirty(shader);
}
String RasterizerGLES2::shader_get_vertex_code(RID p_shader) const {
Shader *shader=shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader,String());
return shader->vertex_code;
}
String RasterizerGLES2::shader_get_fragment_code(RID p_shader) const {
Shader *shader=shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader,String());
return shader->fragment_code;
}
String RasterizerGLES2::shader_get_light_code(RID p_shader) const {
Shader *shader=shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader,String());
return shader->light_code;
}
void RasterizerGLES2::_shader_make_dirty(Shader* p_shader) {
if (p_shader->dirty_list.in_list())
return;
_shader_dirty_list.add(&p_shader->dirty_list);
}
void RasterizerGLES2::shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const {
Shader *shader=shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
if (shader->dirty_list.in_list())
_update_shader(shader); // ok should be not anymore dirty
Map<int,StringName> order;
for(Map<StringName,ShaderLanguage::Uniform>::Element *E=shader->uniforms.front();E;E=E->next()) {
order[E->get().order]=E->key();
}
for(Map<int,StringName>::Element *E=order.front();E;E=E->next()) {
PropertyInfo pi;
ShaderLanguage::Uniform &u=shader->uniforms[E->get()];
pi.name=E->get();
switch(u.type) {
case ShaderLanguage::TYPE_VOID:
case ShaderLanguage::TYPE_BOOL:
case ShaderLanguage::TYPE_FLOAT:
case ShaderLanguage::TYPE_VEC2:
case ShaderLanguage::TYPE_VEC3:
case ShaderLanguage::TYPE_MAT3:
case ShaderLanguage::TYPE_MAT4:
case ShaderLanguage::TYPE_VEC4:
pi.type=u.default_value.get_type();
break;
case ShaderLanguage::TYPE_TEXTURE:
pi.type=Variant::_RID;
pi.hint=PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string="Texture";
break;
case ShaderLanguage::TYPE_CUBEMAP:
pi.type=Variant::_RID;
pi.hint=PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string="CubeMap";
break;
};
p_param_list->push_back(pi);
}
}
/* COMMON MATERIAL API */
RID RasterizerGLES2::material_create() {
return material_owner.make_rid( memnew( Material ) );
}
void RasterizerGLES2::material_set_shader(RID p_material, RID p_shader) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
if (material->shader==p_shader)
return;
material->shader=p_shader;
material->shader_version=0;
}
RID RasterizerGLES2::material_get_shader(RID p_material) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material,RID());
return material->shader;
}
void RasterizerGLES2::material_set_param(RID p_material, const StringName& p_param, const Variant& p_value) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
Map<StringName,Material::UniformData>::Element *E=material->shader_params.find(p_param);
if (E) {
if (p_value.get_type()==Variant::NIL) {
material->shader_params.erase(E);
material->shader_version=0; //get default!
} else {
E->get().value=p_value;
}
} else {
Material::UniformData ud;
ud.index=-1;
ud.value=p_value;
ud.istexture=p_value.get_type()==Variant::_RID; /// cache it being texture
material->shader_params[p_param]=ud; //may be got at some point, or erased
}
}
Variant RasterizerGLES2::material_get_param(RID p_material, const StringName& p_param) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material,Variant());
if (material->shader.is_valid()) {
//update shader params if necesary
//make sure the shader is compiled and everything
//so the actual parameters can be properly retrieved!
material->shader_cache=shader_owner.get( material->shader );
if (!material->shader_cache) {
//invalidate
material->shader=RID();
material->shader_cache=NULL;
} else {
if (material->shader_cache->dirty_list.in_list())
_update_shader(material->shader_cache);
if (material->shader_cache->valid && material->shader_cache->version!=material->shader_version) {
//validate
_update_material_shader_params(material);
}
}
}
if (material->shader_params.has(p_param))
return material->shader_params[p_param].value;
else
return Variant();
}
void RasterizerGLES2::material_set_flag(RID p_material, VS::MaterialFlag p_flag,bool p_enabled) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
ERR_FAIL_INDEX(p_flag,VS::MATERIAL_FLAG_MAX);
material->flags[p_flag]=p_enabled;
}
bool RasterizerGLES2::material_get_flag(RID p_material,VS::MaterialFlag p_flag) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material,false);
ERR_FAIL_INDEX_V(p_flag,VS::MATERIAL_FLAG_MAX,false);
return material->flags[p_flag];
}
void RasterizerGLES2::material_set_depth_draw_mode(RID p_material, VS::MaterialDepthDrawMode p_mode) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->depth_draw_mode=p_mode;
}
VS::MaterialDepthDrawMode RasterizerGLES2::material_get_depth_draw_mode(RID p_material) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material,VS::MATERIAL_DEPTH_DRAW_ALWAYS);
return material->depth_draw_mode;
}
void RasterizerGLES2::material_set_blend_mode(RID p_material,VS::MaterialBlendMode p_mode) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->blend_mode=p_mode;
}
VS::MaterialBlendMode RasterizerGLES2::material_get_blend_mode(RID p_material) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material,VS::MATERIAL_BLEND_MODE_ADD);
return material->blend_mode;
}
void RasterizerGLES2::material_set_line_width(RID p_material,float p_line_width) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->line_width=p_line_width;
}
float RasterizerGLES2::material_get_line_width(RID p_material) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material,0);
return material->line_width;
}
/* MESH API */
RID RasterizerGLES2::mesh_create() {
return mesh_owner.make_rid( memnew( Mesh ) );
}
void RasterizerGLES2::mesh_add_surface(RID p_mesh,VS::PrimitiveType p_primitive,const Array& p_arrays,const Array& p_blend_shapes,bool p_alpha_sort) {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX( p_primitive, VS::PRIMITIVE_MAX );
ERR_FAIL_COND(p_arrays.size()!=VS::ARRAY_MAX);
uint32_t format=0;
// validation
int index_array_len=0;
int array_len=0;
for(int i=0;i<p_arrays.size();i++) {
if (p_arrays[i].get_type()==Variant::NIL)
continue;
format|=(1<<i);
if (i==VS::ARRAY_VERTEX) {
array_len=Vector3Array(p_arrays[i]).size();
ERR_FAIL_COND(array_len==0);
} else if (i==VS::ARRAY_INDEX) {
index_array_len=IntArray(p_arrays[i]).size();
}
}
ERR_FAIL_COND((format&VS::ARRAY_FORMAT_VERTEX)==0); // mandatory
ERR_FAIL_COND( mesh->morph_target_count!=p_blend_shapes.size() );
if (mesh->morph_target_count) {
//validate format for morphs
for(int i=0;i<p_blend_shapes.size();i++) {
uint32_t bsformat=0;
Array arr = p_blend_shapes[i];
for(int j=0;j<arr.size();j++) {
if (arr[j].get_type()!=Variant::NIL)
bsformat|=(1<<j);
}
ERR_FAIL_COND( (bsformat)!=(format&(VS::ARRAY_FORMAT_BONES-1)));
}
}
Surface *surface = memnew( Surface );
ERR_FAIL_COND( !surface );
bool use_VBO=true; //glGenBuffersARB!=NULL; // TODO detect if it's in there
if ((!use_hw_skeleton_xform && format&VS::ARRAY_FORMAT_WEIGHTS) || mesh->morph_target_count>0) {
use_VBO=false;
}
// surface->packed=pack_arrays && use_VBO;
int total_elem_size=0;
for (int i=0;i<VS::ARRAY_MAX;i++) {
Surface::ArrayData&ad=surface->array[i];
ad.size=0;
ad.ofs=0;
int elem_size=0;
int elem_count=0;
bool valid_local=true;
GLenum datatype;
bool normalize=false;
bool bind=false;
if (!(format&(1<<i))) // no array
continue;
switch(i) {
case VS::ARRAY_VERTEX: {
if (use_VBO && use_half_float) {
elem_size=3*sizeof(int16_t); // vertex
datatype=_GL_HALF_FLOAT_OES;
} else {
elem_size=3*sizeof(GLfloat); // vertex
datatype=GL_FLOAT;
}
bind=true;
elem_count=3;
} break;
case VS::ARRAY_NORMAL: {
if (use_VBO) {
elem_size=4*sizeof(int8_t); // vertex
datatype=GL_BYTE;
normalize=true;
} else {
elem_size=3*sizeof(GLfloat); // vertex
datatype=GL_FLOAT;
}
bind=true;
elem_count=3;
} break;
case VS::ARRAY_TANGENT: {
if (use_VBO) {
elem_size=4*sizeof(int8_t); // vertex
datatype=GL_BYTE;
normalize=true;
} else {
elem_size=4*sizeof(GLfloat); // vertex
datatype=GL_FLOAT;
}
bind=true;
elem_count=4;
} break;
case VS::ARRAY_COLOR: {
elem_size=4*sizeof(uint8_t); /* RGBA */
datatype=GL_UNSIGNED_BYTE;
elem_count=4;
bind=true;
normalize=true;
} break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2: {
if (use_VBO && use_half_float) {
elem_size=2*sizeof(int16_t); // vertex
datatype=_GL_HALF_FLOAT_OES;
} else {
elem_size=2*sizeof(GLfloat); // vertex
datatype=GL_FLOAT;
}
bind=true;
elem_count=2;
} break;
case VS::ARRAY_WEIGHTS: {
if (use_VBO) {
elem_size=VS::ARRAY_WEIGHTS_SIZE*sizeof(GLushort);
elem_count=VS::ARRAY_WEIGHTS_SIZE;
valid_local=false;
bind=true;
normalize=true;
datatype=GL_UNSIGNED_SHORT;
elem_count=4;
} else {
elem_size=VS::ARRAY_WEIGHTS_SIZE*sizeof(GLfloat);
elem_count=VS::ARRAY_WEIGHTS_SIZE;
valid_local=false;
bind=false;
datatype=GL_FLOAT;
elem_count=4;
}
} break;
case VS::ARRAY_BONES: {
if (use_VBO) {
elem_size=VS::ARRAY_WEIGHTS_SIZE*sizeof(GLubyte);
elem_count=VS::ARRAY_WEIGHTS_SIZE;
valid_local=false;
bind=true;
datatype=GL_UNSIGNED_BYTE;
elem_count=4;
} else {
elem_size=VS::ARRAY_WEIGHTS_SIZE*sizeof(GLushort);
elem_count=VS::ARRAY_WEIGHTS_SIZE;
valid_local=false;
bind=false;
datatype=GL_UNSIGNED_SHORT;
elem_count=4;
}
} break;
case VS::ARRAY_INDEX: {
if (index_array_len<=0) {
ERR_PRINT("index_array_len==NO_INDEX_ARRAY");
break;
}
/* determine wether using 16 or 32 bits indices */
if (array_len>(1<<16)) {
elem_size=4;
datatype=GL_UNSIGNED_INT;
} else {
elem_size=2;
datatype=GL_UNSIGNED_SHORT;
}
/*
if (use_VBO) {
glGenBuffers(1,&surface->index_id);
ERR_FAIL_COND(surface->index_id==0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,surface->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,index_array_len*elem_size,NULL,GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind
} else {
surface->index_array_local = (uint8_t*)memalloc(index_array_len*elem_size);
};
*/
surface->index_array_len=index_array_len; // only way it can exist
ad.ofs=0;
ad.size=elem_size;
continue;
} break;
default: {
ERR_FAIL( );
}
}
ad.ofs=total_elem_size;
ad.size=elem_size;
ad.datatype=datatype;
ad.normalize=normalize;
ad.bind=bind;
ad.count=elem_count;
total_elem_size+=elem_size;
if (valid_local) {
surface->local_stride+=elem_size;
surface->morph_format|=(1<<i);
}
}
surface->stride=total_elem_size;
surface->array_len=array_len;
surface->format=format;
surface->primitive=p_primitive;
surface->morph_target_count=mesh->morph_target_count;
surface->configured_format=0;
surface->mesh=mesh;
if (keep_copies) {
surface->data=p_arrays;
surface->morph_data=p_blend_shapes;
}
uint8_t *array_ptr=NULL;
uint8_t *index_array_ptr=NULL;
DVector<uint8_t> array_pre_vbo;
DVector<uint8_t>::Write vaw;
DVector<uint8_t> index_array_pre_vbo;
DVector<uint8_t>::Write iaw;
/* create pointers */
if (use_VBO) {
array_pre_vbo.resize(surface->array_len*surface->stride);
vaw = array_pre_vbo.write();
array_ptr=vaw.ptr();
if (surface->index_array_len) {
index_array_pre_vbo.resize(surface->index_array_len*surface->array[VS::ARRAY_INDEX].size);
iaw = index_array_pre_vbo.write();
index_array_ptr=iaw.ptr();
}
} else {
surface->array_local = (uint8_t*)memalloc(surface->array_len*surface->stride);
array_ptr=(uint8_t*)surface->array_local;
if (surface->index_array_len) {
surface->index_array_local = (uint8_t*)memalloc(index_array_len*surface->array[VS::ARRAY_INDEX].size);
index_array_ptr=(uint8_t*)surface->index_array_local;
}
if (mesh->morph_target_count) {
surface->morph_targets_local = memnew_arr(Surface::MorphTarget,mesh->morph_target_count);
for(int i=0;i<mesh->morph_target_count;i++) {
surface->morph_targets_local[i].array=memnew_arr(uint8_t,surface->local_stride*surface->array_len);
surface->morph_targets_local[i].configured_format=surface->morph_format;
_surface_set_arrays(surface,surface->morph_targets_local[i].array,NULL,p_blend_shapes[i],false);
}
}
}
_surface_set_arrays(surface,array_ptr,index_array_ptr,p_arrays,true);
/* create buffers!! */
if (use_VBO) {
glGenBuffers(1,&surface->vertex_id);
ERR_FAIL_COND(surface->vertex_id==0);
glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id);
glBufferData(GL_ARRAY_BUFFER,surface->array_len*surface->stride,array_ptr,GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER,0); //unbind
if (surface->index_array_len) {
glGenBuffers(1,&surface->index_id);
ERR_FAIL_COND(surface->index_id==0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,surface->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,index_array_len*surface->array[VS::ARRAY_INDEX].size,index_array_ptr,GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind
}
}
mesh->surfaces.push_back(surface);
}
Error RasterizerGLES2::_surface_set_arrays(Surface *p_surface, uint8_t *p_mem,uint8_t *p_index_mem,const Array& p_arrays,bool p_main) {
uint32_t stride = p_main ? p_surface->stride : p_surface->local_stride;
for(int ai=0;ai<VS::ARRAY_MAX;ai++) {
if (ai>=p_arrays.size())
break;
if (p_arrays[ai].get_type()==Variant::NIL)
continue;
Surface::ArrayData &a=p_surface->array[ai];
switch(ai) {
case VS::ARRAY_VERTEX: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER );
DVector<Vector3> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_surface->array_len, ERR_INVALID_PARAMETER );
DVector<Vector3>::Read read = array.read();
const Vector3* src=read.ptr();
// setting vertices means regenerating the AABB
AABB aabb;
float scale=1;
float max=0;
if (p_surface->array[VS::ARRAY_VERTEX].datatype==_GL_HALF_FLOAT_OES) {
for (int i=0;i<p_surface->array_len;i++) {
uint16_t vector[3]={ make_half_float(src[i].x), make_half_float(src[i].y), make_half_float(src[i].z) };
copymem(&p_mem[a.ofs+i*stride], vector, a.size);
if (i==0) {
aabb=AABB(src[i],Vector3());
} else {
aabb.expand_to( src[i] );
}
}
} else {
for (int i=0;i<p_surface->array_len;i++) {
GLfloat vector[3]={ src[i].x, src[i].y, src[i].z };
copymem(&p_mem[a.ofs+i*stride], vector, a.size);
if (i==0) {
aabb=AABB(src[i],Vector3());
} else {
aabb.expand_to( src[i] );
}
}
}
if (p_main) {
p_surface->aabb=aabb;
p_surface->vertex_scale=scale;
}
} break;
case VS::ARRAY_NORMAL: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER );
DVector<Vector3> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_surface->array_len, ERR_INVALID_PARAMETER );
DVector<Vector3>::Read read = array.read();
const Vector3* src=read.ptr();
// setting vertices means regenerating the AABB
if (p_surface->array[VS::ARRAY_NORMAL].datatype==GL_BYTE) {
for (int i=0;i<p_surface->array_len;i++) {
GLbyte vector[4]={
CLAMP(src[i].x*127,-128,127),
CLAMP(src[i].y*127,-128,127),
CLAMP(src[i].z*127,-128,127),
0,
};
copymem(&p_mem[a.ofs+i*stride], vector, a.size);
}
} else {
for (int i=0;i<p_surface->array_len;i++) {
GLfloat vector[3]={ src[i].x, src[i].y, src[i].z };
copymem(&p_mem[a.ofs+i*stride], vector, a.size);
}
}
} break;
case VS::ARRAY_TANGENT: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER );
DVector<real_t> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_surface->array_len*4, ERR_INVALID_PARAMETER );
DVector<real_t>::Read read = array.read();
const real_t* src = read.ptr();
if (p_surface->array[VS::ARRAY_TANGENT].datatype==GL_BYTE) {
for (int i=0;i<p_surface->array_len;i++) {
GLbyte xyzw[4]={
CLAMP(src[i*4+0]*127,-128,127),
CLAMP(src[i*4+1]*127,-128,127),
CLAMP(src[i*4+2]*127,-128,127),
CLAMP(src[i*4+3]*127,-128,127)
};
copymem(&p_mem[a.ofs+i*stride], xyzw, a.size);
}
} else {
for (int i=0;i<p_surface->array_len;i++) {
GLfloat xyzw[4]={
src[i*4+0],
src[i*4+1],
src[i*4+2],
src[i*4+3]
};
copymem(&p_mem[a.ofs+i*stride], xyzw, a.size);
}
}
} break;
case VS::ARRAY_COLOR: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::COLOR_ARRAY, ERR_INVALID_PARAMETER );
DVector<Color> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_surface->array_len, ERR_INVALID_PARAMETER );
DVector<Color>::Read read = array.read();
const Color* src = read.ptr();
bool alpha=false;
for (int i=0;i<p_surface->array_len;i++) {
if (src[i].a<0.98) // tolerate alpha a bit, for crappy exporters
alpha=true;
uint8_t colors[4];
for(int j=0;j<4;j++) {
colors[j]=CLAMP( int((src[i][j])*255.0), 0,255 );
}
copymem(&p_mem[a.ofs+i*stride], colors, a.size);
}
if (p_main)
p_surface->has_alpha=alpha;
} break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY && p_arrays[ai].get_type() != Variant::VECTOR2_ARRAY, ERR_INVALID_PARAMETER );
DVector<Vector2> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_surface->array_len , ERR_INVALID_PARAMETER);
DVector<Vector2>::Read read = array.read();
const Vector2 * src=read.ptr();
float scale=1.0;
if (p_surface->array[ai].datatype==_GL_HALF_FLOAT_OES) {
for (int i=0;i<p_surface->array_len;i++) {
uint16_t uv[2]={ make_half_float(src[i].x) , make_half_float(src[i].y) };
copymem(&p_mem[a.ofs+i*stride], uv, a.size);
}
} else {
for (int i=0;i<p_surface->array_len;i++) {
GLfloat uv[2]={ src[i].x , src[i].y };
copymem(&p_mem[a.ofs+i*stride], uv, a.size);
}
}
if (p_main) {
if (ai==VS::ARRAY_TEX_UV) {
p_surface->uv_scale=scale;
}
if (ai==VS::ARRAY_TEX_UV2) {
p_surface->uv2_scale=scale;
}
}
} break;
case VS::ARRAY_WEIGHTS: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER );
DVector<real_t> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_surface->array_len*VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER );
DVector<real_t>::Read read = array.read();
const real_t * src = read.ptr();
if (p_surface->array[VS::ARRAY_WEIGHTS].datatype==GL_UNSIGNED_SHORT) {
for (int i=0;i<p_surface->array_len;i++) {
GLushort data[VS::ARRAY_WEIGHTS_SIZE];
for (int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
data[j]=CLAMP(src[i*VS::ARRAY_WEIGHTS_SIZE+j]*65535,0,65535);
}
copymem(&p_mem[a.ofs+i*stride], data, a.size);
}
} else {
for (int i=0;i<p_surface->array_len;i++) {
GLfloat data[VS::ARRAY_WEIGHTS_SIZE];
for (int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
data[j]=src[i*VS::ARRAY_WEIGHTS_SIZE+j];
}
copymem(&p_mem[a.ofs+i*stride], data, a.size);
}
}
} break;
case VS::ARRAY_BONES: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER );
DVector<int> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_surface->array_len*VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER );
DVector<int>::Read read = array.read();
const int * src = read.ptr();
p_surface->max_bone=0;
if (p_surface->array[VS::ARRAY_BONES].datatype==GL_UNSIGNED_BYTE) {
for (int i=0;i<p_surface->array_len;i++) {
GLubyte data[VS::ARRAY_WEIGHTS_SIZE];
for (int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
data[j]=CLAMP(src[i*VS::ARRAY_WEIGHTS_SIZE+j],0,255);
p_surface->max_bone=MAX(data[j],p_surface->max_bone);
}
copymem(&p_mem[a.ofs+i*stride], data, a.size);
}
} else {
for (int i=0;i<p_surface->array_len;i++) {
GLushort data[VS::ARRAY_WEIGHTS_SIZE];
for (int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
data[j]=src[i*VS::ARRAY_WEIGHTS_SIZE+j];
p_surface->max_bone=MAX(data[j],p_surface->max_bone);
}
copymem(&p_mem[a.ofs+i*stride], data, a.size);
}
}
} break;
case VS::ARRAY_INDEX: {
ERR_FAIL_COND_V( p_surface->index_array_len<=0, ERR_INVALID_DATA );
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::INT_ARRAY, ERR_INVALID_PARAMETER );
DVector<int> indices = p_arrays[ai];
ERR_FAIL_COND_V( indices.size() == 0, ERR_INVALID_PARAMETER );
ERR_FAIL_COND_V( indices.size() != p_surface->index_array_len, ERR_INVALID_PARAMETER );
/* determine wether using 16 or 32 bits indices */
DVector<int>::Read read = indices.read();
const int *src=read.ptr();
for (int i=0;i<p_surface->index_array_len;i++) {
if (a.size==2) {
uint16_t v=src[i];
copymem(&p_index_mem[i*a.size], &v, a.size);
} else {
uint32_t v=src[i];
copymem(&p_index_mem[i*a.size], &v, a.size);
}
}
} break;
default: { ERR_FAIL_V(ERR_INVALID_PARAMETER);}
}
p_surface->configured_format|=(1<<ai);
}
return OK;
}
void RasterizerGLES2::mesh_add_custom_surface(RID p_mesh,const Variant& p_dat) {
ERR_EXPLAIN("OpenGL Rasterizer does not support custom surfaces. Running on wrong platform?");
ERR_FAIL_V();
}
Array RasterizerGLES2::mesh_get_surface_arrays(RID p_mesh,int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,Array());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Array() );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, Array() );
return surface->data;
}
Array RasterizerGLES2::mesh_get_surface_morph_arrays(RID p_mesh,int p_surface) const{
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,Array());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Array() );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, Array() );
return surface->morph_data;
}
void RasterizerGLES2::mesh_set_morph_target_count(RID p_mesh,int p_amount) {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
ERR_FAIL_COND( mesh->surfaces.size()!=0 );
mesh->morph_target_count=p_amount;
}
int RasterizerGLES2::mesh_get_morph_target_count(RID p_mesh) const{
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,-1);
return mesh->morph_target_count;
}
void RasterizerGLES2::mesh_set_morph_target_mode(RID p_mesh,VS::MorphTargetMode p_mode) {
ERR_FAIL_INDEX(p_mode,2);
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
mesh->morph_target_mode=p_mode;
}
VS::MorphTargetMode RasterizerGLES2::mesh_get_morph_target_mode(RID p_mesh) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,VS::MORPH_MODE_NORMALIZED);
return mesh->morph_target_mode;
}
void RasterizerGLES2::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material,bool p_owned) {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_surface, mesh->surfaces.size() );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND( !surface);
if (surface->material_owned && surface->material.is_valid())
free(surface->material);
surface->material_owned=p_owned;
surface->material=p_material;
}
RID RasterizerGLES2::mesh_surface_get_material(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,RID());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), RID() );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, RID() );
return surface->material;
}
int RasterizerGLES2::mesh_surface_get_array_len(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,-1);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1 );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, -1 );
return surface->array_len;
}
int RasterizerGLES2::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,-1);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1 );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, -1 );
return surface->index_array_len;
}
uint32_t RasterizerGLES2::mesh_surface_get_format(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,0);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0 );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, 0 );
return surface->format;
}
VS::PrimitiveType RasterizerGLES2::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,VS::PRIMITIVE_POINTS);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), VS::PRIMITIVE_POINTS );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, VS::PRIMITIVE_POINTS );
return surface->primitive;
}
void RasterizerGLES2::mesh_remove_surface(RID p_mesh,int p_index) {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_index, mesh->surfaces.size() );
Surface *surface = mesh->surfaces[p_index];
ERR_FAIL_COND( !surface);
if (surface->vertex_id)
glDeleteBuffers(1,&surface->vertex_id);
if (surface->index_id)
glDeleteBuffers(1,&surface->index_id);
if (mesh->morph_target_count) {
for(int i=0;i<mesh->morph_target_count;i++)
memfree(surface->morph_targets_local[i].array);
memfree( surface->morph_targets_local );
}
memdelete( mesh->surfaces[p_index] );
mesh->surfaces.remove(p_index);
}
int RasterizerGLES2::mesh_get_surface_count(RID p_mesh) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,-1);
return mesh->surfaces.size();
}
AABB RasterizerGLES2::mesh_get_aabb(RID p_mesh) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,AABB());
if (mesh->custom_aabb!=AABB())
return mesh->custom_aabb;
AABB aabb;
for (int i=0;i<mesh->surfaces.size();i++) {
if (i==0)
aabb=mesh->surfaces[i]->aabb;
else
aabb.merge_with(mesh->surfaces[i]->aabb);
}
return aabb;
}
void RasterizerGLES2::mesh_set_custom_aabb(RID p_mesh,const AABB& p_aabb) {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
mesh->custom_aabb=p_aabb;
}
AABB RasterizerGLES2::mesh_get_custom_aabb(RID p_mesh) const {
const Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,AABB());
return mesh->custom_aabb;
}
/* MULTIMESH API */
RID RasterizerGLES2::multimesh_create() {
return multimesh_owner.make_rid( memnew( MultiMesh ));
}
void RasterizerGLES2::multimesh_set_instance_count(RID p_multimesh,int p_count) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
//multimesh->elements.clear(); // make sure to delete everything, so it "fails" in all implementations
if (use_texture_instancing) {
if (nearest_power_of_2(p_count)!=nearest_power_of_2(multimesh->elements.size())) {
if (multimesh->tex_id) {
glDeleteTextures(1,&multimesh->tex_id);
multimesh->tex_id=0;
}
if (p_count) {
uint32_t po2 = nearest_power_of_2(p_count);
if (po2&0xAAAAAAAA) {
//half width
multimesh->tw=Math::sqrt(po2*2);
multimesh->th=multimesh->tw/2;
} else {
multimesh->tw=Math::sqrt(po2);
multimesh->th=multimesh->tw;
}
multimesh->tw*=4;
if (multimesh->th==0)
multimesh->th=1;
glGenTextures(1, &multimesh->tex_id);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,multimesh->tex_id);
#ifdef GLEW_ENABLED
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, multimesh->tw, multimesh->th, 0, GL_RGBA, GL_FLOAT,NULL);
#else
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, multimesh->tw, multimesh->th, 0, GL_RGBA, GL_FLOAT,NULL);
#endif
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
//multimesh->pixel_size=1.0/ps;
glBindTexture(GL_TEXTURE_2D,0);
}
}
if (!multimesh->dirty_list.in_list()) {
_multimesh_dirty_list.add(&multimesh->dirty_list);
}
}
multimesh->elements.resize(p_count);
}
int RasterizerGLES2::multimesh_get_instance_count(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh,-1);
return multimesh->elements.size();
}
void RasterizerGLES2::multimesh_set_mesh(RID p_multimesh,RID p_mesh) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
multimesh->mesh=p_mesh;
}
void RasterizerGLES2::multimesh_set_aabb(RID p_multimesh,const AABB& p_aabb) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
multimesh->aabb=p_aabb;
}
void RasterizerGLES2::multimesh_instance_set_transform(RID p_multimesh,int p_index,const Transform& p_transform) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index,multimesh->elements.size());
MultiMesh::Element &e=multimesh->elements[p_index];
e.matrix[0]=p_transform.basis.elements[0][0];
e.matrix[1]=p_transform.basis.elements[1][0];
e.matrix[2]=p_transform.basis.elements[2][0];
e.matrix[3]=0;
e.matrix[4]=p_transform.basis.elements[0][1];
e.matrix[5]=p_transform.basis.elements[1][1];
e.matrix[6]=p_transform.basis.elements[2][1];
e.matrix[7]=0;
e.matrix[8]=p_transform.basis.elements[0][2];
e.matrix[9]=p_transform.basis.elements[1][2];
e.matrix[10]=p_transform.basis.elements[2][2];
e.matrix[11]=0;
e.matrix[12]=p_transform.origin.x;
e.matrix[13]=p_transform.origin.y;
e.matrix[14]=p_transform.origin.z;
e.matrix[15]=1;
if (!multimesh->dirty_list.in_list()) {
_multimesh_dirty_list.add(&multimesh->dirty_list);
}
}
void RasterizerGLES2::multimesh_instance_set_color(RID p_multimesh,int p_index,const Color& p_color) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh)
ERR_FAIL_INDEX(p_index,multimesh->elements.size());
MultiMesh::Element &e=multimesh->elements[p_index];
e.color[0]=CLAMP(p_color.r*255,0,255);
e.color[1]=CLAMP(p_color.g*255,0,255);
e.color[2]=CLAMP(p_color.b*255,0,255);
e.color[3]=CLAMP(p_color.a*255,0,255);
if (!multimesh->dirty_list.in_list()) {
_multimesh_dirty_list.add(&multimesh->dirty_list);
}
}
RID RasterizerGLES2::multimesh_get_mesh(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh,RID());
return multimesh->mesh;
}
AABB RasterizerGLES2::multimesh_get_aabb(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh,AABB());
return multimesh->aabb;
}
Transform RasterizerGLES2::multimesh_instance_get_transform(RID p_multimesh,int p_index) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh,Transform());
ERR_FAIL_INDEX_V(p_index,multimesh->elements.size(),Transform());
MultiMesh::Element &e=multimesh->elements[p_index];
Transform tr;
tr.basis.elements[0][0]=e.matrix[0];
tr.basis.elements[1][0]=e.matrix[1];
tr.basis.elements[2][0]=e.matrix[2];
tr.basis.elements[0][1]=e.matrix[4];
tr.basis.elements[1][1]=e.matrix[5];
tr.basis.elements[2][1]=e.matrix[6];
tr.basis.elements[0][2]=e.matrix[8];
tr.basis.elements[1][2]=e.matrix[9];
tr.basis.elements[2][2]=e.matrix[10];
tr.origin.x=e.matrix[12];
tr.origin.y=e.matrix[13];
tr.origin.z=e.matrix[14];
return tr;
}
Color RasterizerGLES2::multimesh_instance_get_color(RID p_multimesh,int p_index) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh,Color());
ERR_FAIL_INDEX_V(p_index,multimesh->elements.size(),Color());
MultiMesh::Element &e=multimesh->elements[p_index];
Color c;
c.r=e.color[0]/255.0;
c.g=e.color[1]/255.0;
c.b=e.color[2]/255.0;
c.a=e.color[3]/255.0;
return c;
}
void RasterizerGLES2::multimesh_set_visible_instances(RID p_multimesh,int p_visible) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
multimesh->visible=p_visible;
}
int RasterizerGLES2::multimesh_get_visible_instances(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh,-1);
return multimesh->visible;
}
/* IMMEDIATE API */
RID RasterizerGLES2::immediate_create() {
Immediate *im = memnew( Immediate );
return immediate_owner.make_rid(im);
}
void RasterizerGLES2::immediate_begin(RID p_immediate, VS::PrimitiveType p_rimitive, RID p_texture){
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(im->building);
Immediate::Chunk ic;
ic.texture=p_texture;
ic.primitive=p_rimitive;
im->chunks.push_back(ic);
im->mask=0;
im->building=true;
}
void RasterizerGLES2::immediate_vertex(RID p_immediate,const Vector3& p_vertex){
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
Immediate::Chunk *c = &im->chunks.back()->get();
if (c->vertices.empty() && im->chunks.size()==1) {
im->aabb.pos=p_vertex;
im->aabb.size=Vector3();
} else {
im->aabb.expand_to(p_vertex);
}
if (im->mask&VS::ARRAY_FORMAT_NORMAL)
c->normals.push_back(chunk_normal);
if (im->mask&VS::ARRAY_FORMAT_TANGENT)
c->tangents.push_back(chunk_tangent);
if (im->mask&VS::ARRAY_FORMAT_COLOR)
c->colors.push_back(chunk_color);
if (im->mask&VS::ARRAY_FORMAT_TEX_UV)
c->uvs.push_back(chunk_uv);
if (im->mask&VS::ARRAY_FORMAT_TEX_UV2)
c->uvs2.push_back(chunk_uv2);
im->mask|=VS::ARRAY_FORMAT_VERTEX;
c->vertices.push_back(p_vertex);
}
void RasterizerGLES2::immediate_normal(RID p_immediate,const Vector3& p_normal){
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask|=VS::ARRAY_FORMAT_NORMAL;
chunk_normal=p_normal;
}
void RasterizerGLES2::immediate_tangent(RID p_immediate,const Plane& p_tangent){
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask|=VS::ARRAY_FORMAT_TANGENT;
chunk_tangent=p_tangent;
}
void RasterizerGLES2::immediate_color(RID p_immediate,const Color& p_color){
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask|=VS::ARRAY_FORMAT_COLOR;
chunk_color=p_color;
}
void RasterizerGLES2::immediate_uv(RID p_immediate,const Vector2& tex_uv){
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask|=VS::ARRAY_FORMAT_TEX_UV;
chunk_uv=tex_uv;
}
void RasterizerGLES2::immediate_uv2(RID p_immediate,const Vector2& tex_uv){
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask|=VS::ARRAY_FORMAT_TEX_UV2;
chunk_uv2=tex_uv;
}
void RasterizerGLES2::immediate_end(RID p_immediate){
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->building=false;
}
void RasterizerGLES2::immediate_clear(RID p_immediate) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(im->building);
im->chunks.clear();
}
AABB RasterizerGLES2::immediate_get_aabb(RID p_immediate) const {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND_V(!im,AABB());
return im->aabb;
}
void RasterizerGLES2::immediate_set_material(RID p_immediate,RID p_material) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
im->material=p_material;
}
RID RasterizerGLES2::immediate_get_material(RID p_immediate) const {
const Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND_V(!im,RID());
return im->material;
}
/* PARTICLES API */
RID RasterizerGLES2::particles_create() {
Particles *particles = memnew( Particles );
ERR_FAIL_COND_V(!particles,RID());
return particles_owner.make_rid(particles);
}
void RasterizerGLES2::particles_set_amount(RID p_particles, int p_amount) {
ERR_FAIL_COND(p_amount<1);
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.amount=p_amount;
}
int RasterizerGLES2::particles_get_amount(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,-1);
return particles->data.amount;
}
void RasterizerGLES2::particles_set_emitting(RID p_particles, bool p_emitting) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.emitting=p_emitting;;
}
bool RasterizerGLES2::particles_is_emitting(RID p_particles) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,false);
return particles->data.emitting;
}
void RasterizerGLES2::particles_set_visibility_aabb(RID p_particles, const AABB& p_visibility) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.visibility_aabb=p_visibility;
}
void RasterizerGLES2::particles_set_emission_half_extents(RID p_particles, const Vector3& p_half_extents) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.emission_half_extents=p_half_extents;
}
Vector3 RasterizerGLES2::particles_get_emission_half_extents(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,Vector3());
return particles->data.emission_half_extents;
}
void RasterizerGLES2::particles_set_emission_base_velocity(RID p_particles, const Vector3& p_base_velocity) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.emission_base_velocity=p_base_velocity;
}
Vector3 RasterizerGLES2::particles_get_emission_base_velocity(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,Vector3());
return particles->data.emission_base_velocity;
}
void RasterizerGLES2::particles_set_emission_points(RID p_particles, const DVector<Vector3>& p_points) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.emission_points=p_points;
}
DVector<Vector3> RasterizerGLES2::particles_get_emission_points(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,DVector<Vector3>());
return particles->data.emission_points;
}
void RasterizerGLES2::particles_set_gravity_normal(RID p_particles, const Vector3& p_normal) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.gravity_normal=p_normal;
}
Vector3 RasterizerGLES2::particles_get_gravity_normal(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,Vector3());
return particles->data.gravity_normal;
}
AABB RasterizerGLES2::particles_get_visibility_aabb(RID p_particles) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,AABB());
return particles->data.visibility_aabb;
}
void RasterizerGLES2::particles_set_variable(RID p_particles, VS::ParticleVariable p_variable,float p_value) {
ERR_FAIL_INDEX(p_variable,VS::PARTICLE_VAR_MAX);
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.particle_vars[p_variable]=p_value;
}
float RasterizerGLES2::particles_get_variable(RID p_particles, VS::ParticleVariable p_variable) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,-1);
return particles->data.particle_vars[p_variable];
}
void RasterizerGLES2::particles_set_randomness(RID p_particles, VS::ParticleVariable p_variable,float p_randomness) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.particle_randomness[p_variable]=p_randomness;
}
float RasterizerGLES2::particles_get_randomness(RID p_particles, VS::ParticleVariable p_variable) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,-1);
return particles->data.particle_randomness[p_variable];
}
void RasterizerGLES2::particles_set_color_phases(RID p_particles, int p_phases) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
ERR_FAIL_COND( p_phases<0 || p_phases>VS::MAX_PARTICLE_COLOR_PHASES );
particles->data.color_phase_count=p_phases;
}
int RasterizerGLES2::particles_get_color_phases(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,-1);
return particles->data.color_phase_count;
}
void RasterizerGLES2::particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos) {
ERR_FAIL_INDEX(p_phase, VS::MAX_PARTICLE_COLOR_PHASES);
if (p_pos<0.0)
p_pos=0.0;
if (p_pos>1.0)
p_pos=1.0;
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.color_phases[p_phase].pos=p_pos;
}
float RasterizerGLES2::particles_get_color_phase_pos(RID p_particles, int p_phase) const {
ERR_FAIL_INDEX_V(p_phase, VS::MAX_PARTICLE_COLOR_PHASES, -1.0);
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,-1);
return particles->data.color_phases[p_phase].pos;
}
void RasterizerGLES2::particles_set_color_phase_color(RID p_particles, int p_phase, const Color& p_color) {
ERR_FAIL_INDEX(p_phase, VS::MAX_PARTICLE_COLOR_PHASES);
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.color_phases[p_phase].color=p_color;
//update alpha
particles->has_alpha=false;
for(int i=0;i<VS::MAX_PARTICLE_COLOR_PHASES;i++) {
if (particles->data.color_phases[i].color.a<0.99)
particles->has_alpha=true;
}
}
Color RasterizerGLES2::particles_get_color_phase_color(RID p_particles, int p_phase) const {
ERR_FAIL_INDEX_V(p_phase, VS::MAX_PARTICLE_COLOR_PHASES, Color());
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,Color());
return particles->data.color_phases[p_phase].color;
}
void RasterizerGLES2::particles_set_attractors(RID p_particles, int p_attractors) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
ERR_FAIL_COND( p_attractors<0 || p_attractors>VisualServer::MAX_PARTICLE_ATTRACTORS );
particles->data.attractor_count=p_attractors;
}
int RasterizerGLES2::particles_get_attractors(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,-1);
return particles->data.attractor_count;
}
void RasterizerGLES2::particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3& p_pos) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
ERR_FAIL_INDEX(p_attractor,particles->data.attractor_count);
particles->data.attractors[p_attractor].pos=p_pos;;
}
Vector3 RasterizerGLES2::particles_get_attractor_pos(RID p_particles,int p_attractor) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,Vector3());
ERR_FAIL_INDEX_V(p_attractor,particles->data.attractor_count,Vector3());
return particles->data.attractors[p_attractor].pos;
}
void RasterizerGLES2::particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
ERR_FAIL_INDEX(p_attractor,particles->data.attractor_count);
particles->data.attractors[p_attractor].force=p_force;
}
float RasterizerGLES2::particles_get_attractor_strength(RID p_particles,int p_attractor) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,0);
ERR_FAIL_INDEX_V(p_attractor,particles->data.attractor_count,0);
return particles->data.attractors[p_attractor].force;
}
void RasterizerGLES2::particles_set_material(RID p_particles, RID p_material,bool p_owned) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
if (particles->material_owned && particles->material.is_valid())
free(particles->material);
particles->material_owned=p_owned;
particles->material=p_material;
}
RID RasterizerGLES2::particles_get_material(RID p_particles) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,RID());
return particles->material;
}
void RasterizerGLES2::particles_set_use_local_coordinates(RID p_particles, bool p_enable) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.local_coordinates=p_enable;
}
bool RasterizerGLES2::particles_is_using_local_coordinates(RID p_particles) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,false);
return particles->data.local_coordinates;
}
bool RasterizerGLES2::particles_has_height_from_velocity(RID p_particles) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,false);
return particles->data.height_from_velocity;
}
void RasterizerGLES2::particles_set_height_from_velocity(RID p_particles, bool p_enable) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.height_from_velocity=p_enable;
}
AABB RasterizerGLES2::particles_get_aabb(RID p_particles) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,AABB());
return particles->data.visibility_aabb;
}
/* SKELETON API */
RID RasterizerGLES2::skeleton_create() {
Skeleton *skeleton = memnew( Skeleton );
ERR_FAIL_COND_V(!skeleton,RID());
return skeleton_owner.make_rid( skeleton );
}
void RasterizerGLES2::skeleton_resize(RID p_skeleton,int p_bones) {
Skeleton *skeleton = skeleton_owner.get( p_skeleton );
ERR_FAIL_COND(!skeleton);
if (p_bones == skeleton->bones.size()) {
return;
};
if (use_hw_skeleton_xform) {
if (nearest_power_of_2(p_bones)!=nearest_power_of_2(skeleton->bones.size())) {
if (skeleton->tex_id) {
glDeleteTextures(1,&skeleton->tex_id);
skeleton->tex_id=0;
}
if (p_bones) {
glGenTextures(1, &skeleton->tex_id);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,skeleton->tex_id);
int ps = nearest_power_of_2(p_bones*3);
#ifdef GLEW_ENABLED
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, ps, 1, 0, GL_RGBA, GL_FLOAT,skel_default.ptr());
#else
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, ps, 1, 0, GL_RGBA, GL_FLOAT,skel_default.ptr());
#endif
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
skeleton->pixel_size=1.0/ps;
glBindTexture(GL_TEXTURE_2D,0);
}
}
if (!skeleton->dirty_list.in_list()) {
_skeleton_dirty_list.add(&skeleton->dirty_list);
}
}
skeleton->bones.resize(p_bones);
}
int RasterizerGLES2::skeleton_get_bone_count(RID p_skeleton) const {
Skeleton *skeleton = skeleton_owner.get( p_skeleton );
ERR_FAIL_COND_V(!skeleton, -1);
return skeleton->bones.size();
}
void RasterizerGLES2::skeleton_bone_set_transform(RID p_skeleton,int p_bone, const Transform& p_transform) {
Skeleton *skeleton = skeleton_owner.get( p_skeleton );
ERR_FAIL_COND(!skeleton);
ERR_FAIL_INDEX( p_bone, skeleton->bones.size() );
Skeleton::Bone &b = skeleton->bones[p_bone];
b.mtx[0][0]=p_transform.basis[0][0];
b.mtx[0][1]=p_transform.basis[1][0];
b.mtx[0][2]=p_transform.basis[2][0];
b.mtx[1][0]=p_transform.basis[0][1];
b.mtx[1][1]=p_transform.basis[1][1];
b.mtx[1][2]=p_transform.basis[2][1];
b.mtx[2][0]=p_transform.basis[0][2];
b.mtx[2][1]=p_transform.basis[1][2];
b.mtx[2][2]=p_transform.basis[2][2];
b.mtx[3][0]=p_transform.origin[0];
b.mtx[3][1]=p_transform.origin[1];
b.mtx[3][2]=p_transform.origin[2];
if (skeleton->tex_id) {
if (!skeleton->dirty_list.in_list()) {
_skeleton_dirty_list.add(&skeleton->dirty_list);
}
}
}
Transform RasterizerGLES2::skeleton_bone_get_transform(RID p_skeleton,int p_bone) {
Skeleton *skeleton = skeleton_owner.get( p_skeleton );
ERR_FAIL_COND_V(!skeleton, Transform());
ERR_FAIL_INDEX_V( p_bone, skeleton->bones.size(), Transform() );
const Skeleton::Bone &b = skeleton->bones[p_bone];
Transform t;
t.basis[0][0]=b.mtx[0][0];
t.basis[1][0]=b.mtx[0][1];
t.basis[2][0]=b.mtx[0][2];
t.basis[0][1]=b.mtx[1][0];
t.basis[1][1]=b.mtx[1][1];
t.basis[2][1]=b.mtx[1][2];
t.basis[0][2]=b.mtx[2][0];
t.basis[1][2]=b.mtx[2][1];
t.basis[2][2]=b.mtx[2][2];
t.origin[0]=b.mtx[3][0];
t.origin[1]=b.mtx[3][1];
t.origin[2]=b.mtx[3][2];
return t;
}
/* LIGHT API */
RID RasterizerGLES2::light_create(VS::LightType p_type) {
Light *light = memnew( Light );
light->type=p_type;
return light_owner.make_rid(light);
}
VS::LightType RasterizerGLES2::light_get_type(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light,VS::LIGHT_OMNI);
return light->type;
}
void RasterizerGLES2::light_set_color(RID p_light,VS::LightColor p_type, const Color& p_color) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX( p_type, 3 );
light->colors[p_type]=p_color;
}
Color RasterizerGLES2::light_get_color(RID p_light,VS::LightColor p_type) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, Color());
ERR_FAIL_INDEX_V( p_type, 3, Color() );
return light->colors[p_type];
}
void RasterizerGLES2::light_set_shadow(RID p_light,bool p_enabled) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->shadow_enabled=p_enabled;
}
bool RasterizerGLES2::light_has_shadow(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light,false);
return light->shadow_enabled;
}
void RasterizerGLES2::light_set_volumetric(RID p_light,bool p_enabled) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->volumetric_enabled=p_enabled;
}
bool RasterizerGLES2::light_is_volumetric(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light,false);
return light->volumetric_enabled;
}
void RasterizerGLES2::light_set_projector(RID p_light,RID p_texture) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->projector=p_texture;
}
RID RasterizerGLES2::light_get_projector(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light,RID());
return light->projector;
}
void RasterizerGLES2::light_set_var(RID p_light, VS::LightParam p_var, float p_value) {
Light * light = light_owner.get( p_light );
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX( p_var, VS::LIGHT_PARAM_MAX );
light->vars[p_var]=p_value;
}
float RasterizerGLES2::light_get_var(RID p_light, VS::LightParam p_var) const {
Light * light = light_owner.get( p_light );
ERR_FAIL_COND_V(!light,0);
ERR_FAIL_INDEX_V( p_var, VS::LIGHT_PARAM_MAX,0 );
return light->vars[p_var];
}
void RasterizerGLES2::light_set_operator(RID p_light,VS::LightOp p_op) {
};
VS::LightOp RasterizerGLES2::light_get_operator(RID p_light) const {
return VS::LightOp();
};
void RasterizerGLES2::light_omni_set_shadow_mode(RID p_light,VS::LightOmniShadowMode p_mode) {
Light * light = light_owner.get( p_light );
ERR_FAIL_COND(!light);
light->omni_shadow_mode=p_mode;
}
VS::LightOmniShadowMode RasterizerGLES2::light_omni_get_shadow_mode(RID p_light) const {
const Light * light = light_owner.get( p_light );
ERR_FAIL_COND_V(!light,VS::LIGHT_OMNI_SHADOW_DEFAULT);
return light->omni_shadow_mode;
}
void RasterizerGLES2::light_directional_set_shadow_mode(RID p_light,VS::LightDirectionalShadowMode p_mode) {
Light * light = light_owner.get( p_light );
ERR_FAIL_COND(!light);
light->directional_shadow_mode=p_mode;
}
VS::LightDirectionalShadowMode RasterizerGLES2::light_directional_get_shadow_mode(RID p_light) const {
const Light * light = light_owner.get( p_light );
ERR_FAIL_COND_V(!light,VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL);
return light->directional_shadow_mode;
}
void RasterizerGLES2::light_directional_set_shadow_param(RID p_light,VS::LightDirectionalShadowParam p_param, float p_value) {
Light * light = light_owner.get( p_light );
ERR_FAIL_COND(!light);
light->directional_shadow_param[p_param]=p_value;
}
float RasterizerGLES2::light_directional_get_shadow_param(RID p_light,VS::LightDirectionalShadowParam p_param) const {
const Light * light = light_owner.get( p_light );
ERR_FAIL_COND_V(!light,0);
return light->directional_shadow_param[p_param];
}
AABB RasterizerGLES2::light_get_aabb(RID p_light) const {
Light *light = light_owner.get( p_light );
ERR_FAIL_COND_V(!light,AABB());
switch( light->type ) {
case VS::LIGHT_SPOT: {
float len=light->vars[VS::LIGHT_PARAM_RADIUS];
float size=Math::tan(Math::deg2rad(light->vars[VS::LIGHT_PARAM_SPOT_ANGLE]))*len;
return AABB( Vector3( -size,-size,-len ), Vector3( size*2, size*2, len ) );
} break;
case VS::LIGHT_OMNI: {
float r = light->vars[VS::LIGHT_PARAM_RADIUS];
return AABB( -Vector3(r,r,r), Vector3(r,r,r)*2 );
} break;
case VS::LIGHT_DIRECTIONAL: {
return AABB();
} break;
default: {}
}
ERR_FAIL_V( AABB() );
}
RID RasterizerGLES2::light_instance_create(RID p_light) {
Light *light = light_owner.get( p_light );
ERR_FAIL_COND_V(!light, RID());
LightInstance *light_instance = memnew( LightInstance );
light_instance->light=p_light;
light_instance->base=light;
light_instance->last_pass=0;
return light_instance_owner.make_rid( light_instance );
}
void RasterizerGLES2::light_instance_set_transform(RID p_light_instance,const Transform& p_transform) {
LightInstance *lighti = light_instance_owner.get( p_light_instance );
ERR_FAIL_COND(!lighti);
lighti->transform=p_transform;
}
Rasterizer::ShadowType RasterizerGLES2::light_instance_get_shadow_type(RID p_light_instance, bool p_far) const {
LightInstance *lighti = light_instance_owner.get( p_light_instance );
ERR_FAIL_COND_V(!lighti,Rasterizer::SHADOW_NONE);
switch(lighti->base->type) {
case VS::LIGHT_DIRECTIONAL: {
switch(lighti->base->directional_shadow_mode) {
case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
return SHADOW_ORTHOGONAL;
} break;
case VS::LIGHT_DIRECTIONAL_SHADOW_PERSPECTIVE:{
return SHADOW_PSM;
} break;
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:{
return SHADOW_PSSM;
} break;
}
}break;
case VS::LIGHT_OMNI: return SHADOW_DUAL_PARABOLOID; break;
case VS::LIGHT_SPOT: return SHADOW_SIMPLE; break;
}
return Rasterizer::SHADOW_NONE;
}
int RasterizerGLES2::light_instance_get_shadow_passes(RID p_light_instance) const {
LightInstance *lighti = light_instance_owner.get( p_light_instance );
ERR_FAIL_COND_V(!lighti,0);
if (lighti->base->type==VS::LIGHT_DIRECTIONAL && lighti->base->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
return 4; // dp4
} else if (lighti->base->type==VS::LIGHT_OMNI || (lighti->base->type==VS::LIGHT_DIRECTIONAL && lighti->base->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS)) {
return 2; // dp
} else
return 1;
}
bool RasterizerGLES2::light_instance_get_pssm_shadow_overlap(RID p_light_instance) const {
return shadow_filter>=SHADOW_FILTER_ESM;
}
void RasterizerGLES2::light_instance_set_shadow_transform(RID p_light_instance, int p_index, const CameraMatrix& p_camera, const Transform& p_transform, float p_split_near,float p_split_far) {
LightInstance *lighti = light_instance_owner.get( p_light_instance );
ERR_FAIL_COND(!lighti);
ERR_FAIL_COND(lighti->base->type!=VS::LIGHT_DIRECTIONAL);
// ERR_FAIL_INDEX(p_index,1);
lighti->custom_projection[p_index]=p_camera;
lighti->custom_transform[p_index]=p_transform;
lighti->shadow_split[p_index]=1.0/p_split_far;
#if 0
if (p_index==0) {
lighti->custom_projection=p_camera;
lighti->custom_transform=p_transform;
//Plane p(0,0,-p_split_far,1);
//p=camera_projection.xform4(p);
//lighti->shadow_split=p.normal.z/p.d;
lighti->shadow_split=1.0/p_split_far;
//lighti->shadow_split=-p_split_far;
} else {
lighti->custom_projection2=p_camera;
lighti->custom_transform2=p_transform;
lighti->shadow_split2=p_split_far;
}
#endif
}
int RasterizerGLES2::light_instance_get_shadow_size(RID p_light_instance, int p_index) const{
LightInstance *lighti = light_instance_owner.get( p_light_instance );
ERR_FAIL_COND_V(!lighti,1);
ERR_FAIL_COND_V(!lighti->near_shadow_buffer,256);
return lighti->near_shadow_buffer->size/2;
}
void RasterizerGLES2::shadow_clear_near() {
for(int i=0;i<near_shadow_buffers.size();i++) {
if (near_shadow_buffers[i].owner)
near_shadow_buffers[i].owner->clear_near_shadow_buffers();
}
}
bool RasterizerGLES2::shadow_allocate_near(RID p_light) {
if (!use_shadow_mapping || !use_framebuffers)
return false;
LightInstance *li = light_instance_owner.get(p_light);
ERR_FAIL_COND_V(!li,false);
ERR_FAIL_COND_V( li->near_shadow_buffer, false);
int skip=0;
if (framebuffer.active) {
int sc = framebuffer.scale;
while(sc>1) {
sc/=2;
skip++;
}
}
for(int i=0;i<near_shadow_buffers.size();i++) {
if (skip>0) {
skip--;
continue;
}
if (near_shadow_buffers[i].owner!=NULL)
continue;
near_shadow_buffers[i].owner=li;
li->near_shadow_buffer=&near_shadow_buffers[i];
return true;
}
return false;
}
bool RasterizerGLES2::shadow_allocate_far(RID p_light) {
return false;
}
/* PARTICLES INSTANCE */
RID RasterizerGLES2::particles_instance_create(RID p_particles) {
ERR_FAIL_COND_V(!particles_owner.owns(p_particles),RID());
ParticlesInstance *particles_instance = memnew( ParticlesInstance );
ERR_FAIL_COND_V(!particles_instance, RID() );
particles_instance->particles=p_particles;
return particles_instance_owner.make_rid(particles_instance);
}
void RasterizerGLES2::particles_instance_set_transform(RID p_particles_instance,const Transform& p_transform) {
ParticlesInstance *particles_instance=particles_instance_owner.get(p_particles_instance);
ERR_FAIL_COND(!particles_instance);
particles_instance->transform=p_transform;
}
RID RasterizerGLES2::viewport_data_create() {
ViewportData *vd = memnew( ViewportData );
glActiveTexture(GL_TEXTURE0);
glGenFramebuffers(1, &vd->lum_fbo);
glBindFramebuffer(GL_FRAMEBUFFER, vd->lum_fbo);
GLuint format_luminance = use_fp16_fb?_GL_RG_EXT:GL_RGBA;
GLuint format_luminance_type = use_fp16_fb?(full_float_fb_supported?GL_FLOAT:_GL_HALF_FLOAT_OES):GL_UNSIGNED_BYTE;
GLuint format_luminance_components = use_fp16_fb?_GL_RG_EXT:GL_RGBA;
glGenTextures(1, &vd->lum_color);
glBindTexture(GL_TEXTURE_2D, vd->lum_color);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
//glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0,
// GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glTexImage2D(GL_TEXTURE_2D, 0, format_luminance, 1, 1, 0,
format_luminance_components, format_luminance_type, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, vd->lum_color, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer);
DEBUG_TEST_ERROR("Viewport Data Init");
if (status != GL_FRAMEBUFFER_COMPLETE) {
WARN_PRINT("Can't create framebuffer for vd");
}
return viewport_data_owner.make_rid(vd);
}
RID RasterizerGLES2::render_target_create(){
RenderTarget *rt = memnew( RenderTarget );
rt->fbo=0;
rt->width=0;
rt->height=0;
rt->last_pass=0;
Texture *texture = memnew(Texture);
texture->active=false;
texture->total_data_size=0;
texture->render_target=rt;
texture->ignore_mipmaps=true;
rt->texture_ptr=texture;
rt->texture=texture_owner.make_rid( texture );
rt->texture_ptr->active=false;
return render_target_owner.make_rid(rt);
}
void RasterizerGLES2::render_target_set_size(RID p_render_target,int p_width,int p_height){
RenderTarget *rt = render_target_owner.get(p_render_target);
if (p_width==rt->width && p_height==rt->height)
return;
if (rt->width!=0 && rt->height!=0) {
glDeleteFramebuffers(1,&rt->fbo);
glDeleteRenderbuffers(1,&rt->depth);
glDeleteTextures(1,&rt->color);
rt->fbo=0;
rt->width=0;
rt->height=0;
rt->texture_ptr->tex_id=0;
rt->texture_ptr->active=false;
}
if (p_width==0 || p_height==0)
return;
rt->width=p_width;
rt->height=p_height;
//fbo
glGenFramebuffers(1, &rt->fbo);
glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo);
//depth
glGenRenderbuffers(1, &rt->depth);
glBindRenderbuffer(GL_RENDERBUFFER, rt->depth );
glRenderbufferStorage(GL_RENDERBUFFER, use_depth24?_DEPTH_COMPONENT24_OES:GL_DEPTH_COMPONENT16, rt->width,rt->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth);
//color
glGenTextures(1, &rt->color);
glBindTexture(GL_TEXTURE_2D, rt->color);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, rt->width, rt->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->color, 0);
rt->texture_ptr->tex_id=rt->color;
rt->texture_ptr->active=true;
rt->texture_ptr->width=p_width;
rt->texture_ptr->height=p_height;
#
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
glDeleteRenderbuffers(1,&rt->fbo);
glDeleteTextures(1,&rt->depth);
glDeleteTextures(1,&rt->color);
rt->fbo=0;
rt->width=0;
rt->height=0;
rt->color=0;
rt->depth=0;
rt->texture_ptr->tex_id=0;
rt->texture_ptr->active=false;
WARN_PRINT("Could not create framebuffer!!");
}
glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer);
}
RID RasterizerGLES2::render_target_get_texture(RID p_render_target) const{
const RenderTarget *rt = render_target_owner.get(p_render_target);
ERR_FAIL_COND_V(!rt,RID());
return rt->texture;
}
bool RasterizerGLES2::render_target_renedered_in_frame(RID p_render_target){
RenderTarget *rt = render_target_owner.get(p_render_target);
ERR_FAIL_COND_V(!rt,false);
return rt->last_pass==frame;
}
/* RENDER API */
/* all calls (inside begin/end shadow) are always warranted to be in the following order: */
void RasterizerGLES2::begin_frame() {
_update_framebuffer();
glDepthFunc(GL_LEQUAL);
glFrontFace(GL_CW);
//fragment_lighting=Globals::get_singleton()->get("rasterizer/use_fragment_lighting");
#ifdef TOOLS_ENABLED
canvas_shader.set_conditional(CanvasShaderGLES2::USE_PIXEL_SNAP,GLOBAL_DEF("rasterizer/use_pixel_snap",false));
shadow_filter=ShadowFilterTechnique(int(Globals::get_singleton()->get("rasterizer/shadow_filter")));
#endif
window_size = Size2( OS::get_singleton()->get_video_mode().width, OS::get_singleton()->get_video_mode().height );
double time = (OS::get_singleton()->get_ticks_usec()/1000); // get msec
time/=1000.0; // make secs
time_delta=time-last_time;
last_time=time;
frame++;
clear_viewport(Color(1,0,0.5));
_rinfo.vertex_count=0;
_rinfo.object_count=0;
_rinfo.mat_change_count=0;
_rinfo.shader_change_count=0;
_rinfo.ci_draw_commands=0;
_rinfo.surface_count=0;
_rinfo.draw_calls=0;
_update_fixed_materials();
while(_shader_dirty_list.first()) {
_update_shader(_shader_dirty_list.first()->self());
}
while(_skeleton_dirty_list.first()) {
Skeleton *s=_skeleton_dirty_list.first()->self();
float *sk_float = (float*)skinned_buffer;
for(int i=0;i<s->bones.size();i++) {
float *m = &sk_float[i*12];
const Skeleton::Bone &b=s->bones[i];
m[0]=b.mtx[0][0];
m[1]=b.mtx[1][0];
m[2]=b.mtx[2][0];
m[3]=b.mtx[3][0];
m[4]=b.mtx[0][1];
m[5]=b.mtx[1][1];
m[6]=b.mtx[2][1];
m[7]=b.mtx[3][1];
m[8]=b.mtx[0][2];
m[9]=b.mtx[1][2];
m[10]=b.mtx[2][2];
m[11]=b.mtx[3][2];
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,s->tex_id);
glTexSubImage2D(GL_TEXTURE_2D,0,0,0,nearest_power_of_2(s->bones.size()*3),1,GL_RGBA,GL_FLOAT,sk_float);
_skeleton_dirty_list.remove( _skeleton_dirty_list.first() );
}
while(_multimesh_dirty_list.first()) {
MultiMesh *s=_multimesh_dirty_list.first()->self();
float *sk_float = (float*)skinned_buffer;
for(int i=0;i<s->elements.size();i++) {
float *m = &sk_float[i*16];
const float *im=s->elements[i].matrix;
for(int j=0;j<16;j++) {
m[j]=im[j];
}
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,s->tex_id);
glTexSubImage2D(GL_TEXTURE_2D,0,0,0,s->tw,s->th,GL_RGBA,GL_FLOAT,sk_float);
_multimesh_dirty_list.remove( _multimesh_dirty_list.first() );
}
draw_next_frame=false;
// material_shader.set_uniform_default(MaterialShaderGLES2::SCREENZ_SCALE, Math::fmod(time, 3600.0));
/* nehe ?*/
// glClearColor(0,0,1,1);
// glClear(GL_COLOR_BUFFER_BIT); //should not clear if anything else cleared..
}
void RasterizerGLES2::capture_viewport(Image* r_capture) {
#if 0
DVector<uint8_t> pixels;
pixels.resize(viewport.width*viewport.height*3);
DVector<uint8_t>::Write w = pixels.write();
#ifdef GLEW_ENABLED
glReadBuffer(GL_COLOR_ATTACHMENT0);
#endif
glPixelStorei(GL_PACK_ALIGNMENT, 1);
if (current_rt)
glReadPixels( 0, 0, viewport.width, viewport.height,GL_RGB,GL_UNSIGNED_BYTE,w.ptr() );
else
glReadPixels( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height,GL_RGB,GL_UNSIGNED_BYTE,w.ptr());
glPixelStorei(GL_PACK_ALIGNMENT, 4);
w=DVector<uint8_t>::Write();
r_capture->create(viewport.width,viewport.height,0,Image::FORMAT_RGB,pixels);
#else
DVector<uint8_t> pixels;
pixels.resize(viewport.width*viewport.height*4);
DVector<uint8_t>::Write w = pixels.write();
glPixelStorei(GL_PACK_ALIGNMENT, 4);
if (current_rt) {
#ifdef GLEW_ENABLED
glReadBuffer(GL_COLOR_ATTACHMENT0);
#endif
glReadPixels( 0, 0, viewport.width, viewport.height,GL_RGBA,GL_UNSIGNED_BYTE,w.ptr() );
} else {
// back?
glReadPixels( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height,GL_RGBA,GL_UNSIGNED_BYTE,w.ptr());
}
w=DVector<uint8_t>::Write();
r_capture->create(viewport.width,viewport.height,0,Image::FORMAT_RGBA,pixels);
r_capture->flip_y();
#endif
}
void RasterizerGLES2::clear_viewport(const Color& p_color) {
if (current_rt) {
glScissor( 0, 0, viewport.width, viewport.height );
} else {
glScissor( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height );
}
glEnable(GL_SCISSOR_TEST);
glClearColor(p_color.r,p_color.g,p_color.b,1.0);
glClear(GL_COLOR_BUFFER_BIT); //should not clear if anything else cleared..
glDisable(GL_SCISSOR_TEST);
};
void RasterizerGLES2::set_render_target(RID p_render_target, bool p_transparent_bg, bool p_vflip) {
if (!p_render_target.is_valid()) {
glBindFramebuffer(GL_FRAMEBUFFER,base_framebuffer);
current_rt=NULL;
current_rt_vflip=false;
} else {
RenderTarget *rt = render_target_owner.get(p_render_target);
ERR_FAIL_COND(!rt);
ERR_FAIL_COND(rt->fbo==0);
glBindFramebuffer(GL_FRAMEBUFFER,rt->fbo);
current_rt=rt;
current_rt_transparent=p_transparent_bg;
current_rt_vflip=!p_vflip;
}
}
void RasterizerGLES2::set_viewport(const VS::ViewportRect& p_viewport) {
viewport=p_viewport;
//viewport.width/=2;
//viewport.height/=2;
//print_line("viewport: "+itos(p_viewport.x)+","+itos(p_viewport.y)+","+itos(p_viewport.width)+","+itos(p_viewport.height));
if (current_rt) {
glViewport( 0, 0,viewport.width, viewport.height );
} else {
glViewport( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height );
}
}
void RasterizerGLES2::begin_scene(RID p_viewport_data,RID p_env,VS::ScenarioDebugMode p_debug) {
current_debug=p_debug;
opaque_render_list.clear();
alpha_render_list.clear();
light_instance_count=0;
current_env = p_env.is_valid() ? environment_owner.get(p_env) : NULL;
scene_pass++;
last_light_id=0;
directional_light_count=0;
lights_use_shadow=false;
texscreen_used=false;
current_vd=viewport_data_owner.get(p_viewport_data);
if (current_debug==VS::SCENARIO_DEBUG_WIREFRAME) {
#ifdef GLEW_ENABLED
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
#endif
}
//set state
glCullFace(GL_FRONT);
cull_front=true;
};
void RasterizerGLES2::begin_shadow_map( RID p_light_instance, int p_shadow_pass ) {
ERR_FAIL_COND(shadow);
shadow = light_instance_owner.get(p_light_instance);
shadow_pass=p_shadow_pass;
ERR_FAIL_COND(!shadow);
opaque_render_list.clear();
alpha_render_list.clear();
// pre_zpass_render_list.clear();
light_instance_count=0;
glCullFace(GL_FRONT);
cull_front=true;
}
void RasterizerGLES2::set_camera(const Transform& p_world,const CameraMatrix& p_projection) {
camera_transform=p_world;
if (current_rt && current_rt_vflip) {
camera_transform.basis.set_axis(1,-camera_transform.basis.get_axis(1));
}
camera_transform_inverse=camera_transform.inverse();
camera_projection=p_projection;
camera_plane = Plane( camera_transform.origin, camera_transform.basis.get_axis(2) );
camera_z_near=camera_projection.get_z_near();
camera_z_far=camera_projection.get_z_far();
camera_projection.get_viewport_size(camera_vp_size.x,camera_vp_size.y);
}
void RasterizerGLES2::add_light( RID p_light_instance ) {
#define LIGHT_FADE_TRESHOLD 0.05
ERR_FAIL_COND( light_instance_count >= MAX_SCENE_LIGHTS );
LightInstance *li = light_instance_owner.get(p_light_instance);
ERR_FAIL_COND(!li);
switch(li->base->type) {
case VS::LIGHT_DIRECTIONAL: {
ERR_FAIL_COND( directional_light_count >= RenderList::MAX_LIGHTS);
directional_lights[directional_light_count++]=li;
if (li->base->shadow_enabled) {
CameraMatrix bias;
bias.set_light_bias();
int passes=light_instance_get_shadow_passes(p_light_instance);
for(int i=0;i<passes;i++) {
Transform modelview=Transform(camera_transform_inverse * li->custom_transform[i]).inverse();
li->shadow_projection[i] = bias * li->custom_projection[i] * modelview;
}
lights_use_shadow=true;
}
} break;
case VS::LIGHT_OMNI: {
if (li->base->shadow_enabled) {
li->shadow_projection[0] = Transform(camera_transform_inverse * li->transform).inverse();
lights_use_shadow=true;
}
} break;
case VS::LIGHT_SPOT: {
if (li->base->shadow_enabled) {
CameraMatrix bias;
bias.set_light_bias();
Transform modelview=Transform(camera_transform_inverse * li->transform).inverse();
li->shadow_projection[0] = bias * li->projection * modelview;
lights_use_shadow=true;
}
} break;
}
/* make light hash */
// actually, not really a hash, but helps to sort the lights
// and avoid recompiling redudant shader versions
li->last_pass=scene_pass;
li->sort_key=light_instance_count;
light_instances[light_instance_count++]=li;
}
void RasterizerGLES2::_update_shader( Shader* p_shader) const {
_shader_dirty_list.remove( &p_shader->dirty_list );
p_shader->valid=false;
p_shader->uniforms.clear();
Vector<StringName> uniform_names;
String vertex_code;
String vertex_globals;
ShaderCompilerGLES2::Flags vertex_flags;
ShaderCompilerGLES2::Flags fragment_flags;
ShaderCompilerGLES2::Flags light_flags;
if (p_shader->mode==VS::SHADER_MATERIAL) {
Error err = shader_precompiler.compile(p_shader->vertex_code,ShaderLanguage::SHADER_MATERIAL_VERTEX,vertex_code,vertex_globals,vertex_flags,&p_shader->uniforms);
if (err) {
return; //invalid
}
}
//print_line("compiled vertex: "+vertex_code);
//print_line("compiled vertex globals: "+vertex_globals);
//print_line("UCV: "+itos(p_shader->uniforms.size()));
String fragment_code;
String fragment_globals;
Error err = shader_precompiler.compile(p_shader->fragment_code,(p_shader->mode==VS::SHADER_MATERIAL?ShaderLanguage::SHADER_MATERIAL_FRAGMENT:ShaderLanguage::SHADER_POST_PROCESS),fragment_code,fragment_globals,fragment_flags,&p_shader->uniforms);
if (err) {
return; //invalid
}
String light_code;
String light_globals;
if (p_shader->mode==VS::SHADER_MATERIAL) {
Error err = shader_precompiler.compile(p_shader->light_code,(ShaderLanguage::SHADER_MATERIAL_LIGHT),light_code,light_globals,light_flags,&p_shader->uniforms);
if (err) {
return; //invalid
}
}
fragment_globals+=light_globals; //both fragment anyway
//print_line("compiled fragment: "+fragment_code);
// ("compiled fragment globals: "+fragment_globals);
//print_line("UCF: "+itos(p_shader->uniforms.size()));
int first_tex_index=0xFFFFF;
p_shader->first_texture=StringName();
for(Map<StringName,ShaderLanguage::Uniform>::Element *E=p_shader->uniforms.front();E;E=E->next()) {
uniform_names.push_back("_"+String(E->key()));
if (E->get().type==ShaderLanguage::TYPE_TEXTURE && E->get().order<first_tex_index) {
p_shader->first_texture=E->key();
first_tex_index=E->get().order;
}
}
bool uses_time=false;
if (p_shader->mode==VS::SHADER_MATERIAL) {
//print_line("setting code to id.. "+itos(p_shader->custom_code_id));
Vector<const char*> enablers;
if (fragment_flags.use_color_interp || vertex_flags.use_color_interp)
enablers.push_back("#define ENABLE_COLOR_INTERP\n");
if (fragment_flags.use_uv_interp || vertex_flags.use_uv_interp)
enablers.push_back("#define ENABLE_UV_INTERP\n");
if (fragment_flags.use_uv2_interp || vertex_flags.use_uv2_interp)
enablers.push_back("#define ENABLE_UV2_INTERP\n");
if (fragment_flags.use_tangent_interp || vertex_flags.use_tangent_interp)
enablers.push_back("#define ENABLE_TANGENT_INTERP\n");
if (fragment_flags.use_var1_interp || vertex_flags.use_var1_interp)
enablers.push_back("#define ENABLE_VAR1_INTERP\n");
if (fragment_flags.use_var2_interp || vertex_flags.use_var2_interp)
enablers.push_back("#define ENABLE_VAR2_INTERP\n");
if (fragment_flags.uses_texscreen) {
enablers.push_back("#define ENABLE_TEXSCREEN\n");
}
if (fragment_flags.uses_screen_uv) {
enablers.push_back("#define ENABLE_SCREEN_UV\n");
}
if (fragment_flags.uses_discard) {
enablers.push_back("#define ENABLE_DISCARD\n");
}
if (light_flags.uses_light) {
enablers.push_back("#define USE_LIGHT_SHADER_CODE\n");
}
if (light_flags.uses_time || fragment_flags.uses_time || vertex_flags.uses_time) {
enablers.push_back("#define USE_TIME\n");
uses_time=true;
}
material_shader.set_custom_shader_code(p_shader->custom_code_id,vertex_code, vertex_globals,fragment_code, light_code, fragment_globals,uniform_names,enablers);
} else {
//postprocess_shader.set_custom_shader_code(p_shader->custom_code_id,vertex_code, vertex_globals,fragment_code, fragment_globals,uniform_names);
}
p_shader->valid=true;
p_shader->has_alpha=fragment_flags.uses_alpha || fragment_flags.uses_texscreen;
p_shader->writes_vertex=vertex_flags.vertex_code_writes_vertex;
p_shader->uses_discard=fragment_flags.uses_discard;
p_shader->has_texscreen=fragment_flags.uses_texscreen;
p_shader->has_screen_uv=fragment_flags.uses_screen_uv;
p_shader->can_zpass=!fragment_flags.uses_discard && !vertex_flags.vertex_code_writes_vertex;
p_shader->uses_time=uses_time;
p_shader->version++;
}
void RasterizerGLES2::_add_geometry( const Geometry* p_geometry, const InstanceData *p_instance, const Geometry *p_geometry_cmp, const GeometryOwner *p_owner) {
Material *m=NULL;
RID m_src=p_instance->material_override.is_valid() ? p_instance->material_override : p_geometry->material;
#ifdef DEBUG_ENABLED
if (current_debug==VS::SCENARIO_DEBUG_OVERDRAW) {
m_src=overdraw_material;
}
#endif
if (m_src)
m=material_owner.get( m_src );
if (!m) {
m=material_owner.get( default_material );
}
ERR_FAIL_COND(!m);
if (m->last_pass!=frame) {
if (m->shader.is_valid()) {
m->shader_cache=shader_owner.get(m->shader);
if (m->shader_cache) {
if (!m->shader_cache->valid) {
m->shader_cache=NULL;
} else {
if (m->shader_cache->has_texscreen)
texscreen_used=true;
}
} else {
m->shader=RID();
}
} else {
m->shader_cache=NULL;
}
m->last_pass=frame;
}
RenderList *render_list=NULL;
bool has_base_alpha=(m->shader_cache && m->shader_cache->has_alpha);
bool has_blend_alpha=m->blend_mode!=VS::MATERIAL_BLEND_MODE_MIX || m->flags[VS::MATERIAL_FLAG_ONTOP];
bool has_alpha = has_base_alpha || has_blend_alpha;
if (shadow) {
if (has_blend_alpha || (has_base_alpha && m->depth_draw_mode!=VS::MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA))
return; //bye
if (m->shader_cache && !m->shader_cache->writes_vertex && !m->shader_cache->uses_discard && m->depth_draw_mode!=VS::MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA) {
//shader does not use discard and does not write a vertex position, use generic material
m = shadow_mat_ptr;
if (m->last_pass!=frame) {
if (m->shader.is_valid()) {
m->shader_cache=shader_owner.get(m->shader);
if (m->shader_cache) {
if (!m->shader_cache->valid)
m->shader_cache=NULL;
} else {
m->shader=RID();
}
} else {
m->shader_cache=NULL;
}
m->last_pass=frame;
}
}
render_list = &opaque_render_list;
/* notyet
if (!m->shader_cache || m->shader_cache->can_zpass)
render_list = &alpha_render_list;
} else {
render_list = &opaque_render_list;
}*/
} else {
if (has_alpha) {
render_list = &alpha_render_list;
} else {
render_list = &opaque_render_list;
}
}
RenderList::Element *e = render_list->add_element();
if (!e)
return;
e->geometry=p_geometry;
e->geometry_cmp=p_geometry_cmp;
e->material=m;
e->instance=p_instance;
//e->depth=camera_plane.distance_to(p_world->origin);
e->depth=camera_transform.origin.distance_to(p_instance->transform.origin);
e->owner=p_owner;
e->light_type=0;
e->additive=false;
e->additive_ptr=&e->additive;
e->sort_flags=0;
if (p_instance->skeleton.is_valid()) {
e->skeleton=skeleton_owner.get(p_instance->skeleton);
if (!e->skeleton)
const_cast<InstanceData*>(p_instance)->skeleton=RID();
else
e->sort_flags|=RenderList::SORT_FLAG_SKELETON;
} else {
e->skeleton=NULL;
}
if (e->geometry->type==Geometry::GEOMETRY_MULTISURFACE)
e->sort_flags|=RenderList::SORT_FLAG_INSTANCING;
e->mirror=p_instance->mirror;
if (m->flags[VS::MATERIAL_FLAG_INVERT_FACES])
e->mirror=!e->mirror;
e->light_type=0xFF; // no lights!
e->light=0xFFFF;
if (!shadow && !has_blend_alpha && has_alpha && m->depth_draw_mode==VS::MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA) {
//if nothing exists, add this element as opaque too
RenderList::Element *oe = opaque_render_list.add_element();
if (!oe)
return;
memcpy(oe,e,sizeof(RenderList::Element));
oe->additive_ptr=&oe->additive;
}
if (shadow || m->flags[VS::MATERIAL_FLAG_UNSHADED]) {
e->light_type=0x7F; //unshaded is zero
} else {
bool duplicate=false;
for(int i=0;i<directional_light_count;i++) {
uint16_t sort_key = directional_lights[i]->sort_key;
uint8_t light_type = VS::LIGHT_DIRECTIONAL;
if (directional_lights[i]->base->shadow_enabled) {
light_type|=0x8;
if (directional_lights[i]->base->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS)
light_type|=0x10;
else if (directional_lights[i]->base->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS)
light_type|=0x30;
}
RenderList::Element *ec;
if (duplicate) {
ec = render_list->add_element();
memcpy(ec,e,sizeof(RenderList::Element));
} else {
ec=e;
duplicate=true;
}
ec->light_type=light_type;
ec->light=sort_key;
ec->additive_ptr=&e->additive;
}
const RID *liptr = p_instance->light_instances.ptr();
int ilc=p_instance->light_instances.size();
for(int i=0;i<ilc;i++) {
LightInstance *li=light_instance_owner.get( liptr[i] );
if (!li || li->last_pass!=scene_pass) //lit by light not in visible scene
continue;
uint8_t light_type=li->base->type|0x40; //penalty to ensure directionals always go first
if (li->base->shadow_enabled) {
light_type|=0x8;
}
uint16_t sort_key =li->sort_key;
RenderList::Element *ec;
if (duplicate) {
ec = render_list->add_element();
memcpy(ec,e,sizeof(RenderList::Element));
} else {
duplicate=true;
ec=e;
}
ec->light_type=light_type;
ec->light=sort_key;
ec->additive_ptr=&e->additive;
}
}
DEBUG_TEST_ERROR("Add Geometry");
}
void RasterizerGLES2::add_mesh( const RID& p_mesh, const InstanceData *p_data) {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND(!mesh);
int ssize = mesh->surfaces.size();
for (int i=0;i<ssize;i++) {
Surface *s = mesh->surfaces[i];
_add_geometry(s,p_data,s,NULL);
}
mesh->last_pass=frame;
}
void RasterizerGLES2::add_multimesh( const RID& p_multimesh, const InstanceData *p_data){
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
if (!multimesh->mesh.is_valid())
return;
if (multimesh->elements.empty())
return;
Mesh *mesh = mesh_owner.get(multimesh->mesh);
ERR_FAIL_COND(!mesh);
int surf_count = mesh->surfaces.size();
if (multimesh->last_pass!=scene_pass) {
multimesh->cache_surfaces.resize(surf_count);
for(int i=0;i<surf_count;i++) {
multimesh->cache_surfaces[i].material=mesh->surfaces[i]->material;
multimesh->cache_surfaces[i].has_alpha=mesh->surfaces[i]->has_alpha;
multimesh->cache_surfaces[i].surface=mesh->surfaces[i];
}
multimesh->last_pass=scene_pass;
}
for(int i=0;i<surf_count;i++) {
_add_geometry(&multimesh->cache_surfaces[i],p_data,multimesh->cache_surfaces[i].surface,multimesh);
}
}
void RasterizerGLES2::add_immediate( const RID& p_immediate, const InstanceData *p_data) {
Immediate *immediate = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!immediate);
_add_geometry(immediate,p_data,immediate,NULL);
}
void RasterizerGLES2::add_particles( const RID& p_particle_instance, const InstanceData *p_data){
//print_line("adding particles");
ParticlesInstance *particles_instance = particles_instance_owner.get(p_particle_instance);
ERR_FAIL_COND(!particles_instance);
Particles *p=particles_owner.get( particles_instance->particles );
ERR_FAIL_COND(!p);
_add_geometry(p,p_data,p,particles_instance);
draw_next_frame=true;
}
Color RasterizerGLES2::_convert_color(const Color& p_color) {
if (current_env && current_env->fx_enabled[VS::ENV_FX_SRGB])
return p_color.to_linear();
else
return p_color;
}
void RasterizerGLES2::_set_cull(bool p_front,bool p_reverse_cull) {
bool front = p_front;
if (p_reverse_cull)
front=!front;
if (front!=cull_front) {
glCullFace(front?GL_FRONT:GL_BACK);
cull_front=front;
}
}
_FORCE_INLINE_ void RasterizerGLES2::_update_material_shader_params(Material *p_material) const {
Map<StringName,Material::UniformData> old_mparams=p_material->shader_params;
Map<StringName,Material::UniformData> &mparams=p_material->shader_params;
mparams.clear();
int idx=0;
for(Map<StringName,ShaderLanguage::Uniform>::Element *E=p_material->shader_cache->uniforms.front();E;E=E->next()) {
Material::UniformData ud;
bool keep=true;
if (!old_mparams.has(E->key()))
keep=false;
else if (old_mparams[E->key()].value.get_type()!=E->value().default_value.get_type()) {
if (old_mparams[E->key()].value.get_type()==Variant::OBJECT) {
if (E->value().default_value.get_type()!=Variant::_RID) //hackfor textures
keep=false;
} else if (!old_mparams[E->key()].value.is_num() || !E->value().default_value.get_type())
keep=false;
}
if (keep) {
ud.value=old_mparams[E->key()].value;
//print_line("KEEP: "+String(E->key()));
} else {
ud.value=E->value().default_value;
//print_line("NEW: "+String(E->key())+" because: hasold-"+itos(old_mparams.has(E->key())));
//if (old_mparams.has(E->key()))
// print_line(" told "+Variant::get_type_name(old_mparams[E->key()].value.get_type())+" tnew "+Variant::get_type_name(E->value().default_value.get_type()));
}
ud.istexture=(E->get().type==ShaderLanguage::TYPE_TEXTURE || E->get().type==ShaderLanguage::TYPE_CUBEMAP);
ud.index=idx++;
mparams[E->key()]=ud;
}
p_material->shader_version=p_material->shader_cache->version;
}
bool RasterizerGLES2::_setup_material(const Geometry *p_geometry,const Material *p_material,bool p_no_const_light,bool p_opaque_pass) {
if (p_material->flags[VS::MATERIAL_FLAG_DOUBLE_SIDED]) {
glDisable(GL_CULL_FACE);
} else {
glEnable(GL_CULL_FACE);
}
//glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
/*
if (p_material->flags[VS::MATERIAL_FLAG_WIREFRAME])
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
else
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
*/
if (p_material->line_width)
glLineWidth(p_material->line_width);
//all goes to false by default
material_shader.set_conditional(MaterialShaderGLES2::USE_SHADOW_PASS,shadow!=NULL);
material_shader.set_conditional(MaterialShaderGLES2::USE_SHADOW_PCF,shadow_filter==SHADOW_FILTER_PCF5 || shadow_filter==SHADOW_FILTER_PCF13);
material_shader.set_conditional(MaterialShaderGLES2::USE_SHADOW_PCF_HQ,shadow_filter==SHADOW_FILTER_PCF13);
material_shader.set_conditional(MaterialShaderGLES2::USE_SHADOW_ESM,shadow_filter==SHADOW_FILTER_ESM);
material_shader.set_conditional(MaterialShaderGLES2::USE_LIGHTMAP_ON_UV2,p_material->flags[VS::MATERIAL_FLAG_LIGHTMAP_ON_UV2]);
if (p_opaque_pass && p_material->depth_draw_mode==VS::MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA && p_material->shader_cache && p_material->shader_cache->has_alpha) {
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_CLIP_ALPHA,true);
} else {
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_CLIP_ALPHA,false);
}
if (!shadow) {
bool depth_test=!p_material->flags[VS::MATERIAL_FLAG_ONTOP];
bool depth_write=p_material->depth_draw_mode!=VS::MATERIAL_DEPTH_DRAW_NEVER && (p_opaque_pass || p_material->depth_draw_mode==VS::MATERIAL_DEPTH_DRAW_ALWAYS);
//bool depth_write=!p_material->hints[VS::MATERIAL_HINT_NO_DEPTH_DRAW] && (p_opaque_pass || !p_material->hints[VS::MATERIAL_HINT_NO_DEPTH_DRAW_FOR_ALPHA]);
if (current_depth_mask!=depth_write) {
current_depth_mask=depth_write;
glDepthMask( depth_write );
}
if (current_depth_test!=depth_test) {
current_depth_test=depth_test;
if(depth_test)
glEnable(GL_DEPTH_TEST);
else
glDisable(GL_DEPTH_TEST);
}
material_shader.set_conditional(MaterialShaderGLES2::USE_FOG,current_env && current_env->fx_enabled[VS::ENV_FX_FOG]);
//glDepthMask( true );
}
DEBUG_TEST_ERROR("Pre Shader Bind");
bool rebind=false;
if (p_material->shader_cache && p_material->shader_cache->valid) {
// // reduce amount of conditional compilations
// for(int i=0;i<_tex_version_count;i++)
// material_shader.set_conditional((MaterialShaderGLES2::Conditionals)_tex_version[i],false);
// material_shader.set_custom_shader(p_material->shader_cache->custom_code_id);
if (p_material->shader_version!=p_material->shader_cache->version) {
//shader changed somehow, must update uniforms
_update_material_shader_params((Material*)p_material);
}
material_shader.set_custom_shader(p_material->shader_cache->custom_code_id);
rebind = material_shader.bind();
DEBUG_TEST_ERROR("Shader Bind");
//set uniforms!
int texcoord=0;
for (Map<StringName,Material::UniformData>::Element *E=p_material->shader_params.front();E;E=E->next()) {
if (E->get().index<0)
continue;
if (E->get().istexture) {
//clearly a texture..
RID rid = E->get().value;
int loc = material_shader.get_custom_uniform_location(E->get().index); //should be automatic..
Texture *t=NULL;
if (rid.is_valid()) {
t=texture_owner.get(rid);
if (!t)
E->get().value=RID(); //nullify, invalid texture
}
glActiveTexture(GL_TEXTURE0+texcoord);
glUniform1i(loc,texcoord); //TODO - this could happen automatically on compile...
if (t) {
if (t->render_target)
t->render_target->last_pass=frame;
if (E->key()==p_material->shader_cache->first_texture) {
tc0_idx=texcoord;
tc0_id_cache=t->tex_id;
}
glBindTexture(t->target,t->tex_id);
} else
glBindTexture(GL_TEXTURE_2D,white_tex); //no texture
texcoord++;
} else if (E->get().value.get_type()==Variant::COLOR){
Color c = E->get().value;
material_shader.set_custom_uniform(E->get().index,_convert_color(c));
} else {
material_shader.set_custom_uniform(E->get().index,E->get().value);
}
}
if (p_material->shader_cache->has_texscreen && framebuffer.active) {
material_shader.set_uniform(MaterialShaderGLES2::TEXSCREEN_SCREEN_MULT,Vector2(float(viewport.width)/framebuffer.width,float(viewport.height)/framebuffer.height));
material_shader.set_uniform(MaterialShaderGLES2::TEXSCREEN_TEX,texcoord);
glActiveTexture(GL_TEXTURE0+texcoord);
glBindTexture(GL_TEXTURE_2D,framebuffer.sample_color);
}
if (p_material->shader_cache->has_screen_uv) {
material_shader.set_uniform(MaterialShaderGLES2::SCREEN_UV_MULT,Vector2(1.0/viewport.width,1.0/viewport.height));
}
DEBUG_TEST_ERROR("Material arameters");
if (p_material->shader_cache->uses_time) {
material_shader.set_uniform(MaterialShaderGLES2::TIME,Math::fmod(last_time,300.0));
draw_next_frame=true;
}
//if uses TIME - draw_next_frame=true
} else {
material_shader.set_custom_shader(0);
rebind = material_shader.bind();
DEBUG_TEST_ERROR("Shader bind2");
}
if (shadow) {
float zofs = shadow->base->vars[VS::LIGHT_PARAM_SHADOW_Z_OFFSET];
float zslope = shadow->base->vars[VS::LIGHT_PARAM_SHADOW_Z_SLOPE_SCALE];
if (shadow_pass>=1 && shadow->base->type==VS::LIGHT_DIRECTIONAL) {
float m = Math::pow(shadow->base->directional_shadow_param[VS::LIGHT_DIRECTIONAL_SHADOW_PARAM_PSSM_ZOFFSET_SCALE],shadow_pass);
zofs*=m;
zslope*=m;
}
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_Z_OFFSET,zofs);
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_Z_SLOPE_SCALE,zslope);
if (shadow->base->type==VS::LIGHT_OMNI)
material_shader.set_uniform(MaterialShaderGLES2::DUAL_PARABOLOID,shadow->dp);
DEBUG_TEST_ERROR("Shadow uniforms");
}
if (current_env && current_env->fx_enabled[VS::ENV_FX_FOG]) {
Color col_begin = current_env->fx_param[VS::ENV_FX_PARAM_FOG_BEGIN_COLOR];
Color col_end = current_env->fx_param[VS::ENV_FX_PARAM_FOG_END_COLOR];
col_begin=_convert_color(col_begin);
col_end=_convert_color(col_end);
float from = current_env->fx_param[VS::ENV_FX_PARAM_FOG_BEGIN];
float zf = camera_z_far;
float curve = current_env->fx_param[VS::ENV_FX_PARAM_FOG_ATTENUATION];
material_shader.set_uniform(MaterialShaderGLES2::FOG_PARAMS,Vector3(from,zf,curve));
material_shader.set_uniform(MaterialShaderGLES2::FOG_COLOR_BEGIN,Vector3(col_begin.r,col_begin.g,col_begin.b));
material_shader.set_uniform(MaterialShaderGLES2::FOG_COLOR_END,Vector3(col_end.r,col_end.g,col_end.b));
}
//material_shader.set_uniform(MaterialShaderGLES2::TIME,Math::fmod(last_time,300.0));
//if uses TIME - draw_next_frame=true
return rebind;
}
void RasterizerGLES2::_setup_light(uint16_t p_light) {
if (shadow)
return;
if (p_light==0xFFFF)
return;
enum {
VL_LIGHT_POS,
VL_LIGHT_DIR,
VL_LIGHT_ATTENUATION,
VL_LIGHT_SPOT_ATTENUATION,
VL_LIGHT_DIFFUSE,
VL_LIGHT_SPECULAR,
VL_LIGHT_MAX
};
static const MaterialShaderGLES2::Uniforms light_uniforms[VL_LIGHT_MAX]={
MaterialShaderGLES2::LIGHT_POS,
MaterialShaderGLES2::LIGHT_DIRECTION,
MaterialShaderGLES2::LIGHT_ATTENUATION,
MaterialShaderGLES2::LIGHT_SPOT_ATTENUATION,
MaterialShaderGLES2::LIGHT_DIFFUSE,
MaterialShaderGLES2::LIGHT_SPECULAR,
};
GLfloat light_data[VL_LIGHT_MAX][3];
memset(light_data,0,(VL_LIGHT_MAX)*3*sizeof(GLfloat));
LightInstance *li=light_instances[p_light];
Light *l=li->base;
Color col_diffuse=_convert_color(l->colors[VS::LIGHT_COLOR_DIFFUSE]);
Color col_specular=_convert_color(l->colors[VS::LIGHT_COLOR_SPECULAR]);
for(int j=0;j<3;j++) {
light_data[VL_LIGHT_DIFFUSE][j]=col_diffuse[j];
light_data[VL_LIGHT_SPECULAR][j]=col_specular[j];
}
if (l->type!=VS::LIGHT_OMNI) {
Vector3 dir = -li->transform.get_basis().get_axis(2);
dir = camera_transform_inverse.basis.xform(dir).normalized();
for(int j=0;j<3;j++)
light_data[VL_LIGHT_DIR][j]=dir[j];
}
if (l->type!=VS::LIGHT_DIRECTIONAL) {
Vector3 pos = li->transform.get_origin();
pos = camera_transform_inverse.xform(pos);
for(int j=0;j<3;j++)
light_data[VL_LIGHT_POS][j]=pos[j];
}
if (li->near_shadow_buffer) {
glActiveTexture(GL_TEXTURE7);
//if (read_depth_supported) {
glBindTexture(GL_TEXTURE_2D,li->near_shadow_buffer->depth);
//} else {
//}
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX,li->shadow_projection[0]);
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_TEXEL_SIZE,Vector2(1.0,1.0)/li->near_shadow_buffer->size);
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_TEXTURE,7);
if (shadow_filter==SHADOW_FILTER_ESM)
material_shader.set_uniform(MaterialShaderGLES2::ESM_MULTIPLIER,float(li->base->vars[VS::LIGHT_PARAM_SHADOW_ESM_MULTIPLIER]));
if (li->base->type==VS::LIGHT_DIRECTIONAL) {
if (li->base->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX2,li->shadow_projection[1]);
material_shader.set_uniform(MaterialShaderGLES2::LIGHT_PSSM_SPLIT,Vector3(li->shadow_split[0],li->shadow_split[1],li->shadow_split[2]));
} else if (li->base->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX2,li->shadow_projection[1]);
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX3,li->shadow_projection[2]);
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX4,li->shadow_projection[3]);
material_shader.set_uniform(MaterialShaderGLES2::LIGHT_PSSM_SPLIT,Vector3(li->shadow_split[0],li->shadow_split[1],li->shadow_split[2]));
}
//print_line("shadow split: "+rtos(li->shadow_split));
}
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_DARKENING,li->base->vars[VS::LIGHT_PARAM_SHADOW_DARKENING]);
//matrix
}
light_data[VL_LIGHT_ATTENUATION][0]=l->vars[VS::LIGHT_PARAM_ENERGY];
light_data[VL_LIGHT_ATTENUATION][1]=l->vars[VS::LIGHT_PARAM_RADIUS];
light_data[VL_LIGHT_ATTENUATION][2]=l->vars[VS::LIGHT_PARAM_ATTENUATION];
light_data[VL_LIGHT_SPOT_ATTENUATION][0]=Math::cos(Math::deg2rad(l->vars[VS::LIGHT_PARAM_SPOT_ANGLE]));
light_data[VL_LIGHT_SPOT_ATTENUATION][1]=l->vars[VS::LIGHT_PARAM_SPOT_ATTENUATION];
//int uf = material_shader.get_uniform(MaterialShaderGLES2::LIGHT_PARAMS);
for(int i=0;i<VL_LIGHT_MAX;i++) {
glUniform3f( material_shader.get_uniform(light_uniforms[i]),light_data[i][0],light_data[i][1],light_data[i][2]);
}
}
template<bool USE_NORMAL, bool USE_TANGENT>
void RasterizerGLES2::_skeleton_xform(const uint8_t * p_src_array, int p_src_stride, uint8_t * p_dst_array, int p_dst_stride, int p_elements,const uint8_t *p_src_bones, const uint8_t *p_src_weights, const Skeleton::Bone *p_bone_xforms) {
uint32_t basesize = 3;
if (USE_NORMAL)
basesize+=3;
if (USE_TANGENT)
basesize+=4;
uint32_t extra=(p_dst_stride-basesize*4);
for(int i=0;i<p_elements;i++) {
uint32_t ss = p_src_stride*i;
uint32_t ds = p_dst_stride*i;
const uint16_t *bi = (const uint16_t*)&p_src_bones[ss];
const float *bw = (const float *)&p_src_weights[ss];
const float *src_vec=(const float *)&p_src_array[ss];
float *dst_vec=(float*)&p_dst_array[ds];
dst_vec[0]=0.0;
dst_vec[1]=0.0;
dst_vec[2]=0.0;
//conditionals simply removed by optimizer
if (USE_NORMAL) {
dst_vec[3]=0.0;
dst_vec[4]=0.0;
dst_vec[5]=0.0;
if (USE_TANGENT) {
dst_vec[6]=0.0;
dst_vec[7]=0.0;
dst_vec[8]=0.0;
dst_vec[9]=src_vec[9];
}
} else {
if (USE_TANGENT) {
dst_vec[3]=0.0;
dst_vec[4]=0.0;
dst_vec[5]=0.0;
dst_vec[6]=src_vec[6];
}
}
#define _XFORM_BONE(m_idx)\
if (bw[m_idx]==0)\
goto end;\
p_bone_xforms[bi[m_idx]].transform_add_mul3(&src_vec[0],&dst_vec[0],bw[m_idx]);\
if (USE_NORMAL) {\
p_bone_xforms[bi[m_idx]].transform3_add_mul3(&src_vec[3],&dst_vec[3],bw[m_idx]);\
if (USE_TANGENT) {\
p_bone_xforms[bi[m_idx]].transform3_add_mul3(&src_vec[6],&dst_vec[6],bw[m_idx]);\
}\
} else {\
if (USE_TANGENT) {\
p_bone_xforms[bi[m_idx]].transform3_add_mul3(&src_vec[3],&dst_vec[3],bw[m_idx]);\
}\
}
_XFORM_BONE(0);
_XFORM_BONE(1);
_XFORM_BONE(2);
_XFORM_BONE(3);
end:
//copy extra stuff
const uint8_t *esp =(const uint8_t*) &src_vec[basesize];
uint8_t *edp =(uint8_t*) &dst_vec[basesize];
for(uint32_t j=0;j<extra;j++) {
edp[j]=esp[j];
}
}
}
Error RasterizerGLES2::_setup_geometry(const Geometry *p_geometry, const Material* p_material, const Skeleton *p_skeleton,const float *p_morphs) {
switch(p_geometry->type) {
case Geometry::GEOMETRY_MULTISURFACE:
case Geometry::GEOMETRY_SURFACE: {
const Surface *surf=NULL;
if (p_geometry->type==Geometry::GEOMETRY_SURFACE)
surf=static_cast<const Surface*>(p_geometry);
else if (p_geometry->type==Geometry::GEOMETRY_MULTISURFACE)
surf=static_cast<const MultiMeshSurface*>(p_geometry)->surface;
if (surf->format != surf->configured_format) {
if (OS::get_singleton()->is_stdout_verbose()) {
print_line("has format: "+itos(surf->format));
print_line("configured format: "+itos(surf->configured_format));
}
ERR_EXPLAIN("Missing arrays (not set) in surface");
}
ERR_FAIL_COND_V( surf->format != surf->configured_format, ERR_UNCONFIGURED );
uint8_t *base=0;
int stride=surf->stride;
bool use_VBO = (surf->array_local==0);
_setup_geometry_vinfo=surf->array_len;
bool skeleton_valid = p_skeleton && (surf->format&VS::ARRAY_FORMAT_BONES) && (surf->format&VS::ARRAY_FORMAT_WEIGHTS) && !p_skeleton->bones.empty() && p_skeleton->bones.size() > surf->max_bone;
/*
if (surf->packed) {
float scales[4]={surf->vertex_scale,surf->uv_scale,surf->uv2_scale,0.0};
glVertexAttrib4fv( 7, scales );
} else {
glVertexAttrib4f( 7, 1,1,1,1 );
}*/
if (!use_VBO) {
DEBUG_TEST_ERROR("Draw NO VBO");
base = surf->array_local;
glBindBuffer(GL_ARRAY_BUFFER, 0);
bool can_copy_to_local=surf->local_stride * surf->array_len <= skinned_buffer_size;
if (!can_copy_to_local)
skeleton_valid=false;
/* compute morphs */
if (p_morphs && surf->morph_target_count && can_copy_to_local) {
base = skinned_buffer;
stride=surf->local_stride;
//copy all first
float coef=1.0;
for(int i=0;i<surf->morph_target_count;i++) {
if (surf->mesh->morph_target_mode==VS::MORPH_MODE_NORMALIZED)
coef-=p_morphs[i];
ERR_FAIL_COND_V( surf->morph_format != surf->morph_targets_local[i].configured_format, ERR_INVALID_DATA );
}
for(int i=0;i<VS::ARRAY_MAX-1;i++) {
const Surface::ArrayData& ad=surf->array[i];
if (ad.size==0)
continue;
int ofs = ad.ofs;
int src_stride=surf->stride;
int dst_stride=surf->local_stride;
int count = surf->array_len;
switch(i) {
case VS::ARRAY_VERTEX:
case VS::ARRAY_NORMAL:
case VS::ARRAY_TANGENT:
{
for(int k=0;k<count;k++) {
const float *src = (const float*)&surf->array_local[ofs+k*src_stride];
float *dst = (float*)&base[ofs+k*dst_stride];
dst[0]= src[0]*coef;
dst[1]= src[1]*coef;
dst[2]= src[2]*coef;
} break;
} break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2: {
for(int k=0;k<count;k++) {
const float *src = (const float*)&surf->array_local[ofs+k*src_stride];
float *dst = (float*)&base[ofs+k*dst_stride];
dst[0]= src[0]*coef;
dst[1]= src[1]*coef;
} break;
} break;
}
}
for(int j=0;j<surf->morph_target_count;j++) {
for(int i=0;i<VS::ARRAY_MAX-1;i++) {
const Surface::ArrayData& ad=surf->array[i];
if (ad.size==0)
continue;
int ofs = ad.ofs;
int dst_stride=surf->local_stride;
int count = surf->array_len;
const uint8_t *morph=surf->morph_targets_local[j].array;
float w = p_morphs[j];
switch(i) {
case VS::ARRAY_VERTEX:
case VS::ARRAY_NORMAL:
case VS::ARRAY_TANGENT:
{
for(int k=0;k<count;k++) {
const float *src_morph = (const float*)&morph[ofs+k*dst_stride];
float *dst = (float*)&base[ofs+k*dst_stride];
dst[0]+= src_morph[0]*w;
dst[1]+= src_morph[1]*w;
dst[2]+= src_morph[2]*w;
} break;
} break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2: {
for(int k=0;k<count;k++) {
const float *src_morph = (const float*)&morph[ofs+k*dst_stride];
float *dst = (float*)&base[ofs+k*dst_stride];
dst[0]+= src_morph[0]*w;
dst[1]+= src_morph[1]*w;
} break;
} break;
}
}
}
#if 0
{
//in-place skeleton tansformation, only used for morphs, slow.
//should uptimize some day....
const uint8_t *src_weights=&surf->array_local[surf->array[VS::ARRAY_WEIGHTS].ofs];
const uint8_t *src_bones=&surf->array_local[surf->array[VS::ARRAY_BONES].ofs];
int src_stride = surf->stride;
int count = surf->array_len;
const Transform *skeleton = &p_skeleton->bones[0];
for(int i=0;i<VS::ARRAY_MAX-1;i++) {
const Surface::ArrayData& ad=surf->array[i];
if (ad.size==0)
continue;
int ofs = ad.ofs;
switch(i) {
case VS::ARRAY_VERTEX: {
for(int k=0;k<count;k++) {
float *ptr= (float*)&base[ofs+k*stride];
const GLfloat* weights = reinterpret_cast<const GLfloat*>(&src_weights[k*src_stride]);
const GLfloat *bones = reinterpret_cast<const GLfloat*>(&src_bones[k*src_stride]);
Vector3 src( ptr[0], ptr[1], ptr[2] );
Vector3 dst;
for(int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
float w = weights[j];
if (w==0)
break;
//print_line("accum "+itos(i)+" += "+rtos(Math::ftoi(bones[j]))+" * "+skeleton[ Math::ftoi(bones[j]) ]+" * "+rtos(w));
int bidx = Math::fast_ftoi(bones[j]);
dst+=skeleton[ bidx ].xform(src) * w;
}
ptr[0]=dst.x;
ptr[1]=dst.y;
ptr[2]=dst.z;
} break;
} break;
case VS::ARRAY_NORMAL:
case VS::ARRAY_TANGENT: {
for(int k=0;k<count;k++) {
float *ptr= (float*)&base[ofs+k*stride];
const GLfloat* weights = reinterpret_cast<const GLfloat*>(&src_weights[k*src_stride]);
const GLfloat *bones = reinterpret_cast<const GLfloat*>(&src_bones[k*src_stride]);
Vector3 src( ptr[0], ptr[1], ptr[2] );
Vector3 dst;
for(int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
float w = weights[j];
if (w==0)
break;
//print_line("accum "+itos(i)+" += "+rtos(Math::ftoi(bones[j]))+" * "+skeleton[ Math::ftoi(bones[j]) ]+" * "+rtos(w));
int bidx=Math::fast_ftoi(bones[j]);
dst+=skeleton[ bidx ].basis.xform(src) * w;
}
ptr[0]=dst.x;
ptr[1]=dst.y;
ptr[2]=dst.z;
} break;
} break;
}
}
}
#endif
} else if (skeleton_valid) {
base = skinned_buffer;
//copy stuff and get it ready for the skeleton
int src_stride = surf->stride;
int dst_stride = surf->stride - ( surf->array[VS::ARRAY_BONES].size + surf->array[VS::ARRAY_WEIGHTS].size );
const uint8_t *src_weights=&surf->array_local[surf->array[VS::ARRAY_WEIGHTS].ofs];
const uint8_t *src_bones=&surf->array_local[surf->array[VS::ARRAY_BONES].ofs];
const Skeleton::Bone *skeleton = &p_skeleton->bones[0];
if (surf->format&VS::ARRAY_FORMAT_NORMAL && surf->format&VS::ARRAY_FORMAT_TANGENT)
_skeleton_xform<true,true>(surf->array_local,surf->stride,base,dst_stride,surf->array_len,src_bones,src_weights,skeleton);
else if (surf->format&(VS::ARRAY_FORMAT_NORMAL))
_skeleton_xform<true,false>(surf->array_local,surf->stride,base,dst_stride,surf->array_len,src_bones,src_weights,skeleton);
else if (surf->format&(VS::ARRAY_FORMAT_TANGENT))
_skeleton_xform<false,true>(surf->array_local,surf->stride,base,dst_stride,surf->array_len,src_bones,src_weights,skeleton);
else
_skeleton_xform<false,false>(surf->array_local,surf->stride,base,dst_stride,surf->array_len,src_bones,src_weights,skeleton);
stride=dst_stride;
}
} else {
glBindBuffer(GL_ARRAY_BUFFER, surf->vertex_id);
};
for (int i=0;i<(VS::ARRAY_MAX-1);i++) {
const Surface::ArrayData& ad=surf->array[i];
// if (!gl_texcoord_shader[i])
// continue;
if (ad.size==0 || ! ad.bind) {
glDisableVertexAttribArray(i);
if (i == VS::ARRAY_COLOR) {
_set_color_attrib(Color(1, 1, 1,1));
};
//print_line("disable: "+itos(i));
continue; // this one is disabled.
}
glEnableVertexAttribArray(i);
// print_line("set: "+itos(i)+" - count: "+itos(ad.count)+" datatype: "+itos(ad.datatype)+" ofs: "+itos(ad.ofs)+" stride: "+itos(stride)+" total len: "+itos(surf->array_len));
glVertexAttribPointer(i, ad.count, ad.datatype, ad.normalize, stride, &base[ad.ofs]);
}
#ifdef GLEW_ENABLED
//"desktop" opengl needs this.
if (surf->primitive==VS::PRIMITIVE_POINTS) {
glEnable(GL_POINT_SPRITE);
glEnable(GL_VERTEX_PROGRAM_POINT_SIZE);
} else {
glDisable(GL_POINT_SPRITE);
glDisable(GL_VERTEX_PROGRAM_POINT_SIZE);
}
#endif
} break;
default: break;
};
return OK;
};
static const GLenum gl_primitive[]={
GL_POINTS,
GL_LINES,
GL_LINE_STRIP,
GL_LINE_LOOP,
GL_TRIANGLES,
GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN
};
void RasterizerGLES2::_render(const Geometry *p_geometry,const Material *p_material, const Skeleton* p_skeleton, const GeometryOwner *p_owner,const Transform& p_xform) {
_rinfo.object_count++;
switch(p_geometry->type) {
case Geometry::GEOMETRY_SURFACE: {
Surface *s = (Surface*)p_geometry;
_rinfo.vertex_count+=s->array_len;
if (s->index_array_len>0) {
if (s->index_array_local) {
//print_line("LOCAL F: "+itos(s->format)+" C: "+itos(s->index_array_len)+" VC: "+itos(s->array_len));
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);
glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len>(1<<16))?GL_UNSIGNED_INT:GL_UNSIGNED_SHORT, s->index_array_local);
} else {
// print_line("indices: "+itos(s->index_array_local) );
//print_line("VBO F: "+itos(s->format)+" C: "+itos(s->index_array_len)+" VC: "+itos(s->array_len));
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,s->index_id);
glDrawElements(gl_primitive[s->primitive],s->index_array_len, (s->array_len>(1<<16))?GL_UNSIGNED_INT:GL_UNSIGNED_SHORT,0);
}
} else {
glDrawArrays(gl_primitive[s->primitive],0,s->array_len);
};
_rinfo.draw_calls++;
} break;
case Geometry::GEOMETRY_MULTISURFACE: {
material_shader.bind_uniforms();
Surface *s = static_cast<const MultiMeshSurface*>(p_geometry)->surface;
const MultiMesh *mm = static_cast<const MultiMesh*>(p_owner);
int element_count=mm->elements.size();
if (element_count==0)
return;
const MultiMesh::Element *elements=&mm->elements[0];
_rinfo.vertex_count+=s->array_len*element_count;
_rinfo.draw_calls+=element_count;
if (use_texture_instancing) {
//this is probably the fastest all around way if vertex texture fetch is supported
float twd=(1.0/mm->tw)*4.0;
float thd=1.0/mm->th;
float parm[3]={0.0,01.0,(1.0f/mm->tw)};
glActiveTexture(GL_TEXTURE6);
glDisableVertexAttribArray(6);
glBindTexture(GL_TEXTURE_2D,mm->tex_id);
if (s->index_array_len>0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,s->index_id);
for(int i=0;i<element_count;i++) {
parm[0]=(i%(mm->tw>>2))*twd;
parm[1]=(i/(mm->tw>>2))*thd;
glVertexAttrib3fv(6,parm);
glDrawElements(gl_primitive[s->primitive],s->index_array_len, (s->array_len>(1<<16))?GL_UNSIGNED_INT:GL_UNSIGNED_SHORT,0);
}
} else {
for(int i=0;i<element_count;i++) {
//parm[0]=(i%(mm->tw>>2))*twd;
//parm[1]=(i/(mm->tw>>2))*thd;
glVertexAttrib3fv(6,parm);
glDrawArrays(gl_primitive[s->primitive],0,s->array_len);
}
};
} else if (use_attribute_instancing) {
//if not, using atributes instead of uniforms can be really fast in forward rendering architectures
if (s->index_array_len>0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,s->index_id);
for(int i=0;i<element_count;i++) {
glVertexAttrib4fv(8,&elements[i].matrix[0]);
glVertexAttrib4fv(9,&elements[i].matrix[4]);
glVertexAttrib4fv(10,&elements[i].matrix[8]);
glVertexAttrib4fv(11,&elements[i].matrix[12]);
glDrawElements(gl_primitive[s->primitive],s->index_array_len, (s->array_len>(1<<16))?GL_UNSIGNED_INT:GL_UNSIGNED_SHORT,0);
}
} else {
for(int i=0;i<element_count;i++) {
glVertexAttrib4fv(8,&elements[i].matrix[0]);
glVertexAttrib4fv(9,&elements[i].matrix[4]);
glVertexAttrib4fv(10,&elements[i].matrix[8]);
glVertexAttrib4fv(11,&elements[i].matrix[12]);
glDrawArrays(gl_primitive[s->primitive],0,s->array_len);
}
};
} else {
//nothing to do, slow path (hope no hardware has to use it... but you never know)
if (s->index_array_len>0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,s->index_id);
for(int i=0;i<element_count;i++) {
glUniformMatrix4fv(material_shader.get_uniform_location(MaterialShaderGLES2::INSTANCE_TRANSFORM), 1, false, elements[i].matrix);
glDrawElements(gl_primitive[s->primitive],s->index_array_len, (s->array_len>(1<<16))?GL_UNSIGNED_INT:GL_UNSIGNED_SHORT,0);
}
} else {
for(int i=0;i<element_count;i++) {
glUniformMatrix4fv(material_shader.get_uniform_location(MaterialShaderGLES2::INSTANCE_TRANSFORM), 1, false, elements[i].matrix);
glDrawArrays(gl_primitive[s->primitive],0,s->array_len);
}
};
}
} break;
case Geometry::GEOMETRY_IMMEDIATE: {
bool restore_tex=false;
const Immediate *im = static_cast<const Immediate*>( p_geometry );
if (im->building) {
return;
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
for(const List<Immediate::Chunk>::Element *E=im->chunks.front();E;E=E->next()) {
const Immediate::Chunk &c=E->get();
if (c.vertices.empty()) {
continue;
}
for(int i=0;i<c.vertices.size();i++)
if (c.texture.is_valid() && texture_owner.owns(c.texture)) {
const Texture *t = texture_owner.get(c.texture);
glActiveTexture(GL_TEXTURE0+tc0_idx);
glBindTexture(t->target,t->tex_id);
restore_tex=true;
} else if (restore_tex) {
glActiveTexture(GL_TEXTURE0+tc0_idx);
glBindTexture(GL_TEXTURE_2D,tc0_id_cache);
restore_tex=false;
}
if (!c.normals.empty()) {
glEnableVertexAttribArray(VS::ARRAY_NORMAL);
glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, false,sizeof(Vector3),c.normals.ptr());
} else {
glDisableVertexAttribArray(VS::ARRAY_NORMAL);
}
if (!c.tangents.empty()) {
glEnableVertexAttribArray(VS::ARRAY_TANGENT);
glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, false,sizeof(Plane),c.tangents.ptr());
} else {
glDisableVertexAttribArray(VS::ARRAY_TANGENT);
}
if (!c.colors.empty()) {
glEnableVertexAttribArray(VS::ARRAY_COLOR);
glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false,sizeof(Color),c.colors.ptr());
} else {
glDisableVertexAttribArray(VS::ARRAY_COLOR);
_set_color_attrib(Color(1, 1, 1,1));
}
if (!c.uvs.empty()) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false,sizeof(Vector2),c.uvs.ptr());
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
}
if (!c.uvs2.empty()) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV2);
glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, false,sizeof(Vector2),c.uvs2.ptr());
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV2);
}
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, false,sizeof(Vector3),c.vertices.ptr());
glDrawArrays(gl_primitive[c.primitive],0,c.vertices.size());
}
if (restore_tex) {
glActiveTexture(GL_TEXTURE0+tc0_idx);
glBindTexture(GL_TEXTURE_2D,tc0_id_cache);
restore_tex=false;
}
} break;
case Geometry::GEOMETRY_PARTICLES: {
//print_line("particulinas");
const Particles *particles = static_cast<const Particles*>( p_geometry );
ERR_FAIL_COND(!p_owner);
ParticlesInstance *particles_instance = (ParticlesInstance*)p_owner;
ParticleSystemProcessSW &pp = particles_instance->particles_process;
float td = time_delta; //MIN(time_delta,1.0/10.0);
pp.process(&particles->data,particles_instance->transform,td);
ERR_EXPLAIN("A parameter in the particle system is not correct.");
ERR_FAIL_COND(!pp.valid);
Transform camera;
if (shadow)
camera=shadow->transform;
else
camera=camera_transform;
particle_draw_info.prepare(&particles->data,&pp,particles_instance->transform,camera);
_rinfo.draw_calls+=particles->data.amount;
_rinfo.vertex_count+=4*particles->data.amount;
{
static const Vector3 points[4]={
Vector3(-1.0,1.0,0),
Vector3(1.0,1.0,0),
Vector3(1.0,-1.0,0),
Vector3(-1.0,-1.0,0)
};
static const Vector3 uvs[4]={
Vector3(0.0,0.0,0.0),
Vector3(1.0,0.0,0.0),
Vector3(1.0,1.0,0.0),
Vector3(0,1.0,0.0)
};
static const Vector3 normals[4]={
Vector3(0,0,1),
Vector3(0,0,1),
Vector3(0,0,1),
Vector3(0,0,1)
};
static const Plane tangents[4]={
Plane(Vector3(1,0,0),0),
Plane(Vector3(1,0,0),0),
Plane(Vector3(1,0,0),0),
Plane(Vector3(1,0,0),0)
};
for(int i=0;i<particles->data.amount;i++) {
ParticleSystemDrawInfoSW::ParticleDrawInfo &pinfo=*particle_draw_info.draw_info_order[i];
if (!pinfo.data->active)
continue;
material_shader.set_uniform(MaterialShaderGLES2::WORLD_TRANSFORM, pinfo.transform);
_set_color_attrib(pinfo.color);
_draw_primitive(4,points,normals,NULL,uvs,tangents);
}
}
} break;
default: break;
};
};
void RasterizerGLES2::_setup_shader_params(const Material *p_material) {
int idx=0;
int tex_idx=0;
#if 0
for(Map<StringName,Variant>::Element *E=p_material->shader_cache->params.front();E;E=E->next(),idx++) {
Variant v; //
v = E->get();
const Map<StringName,Variant>::Element *F=p_material->shader_params.find(E->key());
if (F)
v=F->get();
switch(v.get_type() ) {
case Variant::OBJECT:
case Variant::_RID: {
RID tex=v;
if (!tex.is_valid())
break;
Texture *texture = texture_owner.get(tex);
if (!texture)
break;
glUniform1i( material_shader.get_custom_uniform_location(idx), tex_idx);
glActiveTexture(tex_idx);
glBindTexture(texture->target,texture->tex_id);
} break;
case Variant::COLOR: {
Color c=v;
material_shader.set_custom_uniform(idx,Vector3(c.r,c.g,c.b));
} break;
default: {
material_shader.set_custom_uniform(idx,v);
} break;
}
}
#endif
}
void RasterizerGLES2::_setup_skeleton(const Skeleton *p_skeleton) {
material_shader.set_conditional(MaterialShaderGLES2::USE_SKELETON,p_skeleton!=NULL);
if (p_skeleton && p_skeleton->tex_id) {
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D,p_skeleton->tex_id);
}
}
void RasterizerGLES2::_render_list_forward(RenderList *p_render_list,const Transform& p_view_transform, const Transform& p_view_transform_inverse,const CameraMatrix& p_projection,bool p_reverse_cull,bool p_fragment_light,bool p_alpha_pass) {
if (current_rt && current_rt_vflip) {
p_reverse_cull=!p_reverse_cull;
glFrontFace(GL_CCW);
}
const Material *prev_material=NULL;
uint16_t prev_light=0x777E;
const Geometry *prev_geometry_cmp=NULL;
uint8_t prev_light_type=0xEF;
const ParamOverrideMap* prev_overrides=NULL; // make it diferent than NULL
const Skeleton *prev_skeleton =NULL;
uint8_t prev_sort_flags=0xFF;
const BakedLightData *prev_baked_light=NULL;
RID prev_baked_light_texture;
Geometry::Type prev_geometry_type=Geometry::GEOMETRY_INVALID;
material_shader.set_conditional(MaterialShaderGLES2::USE_VERTEX_LIGHTING,!shadow && !p_fragment_light);
material_shader.set_conditional(MaterialShaderGLES2::USE_FRAGMENT_LIGHTING,!shadow && p_fragment_light);
material_shader.set_conditional(MaterialShaderGLES2::USE_SKELETON,false);
if (shadow) {
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_DIRECTIONAL,false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_OMNI,false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_SPOT,false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_SHADOW,false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM,false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM4,false);
material_shader.set_conditional(MaterialShaderGLES2::SHADELESS,false);
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_OCTREE,false);
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_LIGHTMAP,false);
// material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_TEXTURE,false);
}
bool stores_glow = !shadow && (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) && !p_alpha_pass;
bool prev_blend=false;
glDisable(GL_BLEND);
for (int i=0;i<p_render_list->element_count;i++) {
RenderList::Element *e = p_render_list->elements[i];
const Material *material = e->material;
uint16_t light = e->light;
uint8_t light_type = e->light_type;
uint8_t sort_flags= e->sort_flags;
const Skeleton *skeleton = e->skeleton;
const Geometry *geometry_cmp = e->geometry_cmp;
const BakedLightData *baked_light = e->instance->baked_light;
bool rebind=false;
bool bind_baked_light_octree=false;
bool bind_baked_lightmap=false;
bool additive=false;
if (!shadow) {
if (texscreen_used && !texscreen_copied && material->shader_cache && material->shader_cache->valid && material->shader_cache->has_texscreen) {
texscreen_copied=true;
_copy_to_texscreen();
//force reset state
prev_material=NULL;
prev_light=0x777E;
prev_geometry_cmp=NULL;
prev_light_type=0xEF;
prev_overrides=NULL; // make it diferent than NULL
prev_skeleton =NULL;
prev_sort_flags=0xFF;
prev_geometry_type=Geometry::GEOMETRY_INVALID;
glEnable(GL_BLEND);
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
}
if (light_type!=prev_light_type) {
if (material->flags[VS::MATERIAL_FLAG_UNSHADED]) {
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_DIRECTIONAL,false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_OMNI,false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_SPOT,false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_SHADOW,false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM,false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM4,false);
material_shader.set_conditional(MaterialShaderGLES2::SHADELESS,true);
} else {
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_DIRECTIONAL,(light_type&0x3)==VS::LIGHT_DIRECTIONAL);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_OMNI,(light_type&0x3)==VS::LIGHT_OMNI);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_SPOT,(light_type&0x3)==VS::LIGHT_SPOT);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_SHADOW,(light_type&0x8));
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM,(light_type&0x10));
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM4,(light_type&0x20));
material_shader.set_conditional(MaterialShaderGLES2::SHADELESS,false);
}
rebind=true;
}
if (!*e->additive_ptr) {
additive=false;
*e->additive_ptr=true;
} else {
additive=true;
}
if (stores_glow)
material_shader.set_conditional(MaterialShaderGLES2::USE_GLOW,!additive);
bool desired_blend=false;
VS::MaterialBlendMode desired_blend_mode=VS::MATERIAL_BLEND_MODE_MIX;
if (additive) {
desired_blend=true;
desired_blend_mode=VS::MATERIAL_BLEND_MODE_ADD;
} else {
desired_blend=p_alpha_pass;
desired_blend_mode=material->blend_mode;
}
if (prev_blend!=desired_blend) {
if (desired_blend) {
glEnable(GL_BLEND);
glColorMask(1,1,1,0);
} else {
glDisable(GL_BLEND);
glColorMask(1,1,1,1);
}
prev_blend=desired_blend;
}
if (desired_blend && desired_blend_mode!=current_blend_mode) {
switch(desired_blend_mode) {
case VS::MATERIAL_BLEND_MODE_MIX: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
} break;
case VS::MATERIAL_BLEND_MODE_ADD: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(p_alpha_pass?GL_SRC_ALPHA:GL_ONE,GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_SUB: {
glBlendEquation(GL_FUNC_SUBTRACT);
glBlendFunc(GL_SRC_ALPHA,GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_MUL: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
} break;
}
current_blend_mode=desired_blend_mode;
}
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_OCTREE,false);
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_LIGHTMAP,false);
if (!additive && baked_light) {
if (baked_light->mode==VS::BAKED_LIGHT_OCTREE && baked_light->octree_texture.is_valid() && e->instance->baked_light_octree_xform) {
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_OCTREE,true);
bind_baked_light_octree=true;
if (prev_baked_light!=baked_light) {
Texture *tex=texture_owner.get(baked_light->octree_texture);
if (tex) {
glActiveTexture(GL_TEXTURE5);
glBindTexture(tex->target,tex->tex_id); //bind the texture
}
}
} else if (baked_light->mode==VS::BAKED_LIGHT_LIGHTMAPS) {
int lightmap_idx = e->instance->baked_lightmap_id;
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_LIGHTMAP,false);
bind_baked_lightmap=false;
if (baked_light->lightmaps.has(lightmap_idx)) {
RID texid = baked_light->lightmaps[lightmap_idx];
if (prev_baked_light!=baked_light || texid!=prev_baked_light_texture) {
Texture *tex = texture_owner.get(texid);
if (tex) {
glActiveTexture(GL_TEXTURE5);
glBindTexture(tex->target,tex->tex_id); //bind the texture
}
prev_baked_light_texture=texid;
}
if (texid.is_valid()) {
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_LIGHTMAP,true);
bind_baked_lightmap=true;
}
}
}
}
if (int(prev_baked_light!=NULL) ^ int(baked_light!=NULL)) {
rebind=true;
}
}
if (sort_flags!=prev_sort_flags) {
if (sort_flags&RenderList::SORT_FLAG_INSTANCING) {
material_shader.set_conditional(MaterialShaderGLES2::USE_UNIFORM_INSTANCING,!use_texture_instancing && !use_attribute_instancing);
material_shader.set_conditional(MaterialShaderGLES2::USE_ATTRIBUTE_INSTANCING,use_attribute_instancing);
material_shader.set_conditional(MaterialShaderGLES2::USE_TEXTURE_INSTANCING,use_texture_instancing);
} else {
material_shader.set_conditional(MaterialShaderGLES2::USE_UNIFORM_INSTANCING,false);
material_shader.set_conditional(MaterialShaderGLES2::USE_ATTRIBUTE_INSTANCING,false);
material_shader.set_conditional(MaterialShaderGLES2::USE_TEXTURE_INSTANCING,false);
}
rebind=true;
}
if (use_hw_skeleton_xform && skeleton!=prev_skeleton) {
if (!prev_skeleton || !skeleton)
rebind=true; //went from skeleton <-> no skeleton, needs rebind
_setup_skeleton(skeleton);
}
if (material!=prev_material || rebind) {
rebind = _setup_material(e->geometry,material,additive,!p_alpha_pass);
DEBUG_TEST_ERROR("Setup material");
_rinfo.mat_change_count++;
//_setup_material_overrides(e->material,NULL,material_overrides);
//_setup_material_skeleton(material,skeleton);
} else {
if (prev_skeleton!=skeleton) {
//_setup_material_skeleton(material,skeleton);
};
}
if (geometry_cmp!=prev_geometry_cmp || prev_skeleton!=skeleton) {
_setup_geometry(e->geometry, material,e->skeleton,e->instance->morph_values.ptr());
_rinfo.surface_count++;
DEBUG_TEST_ERROR("Setup geometry");
};
if (i==0 || light!=prev_light || rebind) {
if (e->light!=0xFFFF) {
_setup_light(e->light);
}
}
if (bind_baked_light_octree && (baked_light!=prev_baked_light || rebind)) {
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_INVERSE_TRANSFORM, *e->instance->baked_light_octree_xform);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LATTICE_SIZE, baked_light->octree_lattice_size);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LATTICE_DIVIDE, baked_light->octree_lattice_divide);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_STEPS, baked_light->octree_steps);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_TEX,5);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_MULTIPLIER,baked_light->texture_multiplier);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_PIX_SIZE,baked_light->octree_tex_pixel_size);
}
if (bind_baked_lightmap && (baked_light!=prev_baked_light || rebind)) {
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_LIGHTMAP, 5);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_LIGHTMAP_MULTIPLIER, baked_light->lightmap_multiplier);
}
_set_cull(e->mirror,p_reverse_cull);
if (i==0 || rebind) {
material_shader.set_uniform(MaterialShaderGLES2::CAMERA_INVERSE_TRANSFORM, p_view_transform_inverse);
material_shader.set_uniform(MaterialShaderGLES2::PROJECTION_TRANSFORM, p_projection);
if (skeleton && use_hw_skeleton_xform) {
//material_shader.set_uniform(MaterialShaderGLES2::SKELETON_MATRICES,6);
material_shader.set_uniform(MaterialShaderGLES2::SKELTEX_PIXEL_SIZE,skeleton->pixel_size);
}
if (!shadow) {
if (!additive && current_env && current_env->fx_enabled[VS::ENV_FX_AMBIENT_LIGHT]) {
Color ambcolor = current_env->fx_param[VS::ENV_FX_PARAM_AMBIENT_LIGHT_COLOR];
float ambnrg = current_env->fx_param[VS::ENV_FX_PARAM_AMBIENT_LIGHT_ENERGY];
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_LIGHT,Vector3(ambcolor.r*ambnrg,ambcolor.g*ambnrg,ambcolor.b*ambnrg));
} else {
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_LIGHT,Vector3());
}
}
_rinfo.shader_change_count++;
}
if (e->instance->billboard || e->instance->depth_scale) {
Transform xf=e->instance->transform;
if (e->instance->depth_scale) {
if (p_projection.matrix[3][3]) {
//orthogonal matrix, try to do about the same
//with viewport size
//real_t w = Math::abs( 1.0/(2.0*(p_projection.matrix[0][0])) );
real_t h = Math::abs( 1.0/(2.0*p_projection.matrix[1][1]) );
float sc = (h*2.0); //consistent with Y-fov
xf.basis.scale( Vector3(sc,sc,sc));
} else {
//just scale by depth
real_t sc = -camera_plane.distance_to(xf.origin);
xf.basis.scale( Vector3(sc,sc,sc));
}
}
if (e->instance->billboard) {
Vector3 scale = xf.basis.get_scale();
xf.set_look_at(xf.origin,xf.origin+p_view_transform.get_basis().get_axis(2),p_view_transform.get_basis().get_axis(1));
xf.basis.scale(scale);
}
material_shader.set_uniform(MaterialShaderGLES2::WORLD_TRANSFORM, xf);
} else {
material_shader.set_uniform(MaterialShaderGLES2::WORLD_TRANSFORM, e->instance->transform);
}
material_shader.set_uniform(MaterialShaderGLES2::NORMAL_MULT, e->mirror?-1.0:1.0);
material_shader.set_uniform(MaterialShaderGLES2::CONST_LIGHT_MULT,additive?0.0:1.0);
_render(e->geometry, material, skeleton,e->owner,e->instance->transform);
DEBUG_TEST_ERROR("Rendering");
prev_material=material;
prev_skeleton=skeleton;
prev_geometry_cmp=geometry_cmp;
prev_light=e->light;
prev_light_type=e->light_type;
prev_sort_flags=sort_flags;
prev_baked_light=baked_light;
// prev_geometry_type=geometry->type;
}
//print_line("shaderchanges: "+itos(p_alpha_pass)+": "+itos(_rinfo.shader_change_count));
if (current_rt && current_rt_vflip) {
glFrontFace(GL_CW);
}
};
void RasterizerGLES2::_copy_to_texscreen() {
//what am i missing?
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
#ifdef GLEW_ENABLED
glDisable(GL_POINT_SPRITE);
glDisable(GL_VERTEX_PROGRAM_POINT_SIZE);
#endif
glDisable(GL_BLEND);
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
//glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
glBindBuffer(GL_ARRAY_BUFFER,0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);
for(int i=0;i<VS::ARRAY_MAX;i++) {
glDisableVertexAttribArray(i);
}
glActiveTexture(GL_TEXTURE0);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.sample_fbo);
glActiveTexture(GL_TEXTURE0);
glBindTexture( GL_TEXTURE_2D, framebuffer.color );
copy_shader.bind();
_copy_screen_quad();
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo);
}
void RasterizerGLES2::_copy_screen_quad() {
Vector2 dst_pos[4]={
Vector2(-1, 1),
Vector2( 1, 1),
Vector2( 1,-1),
Vector2(-1,-1)
};
Size2 uvscale(
(viewport.width / float(framebuffer.scale)) / framebuffer.width,
(viewport.height / float(framebuffer.scale)) / framebuffer.height
);
Vector2 src_uv[4]={
Vector2( 0, 1)*uvscale,
Vector2( 1, 1)*uvscale,
Vector2( 1, 0)*uvscale,
Vector2( 0, 0)*uvscale
};
Vector2 full_uv[4]={
Vector2( 0, 1),
Vector2( 1, 1),
Vector2( 1, 0),
Vector2( 0, 0)
};
_draw_gui_primitive2(4,dst_pos,NULL,src_uv,full_uv);
}
void RasterizerGLES2::_process_glow_bloom() {
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[0].fbo);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, framebuffer.color );
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_COPY,true);
if (current_vd && current_env->fx_enabled[VS::ENV_FX_HDR]) {
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR,true);
}
copy_shader.bind();
copy_shader.set_uniform(CopyShaderGLES2::BLOOM,float(current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLOOM]));
copy_shader.set_uniform(CopyShaderGLES2::BLOOM_TRESHOLD,float(current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLOOM_TRESHOLD]));
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE),0);
if (current_vd && current_env->fx_enabled[VS::ENV_FX_HDR]) {
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, current_vd->lum_color );
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::HDR_SOURCE),2);
copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_EXPOSURE,float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_EXPOSURE]));
copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_WHITE,float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_WHITE]));
// copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_WHITE,1.0);
copy_shader.set_uniform(CopyShaderGLES2::HDR_GLOW_TRESHOLD,float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_GLOW_TRESHOLD]));
copy_shader.set_uniform(CopyShaderGLES2::HDR_GLOW_SCALE,float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_GLOW_SCALE]));
glActiveTexture(GL_TEXTURE0);
}
glViewport( 0, 0, framebuffer.blur_size, framebuffer.blur_size );
_copy_screen_quad();
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_COPY,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR,false);
int passes = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_PASSES];
Vector2 psize(1.0/framebuffer.blur_size,1.0/framebuffer.blur_size);
float pscale = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_SCALE];
float pmag = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_STRENGTH];
for(int i=0;i<passes;i++) {
static const Vector2 src_uv[4]={
Vector2( 0, 1),
Vector2( 1, 1),
Vector2( 1, 0),
Vector2( 0, 0)
};
static const Vector2 dst_pos[4]={
Vector2(-1, 1),
Vector2( 1, 1),
Vector2( 1,-1),
Vector2(-1,-1)
};
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[1].fbo);
glBindTexture(GL_TEXTURE_2D, framebuffer.blur[0].color );
copy_shader.set_conditional(CopyShaderGLES2::BLUR_V_PASS,true);
copy_shader.set_conditional(CopyShaderGLES2::BLUR_H_PASS,false);
copy_shader.bind();
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE,psize);
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE,pscale);
copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE,pmag);
_draw_gui_primitive(4,dst_pos,NULL,src_uv);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[0].fbo);
glBindTexture(GL_TEXTURE_2D, framebuffer.blur[1].color );
copy_shader.set_conditional(CopyShaderGLES2::BLUR_V_PASS,false);
copy_shader.set_conditional(CopyShaderGLES2::BLUR_H_PASS,true);
copy_shader.bind();
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE,psize);
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE,pscale);
copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE,pmag);
_draw_gui_primitive(4,dst_pos,NULL,src_uv);
}
copy_shader.set_conditional(CopyShaderGLES2::BLUR_V_PASS,false);
copy_shader.set_conditional(CopyShaderGLES2::BLUR_H_PASS,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR,false);
//blur it
}
void RasterizerGLES2::_process_hdr() {
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.luminance[0].fbo);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, framebuffer.color );
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_COPY,true);
copy_shader.bind();
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE),0);
glViewport( 0, 0, framebuffer.luminance[0].size, framebuffer.luminance[0].size );
_copy_screen_quad();
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_COPY,false);
// int passes = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_PASSES];
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_REDUCE,true);
copy_shader.bind();
for(int i=1;i<framebuffer.luminance.size();i++) {
static const Vector2 src_uv[4]={
Vector2( 0, 1),
Vector2( 1, 1),
Vector2( 1, 0),
Vector2( 0, 0)
};
static const Vector2 dst_pos[4]={
Vector2(-1, 1),
Vector2( 1, 1),
Vector2( 1,-1),
Vector2(-1,-1)
};
Vector2 psize(1.0/framebuffer.luminance[i-1].size,1.0/framebuffer.luminance[i-1].size);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.luminance[i].fbo);
glBindTexture(GL_TEXTURE_2D, framebuffer.luminance[i-1].color );
glViewport( 0, 0, framebuffer.luminance[i].size, framebuffer.luminance[i].size );
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE),0);
if (framebuffer.luminance[i].size==1) {
//last step
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_STORE,true);
copy_shader.bind();
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, current_vd->lum_color );
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE_VD_LUM),1);
copy_shader.set_uniform(CopyShaderGLES2::HDR_TIME_DELTA,time_delta);
copy_shader.set_uniform(CopyShaderGLES2::HDR_EXP_ADJ_SPEED,float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_EXPOSURE_ADJUST_SPEED]));
copy_shader.set_uniform(CopyShaderGLES2::MIN_LUMINANCE,float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_MIN_LUMINANCE]));
copy_shader.set_uniform(CopyShaderGLES2::MAX_LUMINANCE,float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_MAX_LUMINANCE]));
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE),0);
//swap them
SWAP( current_vd->lum_color, framebuffer.luminance[i].color);
SWAP( current_vd->lum_fbo, framebuffer.luminance[i].fbo);
}
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE,psize);
_draw_gui_primitive(4,dst_pos,NULL,src_uv);
}
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_REDUCE,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_STORE,false);
draw_next_frame=true;
}
void RasterizerGLES2::_draw_tex_bg() {
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glColorMask(1,1,1,1);
RID texture;
if (current_env->bg_mode==VS::ENV_BG_TEXTURE || current_env->bg_mode==VS::ENV_BG_TEXTURE_RGBE) {
texture=current_env->bg_param[VS::ENV_BG_PARAM_TEXTURE];
} else {
texture=current_env->bg_param[VS::ENV_BG_PARAM_CUBEMAP];
}
if (!texture_owner.owns(texture)) {
return;
}
Texture *t = texture_owner.get(texture);
glActiveTexture(GL_TEXTURE0);
glBindTexture(t->target, t->tex_id);
copy_shader.set_conditional(CopyShaderGLES2::USE_ENERGY,true);
if (current_env->bg_mode==VS::ENV_BG_TEXTURE || current_env->bg_mode==VS::ENV_BG_TEXTURE_RGBE) {
copy_shader.set_conditional(CopyShaderGLES2::USE_CUBEMAP,false);
} else {
copy_shader.set_conditional(CopyShaderGLES2::USE_CUBEMAP,true);
}
if (current_env->bg_mode==VS::ENV_BG_CUBEMAP_RGBE || current_env->bg_mode==VS::ENV_BG_TEXTURE_RGBE) {
copy_shader.set_conditional(CopyShaderGLES2::USE_RGBE,true);
} else {
copy_shader.set_conditional(CopyShaderGLES2::USE_RGBE,false);
}
copy_shader.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA,true);
copy_shader.bind();
if (current_env->bg_mode==VS::ENV_BG_TEXTURE || current_env->bg_mode==VS::ENV_BG_TEXTURE_RGBE) {
glUniform1i( copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE),0);
} else {
glUniform1i( copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE_CUBE),0);
}
float nrg =float(current_env->bg_param[VS::ENV_BG_PARAM_ENERGY]);
if (current_env->fx_enabled[VS::ENV_FX_HDR] && !use_fp16_fb)
nrg*=0.25; //go down a quarter for hdr
copy_shader.set_uniform(CopyShaderGLES2::ENERGY,nrg);
copy_shader.set_uniform(CopyShaderGLES2::CUSTOM_ALPHA,float(current_env->bg_param[VS::ENV_BG_PARAM_GLOW]));
Vector3 vertices[4]={
Vector3(-1,-1,1),
Vector3( 1,-1,1),
Vector3( 1, 1,1),
Vector3(-1, 1,1)
};
Vector3 src_uv[4]={
Vector3( 0, 1, 0),
Vector3( 1, 1, 0),
Vector3( 1, 0, 0),
Vector3( 0, 0, 0)
};
if (current_env->bg_mode==VS::ENV_BG_TEXTURE || current_env->bg_mode==VS::ENV_BG_TEXTURE_RGBE) {
//regular texture
//adjust aspect
float aspect_t = t->width / float(t->height);
float aspect_v = viewport.width / float(viewport.height);
if (aspect_v > aspect_t) {
//wider than texture
for(int i=0;i<4;i++) {
src_uv[i].y=(src_uv[i].y-0.5)*(aspect_t/aspect_v)+0.5;
}
} else {
//narrower than texture
for(int i=0;i<4;i++) {
src_uv[i].x=(src_uv[i].x-0.5)*(aspect_v/aspect_t)+0.5;
}
}
float scale=current_env->bg_param[VS::ENV_BG_PARAM_SCALE];
for(int i=0;i<4;i++) {
src_uv[i].x*=scale;
src_uv[i].y*=scale;
}
} else {
//skybox uv vectors
float vw,vh,zn;
camera_projection.get_viewport_size(vw,vh);
zn=camera_projection.get_z_near();
float scale=current_env->bg_param[VS::ENV_BG_PARAM_SCALE];
for(int i=0;i<4;i++) {
Vector3 uv=src_uv[i];
uv.x=(uv.x*2.0-1.0)*vw*scale;
uv.y=-(uv.y*2.0-1.0)*vh*scale;
uv.z=-zn;
src_uv[i] = camera_transform.basis.xform(uv).normalized();
src_uv[i].z = -src_uv[i].z;
}
}
_draw_primitive(4,vertices,NULL,NULL,src_uv);
copy_shader.set_conditional(CopyShaderGLES2::USE_ENERGY,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_RGBE,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_CUBEMAP,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA,false);
}
void RasterizerGLES2::end_scene() {
glEnable(GL_BLEND);
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
bool use_fb=false;
if (framebuffer.active) {
//detect when to use the framebuffer object
if (texscreen_used || framebuffer.scale!=1) {
use_fb=true;
} else if (current_env) {
use_fb=false;
for(int i=0;i<VS::ENV_FX_MAX;i++) {
if (i==VS::ENV_FX_FOG) //does not need fb
continue;
if (current_env->fx_enabled[i]) {
use_fb=true;
break;
}
}
}
}
if (use_fb) {
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo);
glViewport( 0,0,viewport.width / framebuffer.scale, viewport.height / framebuffer.scale );
glScissor( 0,0,viewport.width / framebuffer.scale, viewport.height / framebuffer.scale );
material_shader.set_conditional(MaterialShaderGLES2::USE_8BIT_HDR,!use_fp16_fb && current_env && current_env->fx_enabled[VS::ENV_FX_HDR]);
} else {
if (current_rt) {
glScissor( 0,0,viewport.width,viewport.height);
} else {
glScissor( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height );
}
}
glEnable(GL_SCISSOR_TEST);
_glClearDepth(1.0);
bool draw_tex_background=false;
if (current_debug==VS::SCENARIO_DEBUG_OVERDRAW) {
glClearColor(0,0,0,1);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
} else if (current_rt && current_rt_transparent) {
glClearColor(0,0,0,0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
} else if (current_env) {
switch(current_env->bg_mode) {
case VS::ENV_BG_KEEP: {
//copy from framebuffer if framebuffer
glClear(GL_DEPTH_BUFFER_BIT);
} break;
case VS::ENV_BG_DEFAULT_COLOR:
case VS::ENV_BG_COLOR: {
Color bgcolor;
if (current_env->bg_mode==VS::ENV_BG_COLOR)
bgcolor = current_env->bg_param[VS::ENV_BG_PARAM_COLOR];
else
bgcolor = Globals::get_singleton()->get("render/default_clear_color");
bgcolor = _convert_color(bgcolor);
float a = use_fb ? float(current_env->bg_param[VS::ENV_BG_PARAM_GLOW]) : 1.0;
glClearColor(bgcolor.r,bgcolor.g,bgcolor.b,a);
_glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
} break;
case VS::ENV_BG_TEXTURE:
case VS::ENV_BG_CUBEMAP:
case VS::ENV_BG_TEXTURE_RGBE:
case VS::ENV_BG_CUBEMAP_RGBE: {
glClear(GL_DEPTH_BUFFER_BIT);
draw_tex_background=true;
} break;
}
} else {
Color c = _convert_color(Color(0.3,0.3,0.3));
glClearColor(c.r,c.g,c.b,0.0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
}
glDisable(GL_SCISSOR_TEST);
//material_shader.set_uniform_camera(MaterialShaderGLES2::PROJECTION_MATRIX, camera_projection);
/*
printf("setting projection to ");
for (int i=0; i<16; i++) {
printf("%f, ", ((float*)camera_projection.matrix)[i]);
};
printf("\n");
print_line(String("setting camera to ")+camera_transform_inverse);
*/
// material_shader.set_uniform_default(MaterialShaderGLES2::CAMERA_INVERSE, camera_transform_inverse);
current_depth_test=true;
current_depth_mask=true;
texscreen_copied=false;
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_BLEND);
current_blend_mode=VS::MATERIAL_BLEND_MODE_MIX;
//material_shader.set_conditional(MaterialShaderGLES2::USE_GLOW,current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]);
opaque_render_list.sort_mat_light_type_flags();
_render_list_forward(&opaque_render_list,camera_transform,camera_transform_inverse,camera_projection,false,fragment_lighting);
if (draw_tex_background) {
//most 3D vendors recommend drawing a texture bg or skybox here,
//after opaque geometry has been drawn
//so the zbuffer can get rid of most pixels
_draw_tex_bg();
}
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_BLEND);
current_blend_mode=VS::MATERIAL_BLEND_MODE_MIX;
material_shader.set_conditional(MaterialShaderGLES2::USE_GLOW,false);
if (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) {
glColorMask(1,1,1,0); //don't touch alpha
}
alpha_render_list.sort_z();
_render_list_forward(&alpha_render_list,camera_transform,camera_transform_inverse,camera_projection,false,fragment_lighting,true);
glColorMask(1,1,1,1);
// material_shader.set_conditional( MaterialShaderGLES2::USE_FOG,false);
DEBUG_TEST_ERROR("Drawing Scene");
#ifdef GLEW_ENABLED
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
#endif
if (use_fb) {
for(int i=0;i<VS::ARRAY_MAX;i++) {
glDisableVertexAttribArray(i);
}
glBindBuffer(GL_ARRAY_BUFFER,0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);
glDisable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_SCISSOR_TEST);
glDepthMask(false);
if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR]) {
int hdr_tm = current_env->fx_param[VS::ENV_FX_PARAM_HDR_TONEMAPPER];
switch(hdr_tm) {
case VS::ENV_FX_HDR_TONE_MAPPER_LINEAR: {
} break;
case VS::ENV_FX_HDR_TONE_MAPPER_LOG: {
copy_shader.set_conditional(CopyShaderGLES2::USE_LOG_TONEMAPPER,true);
} break;
case VS::ENV_FX_HDR_TONE_MAPPER_REINHARDT: {
copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER,true);
} break;
case VS::ENV_FX_HDR_TONE_MAPPER_REINHARDT_AUTOWHITE: {
copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER,true);
copy_shader.set_conditional(CopyShaderGLES2::USE_AUTOWHITE,true);
} break;
}
_process_hdr();
}
if (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) {
_process_glow_bloom();
int glow_transfer_mode=current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_BLEND_MODE];
if (glow_transfer_mode==1)
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SCREEN,true);
if (glow_transfer_mode==2)
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SOFTLIGHT,true);
}
glBindFramebuffer(GL_FRAMEBUFFER, current_rt?current_rt->fbo:base_framebuffer);
Size2 size;
if (current_rt) {
glBindFramebuffer(GL_FRAMEBUFFER, current_rt->fbo);
glViewport( 0,0,viewport.width,viewport.height);
size=Size2(viewport.width,viewport.height);
} else {
glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer);
glViewport( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height );
size=Size2(viewport.width,viewport.height);
}
//time to copy!!!
copy_shader.set_conditional(CopyShaderGLES2::USE_BCS,current_env && current_env->fx_enabled[VS::ENV_FX_BCS]);
copy_shader.set_conditional(CopyShaderGLES2::USE_SRGB,current_env && current_env->fx_enabled[VS::ENV_FX_SRGB]);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW,current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]);
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR,current_env && current_env->fx_enabled[VS::ENV_FX_HDR]);
copy_shader.set_conditional(CopyShaderGLES2::USE_NO_ALPHA,true);
copy_shader.set_conditional(CopyShaderGLES2::USE_FXAA,current_env && current_env->fx_enabled[VS::ENV_FX_FXAA]);
copy_shader.bind();
//copy_shader.set_uniform(CopyShaderGLES2::SOURCE,0);
if (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) {
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, framebuffer.blur[0].color );
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::GLOW_SOURCE),1);
}
if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR]) {
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, current_vd->lum_color );
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::HDR_SOURCE),2);
copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_EXPOSURE,float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_EXPOSURE]));
copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_WHITE,float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_WHITE]));
}
if (current_env && current_env->fx_enabled[VS::ENV_FX_FXAA])
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE,Size2(1.0/size.x,1.0/size.y));
if (current_env && current_env->fx_enabled[VS::ENV_FX_BCS]) {
Vector3 bcs;
bcs.x=current_env->fx_param[VS::ENV_FX_PARAM_BCS_BRIGHTNESS];
bcs.y=current_env->fx_param[VS::ENV_FX_PARAM_BCS_CONTRAST];
bcs.z=current_env->fx_param[VS::ENV_FX_PARAM_BCS_SATURATION];
copy_shader.set_uniform(CopyShaderGLES2::BCS,bcs);
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, framebuffer.color );
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE),0);
_copy_screen_quad();
copy_shader.set_conditional(CopyShaderGLES2::USE_BCS,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_SRGB,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_NO_ALPHA,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_FXAA,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SCREEN,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SOFTLIGHT,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_AUTOWHITE,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_LOG_TONEMAPPER,false);
material_shader.set_conditional(MaterialShaderGLES2::USE_8BIT_HDR,false);
if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR] && GLOBAL_DEF("rasterizer/debug_hdr",false)) {
_debug_luminances();
}
}
current_env=NULL;
current_debug=VS::SCENARIO_DEBUG_DISABLED;
if (GLOBAL_DEF("rasterizer/debug_shadow_maps",false)) {
_debug_shadows();
}
// _debug_luminances();
}
void RasterizerGLES2::end_shadow_map() {
ERR_FAIL_COND(!shadow);
glDisable(GL_BLEND);
glDisable(GL_SCISSOR_TEST);
glDisable(GL_DITHER);
glEnable(GL_DEPTH_TEST);
glDepthMask(true);
ShadowBuffer *sb = shadow->near_shadow_buffer;
ERR_FAIL_COND(!sb);
glBindFramebuffer(GL_FRAMEBUFFER, sb->fbo);
if (!use_rgba_shadowmaps)
glColorMask(0, 0, 0, 0);
//glEnable(GL_POLYGON_OFFSET_FILL);
//glPolygonOffset( 8.0f, 16.0f);
CameraMatrix cm;
float z_near,z_far;
Transform light_transform;
float dp_direction=0.0;
bool flip_facing=false;
Rect2 vp_rect;
switch(shadow->base->type) {
case VS::LIGHT_DIRECTIONAL: {
if (shadow->base->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
cm = shadow->custom_projection[shadow_pass];
light_transform=shadow->custom_transform[shadow_pass];
if (shadow_pass==0) {
vp_rect=Rect2(0, sb->size/2, sb->size/2, sb->size/2);
glViewport(0, sb->size/2, sb->size/2, sb->size/2);
glScissor(0, sb->size/2, sb->size/2, sb->size/2);
} else if (shadow_pass==1) {
vp_rect=Rect2(0, 0, sb->size/2, sb->size/2);
glViewport(0, 0, sb->size/2, sb->size/2);
glScissor(0, 0, sb->size/2, sb->size/2);
} else if (shadow_pass==2) {
vp_rect=Rect2(sb->size/2, sb->size/2, sb->size/2, sb->size/2);
glViewport(sb->size/2, sb->size/2, sb->size/2, sb->size/2);
glScissor(sb->size/2, sb->size/2, sb->size/2, sb->size/2);
} else if (shadow_pass==3) {
vp_rect=Rect2(sb->size/2, 0, sb->size/2, sb->size/2);
glViewport(sb->size/2, 0, sb->size/2, sb->size/2);
glScissor(sb->size/2, 0, sb->size/2, sb->size/2);
}
glEnable(GL_SCISSOR_TEST);
} else if (shadow->base->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
if (shadow_pass==0) {
cm = shadow->custom_projection[0];
light_transform=shadow->custom_transform[0];
vp_rect=Rect2(0, sb->size/2, sb->size, sb->size/2);
glViewport(0, sb->size/2, sb->size, sb->size/2);
glScissor(0, sb->size/2, sb->size, sb->size/2);
} else {
cm = shadow->custom_projection[1];
light_transform=shadow->custom_transform[1];
vp_rect=Rect2(0, 0, sb->size, sb->size/2);
glViewport(0, 0, sb->size, sb->size/2);
glScissor(0, 0, sb->size, sb->size/2);
}
glEnable(GL_SCISSOR_TEST);
} else {
cm = shadow->custom_projection[0];
light_transform=shadow->custom_transform[0];
vp_rect=Rect2(0, 0, sb->size, sb->size);
glViewport(0, 0, sb->size, sb->size);
}
z_near=cm.get_z_near();
z_far=cm.get_z_far();
_glClearDepth(1.0f);
glClearColor(1,1,1,1);
if (use_rgba_shadowmaps)
glClear(GL_DEPTH_BUFFER_BIT|GL_COLOR_BUFFER_BIT);
else
glClear(GL_DEPTH_BUFFER_BIT);
glDisable(GL_SCISSOR_TEST);
} break;
case VS::LIGHT_OMNI: {
material_shader.set_conditional(MaterialShaderGLES2::USE_DUAL_PARABOLOID,true);
dp_direction = shadow_pass?1.0:-1.0;
flip_facing = (shadow_pass == 1);
light_transform=shadow->transform;
z_near=0;
z_far=shadow->base->vars[ VS::LIGHT_PARAM_RADIUS ];
shadow->dp.x=1.0/z_far;
shadow->dp.y=dp_direction;
if (shadow_pass==0) {
vp_rect=Rect2(0, sb->size/2, sb->size, sb->size/2);
glViewport(0, sb->size/2, sb->size, sb->size/2);
glScissor(0, sb->size/2, sb->size, sb->size/2);
} else {
vp_rect=Rect2(0, 0, sb->size, sb->size/2);
glViewport(0, 0, sb->size, sb->size/2);
glScissor(0, 0, sb->size, sb->size/2);
}
glEnable(GL_SCISSOR_TEST);
shadow->projection=cm;
glClearColor(1,1,1,1);
_glClearDepth(1.0f);
if (use_rgba_shadowmaps)
glClear(GL_DEPTH_BUFFER_BIT|GL_COLOR_BUFFER_BIT);
else
glClear(GL_DEPTH_BUFFER_BIT);
glDisable(GL_SCISSOR_TEST);
} break;
case VS::LIGHT_SPOT: {
float far = shadow->base->vars[ VS::LIGHT_PARAM_RADIUS ];
ERR_FAIL_COND( far<=0 );
float near= far/200.0;
if (near<0.05)
near=0.05;
float angle = shadow->base->vars[ VS::LIGHT_PARAM_SPOT_ANGLE ];
cm.set_perspective( angle*2.0, 1.0, near, far );
shadow->projection=cm; // cache
light_transform=shadow->transform;
z_near=cm.get_z_near();
z_far=cm.get_z_far();
glViewport(0, 0, sb->size, sb->size);
vp_rect=Rect2(0, 0, sb->size, sb->size);
_glClearDepth(1.0f);
glClearColor(1,1,1,1);
if (use_rgba_shadowmaps)
glClear(GL_DEPTH_BUFFER_BIT|GL_COLOR_BUFFER_BIT);
else
glClear(GL_DEPTH_BUFFER_BIT);
} break;
}
Transform light_transform_inverse = light_transform.affine_inverse();
opaque_render_list.sort_mat_geom();
_render_list_forward(&opaque_render_list,light_transform,light_transform_inverse,cm,flip_facing,false);
material_shader.set_conditional(MaterialShaderGLES2::USE_DUAL_PARABOLOID,false);
//if (!use_rgba_shadowmaps)
if (shadow_filter==SHADOW_FILTER_ESM) {
copy_shader.set_conditional(CopyShaderGLES2::USE_RGBA_DEPTH,use_rgba_shadowmaps);
copy_shader.set_conditional(CopyShaderGLES2::USE_HIGHP_SOURCE,!use_rgba_shadowmaps);
Vector2 psize(1.0/sb->size,1.0/sb->size);
float pscale = 1.0;
int passes=shadow->base->vars[VS::LIGHT_PARAM_SHADOW_BLUR_PASSES];
glDisable(GL_BLEND);
glDisable(GL_CULL_FACE);
#ifdef GLEW_ENABLED
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
#endif
for(int i=0;i<VS::ARRAY_MAX;i++) {
glDisableVertexAttribArray(i);
}
glBindBuffer(GL_ARRAY_BUFFER,0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);
glDisable(GL_SCISSOR_TEST);
if (!use_rgba_shadowmaps) {
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_ALWAYS);
glDepthMask(true);
} else {
glDisable(GL_DEPTH_TEST);
}
for(int i=0;i<passes;i++) {
Vector2 src_sb_uv[4]={
(vp_rect.pos+Vector2(0,vp_rect.size.y))/sb->size,
(vp_rect.pos+vp_rect.size)/sb->size,
(vp_rect.pos+Vector2(vp_rect.size.x,0))/sb->size,
(vp_rect.pos)/sb->size
};
/*
Vector2 src_uv[4]={
Vector2( 0, 1),
Vector2( 1, 1),
Vector2( 1, 0),
Vector2( 0, 0)
};
*/
static const Vector2 dst_pos[4]={
Vector2(-1, 1),
Vector2( 1, 1),
Vector2( 1,-1),
Vector2(-1,-1)
};
glBindFramebuffer(GL_FRAMEBUFFER, blur_shadow_buffer.fbo);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, sb->depth);
#ifdef GLEW_ENABLED
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
#endif
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_V_PASS,true);
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_H_PASS,false);
copy_shader.bind();
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE,psize);
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE,pscale);
copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE,1);
//copy_shader.set_uniform(CopyShaderGLES2::SOURCE,0);
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE),0);
_draw_gui_primitive(4,dst_pos,NULL,src_sb_uv);
Vector2 src_bb_uv[4]={
(vp_rect.pos+Vector2(0,vp_rect.size.y))/blur_shadow_buffer.size,
(vp_rect.pos+vp_rect.size)/blur_shadow_buffer.size,
(vp_rect.pos+Vector2(vp_rect.size.x,0))/blur_shadow_buffer.size,
(vp_rect.pos)/blur_shadow_buffer.size,
};
glBindFramebuffer(GL_FRAMEBUFFER, sb->fbo);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, blur_shadow_buffer.depth);
#ifdef GLEW_ENABLED
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
#endif
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_V_PASS,false);
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_H_PASS,true);
copy_shader.bind();
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE,psize);
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE,pscale);
copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE,1);
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE),0);
_draw_gui_primitive(4,dst_pos,NULL,src_bb_uv);
}
glDepthFunc(GL_LEQUAL);
copy_shader.set_conditional(CopyShaderGLES2::USE_RGBA_DEPTH,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_HIGHP_SOURCE,false);
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_V_PASS,false);
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_H_PASS,false);
}
DEBUG_TEST_ERROR("Drawing Shadow");
shadow=NULL;
glBindFramebuffer(GL_FRAMEBUFFER, current_rt?current_rt->fbo:base_framebuffer);
glColorMask(1, 1, 1, 1);
//glDisable(GL_POLYGON_OFFSET_FILL);
}
void RasterizerGLES2::_debug_draw_shadow(GLuint tex, const Rect2& p_rect) {
Matrix32 modelview;
modelview.translate(p_rect.pos.x, p_rect.pos.y);
canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, modelview);
glBindTexture(GL_TEXTURE_2D,tex);
Vector3 coords[4]= {
Vector3(p_rect.pos.x, p_rect.pos.y, 0 ),
Vector3(p_rect.pos.x+p_rect.size.width,
p_rect.pos.y, 0 ),
Vector3(p_rect.pos.x+p_rect.size.width,
p_rect.pos.y+p_rect.size.height, 0 ),
Vector3(p_rect.pos.x,
p_rect.pos.y+p_rect.size.height, 0 )
};
Vector3 texcoords[4]={
Vector3( 0.0f,0.0f, 0),
Vector3( 1.0f,0.0f, 0),
Vector3( 1.0f, 1.0f, 0),
Vector3( 0.0f, 1.0f, 0),
};
_draw_primitive(4,coords,0,0,texcoords);
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE);
}
void RasterizerGLES2::_debug_draw_shadows_type(Vector<ShadowBuffer>& p_shadows,Point2& ofs) {
Size2 debug_size(128,128);
// Size2 debug_size(512,512);
int useblur=shadow_filter==SHADOW_FILTER_ESM?1:0;
for (int i=0;i<p_shadows.size()+useblur;i++) {
ShadowBuffer *sb=i==p_shadows.size()?&blur_shadow_buffer:&p_shadows[i];
if (!sb->owner && i!=p_shadows.size())
continue;
_debug_draw_shadow(sb->depth, Rect2( ofs, debug_size ));
ofs.x+=debug_size.x;
if ( (ofs.x+debug_size.x) > viewport.width ) {
ofs.x=0;
ofs.y+=debug_size.y;
}
}
}
void RasterizerGLES2::_debug_luminances() {
canvas_shader.set_conditional(CanvasShaderGLES2::DEBUG_ENCODED_32,!use_fp16_fb);
canvas_begin();
glDisable(GL_BLEND);
canvas_shader.bind();
Size2 debug_size(128,128);
Size2 ofs;
for (int i=0;i<=framebuffer.luminance.size();i++) {
if (i==framebuffer.luminance.size()) {
if (!current_vd)
break;
_debug_draw_shadow(current_vd->lum_color, Rect2( ofs, debug_size ));
} else {
_debug_draw_shadow(framebuffer.luminance[i].color, Rect2( ofs, debug_size ));
}
ofs.x+=debug_size.x/2;
if ( (ofs.x+debug_size.x) > viewport.width ) {
ofs.x=0;
ofs.y+=debug_size.y;
}
}
canvas_shader.set_conditional(CanvasShaderGLES2::DEBUG_ENCODED_32,false);
}
void RasterizerGLES2::_debug_shadows() {
canvas_begin();
glDisable(GL_BLEND);
Size2 ofs;
/*
for(int i=0;i<16;i++) {
glActiveTexture(GL_TEXTURE0+i);
//glDisable(GL_TEXTURE_2D);
}
glActiveTexture(GL_TEXTURE0);
//glEnable(GL_TEXTURE_2D);
*/
_debug_draw_shadows_type(near_shadow_buffers,ofs);
// _debug_draw_shadows_type(far_shadow_buffers,ofs);
}
void RasterizerGLES2::end_frame() {
//print_line("VTX: "+itos(_rinfo.vertex_count)+" OBJ: "+itos(_rinfo.object_count)+" MAT: "+itos(_rinfo.mat_change_count)+" SHD: "+itos(_rinfo.shader_change_count)+" CI: "+itos(_rinfo.ci_draw_commands));
//print_line("TOTAL VTX: "+itos(_rinfo.vertex_count));
OS::get_singleton()->swap_buffers();
}
void RasterizerGLES2::flush_frame() {
glFlush();
}
/* CANVAS API */
void RasterizerGLES2::canvas_begin() {
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
#ifdef GLEW_ENABLED
glDisable(GL_POINT_SPRITE);
glDisable(GL_VERTEX_PROGRAM_POINT_SIZE);
#endif
glEnable(GL_BLEND);
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
//glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
glLineWidth(1.0);
glBindBuffer(GL_ARRAY_BUFFER,0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);
for(int i=0;i<VS::ARRAY_MAX;i++) {
glDisableVertexAttribArray(i);
}
glActiveTexture(GL_TEXTURE0);
glBindTexture( GL_TEXTURE_2D, white_tex );
canvas_tex=RID();
//material_shader.unbind();
canvas_shader.unbind();
canvas_shader.bind();
canvas_shader.set_uniform(CanvasShaderGLES2::TEXTURE, 0);
_set_color_attrib(Color(1,1,1));
Transform canvas_transform;
canvas_transform.translate(-(viewport.width / 2.0f), -(viewport.height / 2.0f), 0.0f);
float csy = 1.0;
if (current_rt && current_rt_vflip)
csy = -1.0;
canvas_transform.scale( Vector3( 2.0f / viewport.width, csy * -2.0f / viewport.height, 1.0f ) );
canvas_shader.set_uniform(CanvasShaderGLES2::PROJECTION_MATRIX,canvas_transform);
canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX,Matrix32());
canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX,Matrix32());
canvas_opacity=1.0;
canvas_blend_mode=VS::MATERIAL_BLEND_MODE_MIX;
}
void RasterizerGLES2::canvas_disable_blending() {
glDisable(GL_BLEND);
}
void RasterizerGLES2::canvas_set_opacity(float p_opacity) {
canvas_opacity = p_opacity;
}
void RasterizerGLES2::canvas_set_blend_mode(VS::MaterialBlendMode p_mode) {
if (p_mode==canvas_blend_mode)
return;
switch(p_mode) {
case VS::MATERIAL_BLEND_MODE_MIX: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
} break;
case VS::MATERIAL_BLEND_MODE_ADD: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA,GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_SUB: {
glBlendEquation(GL_FUNC_SUBTRACT);
glBlendFunc(GL_SRC_ALPHA,GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_MUL: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_DST_COLOR,GL_ZERO);
} break;
case VS::MATERIAL_BLEND_MODE_PREMULT_ALPHA: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_ONE,GL_ONE_MINUS_SRC_ALPHA);
} break;
}
canvas_blend_mode=p_mode;
}
void RasterizerGLES2::canvas_begin_rect(const Matrix32& p_transform) {
canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX,p_transform);
canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX,Matrix32());
}
void RasterizerGLES2::canvas_set_clip(bool p_clip, const Rect2& p_rect) {
if (p_clip) {
glEnable(GL_SCISSOR_TEST);
glScissor(viewport.x+p_rect.pos.x,viewport.y+ (viewport.height-(p_rect.pos.y+p_rect.size.height)),
p_rect.size.width,p_rect.size.height);
} else {
glDisable(GL_SCISSOR_TEST);
}
}
void RasterizerGLES2::canvas_end_rect() {
//glPopMatrix();
}
RasterizerGLES2::Texture* RasterizerGLES2::_bind_canvas_texture(const RID& p_texture) {
if (p_texture==canvas_tex) {
if (canvas_tex.is_valid()) {
Texture*texture=texture_owner.get(p_texture);
return texture;
}
return NULL;
}
if (p_texture.is_valid()) {
Texture*texture=texture_owner.get(p_texture);
if (!texture) {
canvas_tex=RID();
glBindTexture(GL_TEXTURE_2D,white_tex);
return NULL;
}
if (texture->render_target)
texture->render_target->last_pass=frame;
glBindTexture(GL_TEXTURE_2D,texture->tex_id);
canvas_tex=p_texture;
return texture;
} else {
glBindTexture(GL_TEXTURE_2D,white_tex);
canvas_tex=p_texture;
}
return NULL;
}
void RasterizerGLES2::canvas_draw_line(const Point2& p_from, const Point2& p_to,const Color& p_color,float p_width) {
_bind_canvas_texture(RID());
Color c=p_color;
c.a*=canvas_opacity;
_set_color_attrib(c);
Vector3 verts[2]={
Vector3(p_from.x,p_from.y,0),
Vector3(p_to.x,p_to.y,0)
};
glLineWidth(p_width);
_draw_primitive(2,verts,0,0,0);
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::_draw_gui_primitive(int p_points, const Vector2 *p_vertices, const Color* p_colors, const Vector2 *p_uvs) {
static const GLenum prim[5]={GL_POINTS,GL_POINTS,GL_LINES,GL_TRIANGLES,GL_TRIANGLE_FAN};
//#define GLES_USE_PRIMITIVE_BUFFER
#ifndef GLES_NO_CLIENT_ARRAYS
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer( VS::ARRAY_VERTEX, 2 ,GL_FLOAT, false, sizeof(Vector2), p_vertices );
if (p_colors) {
glEnableVertexAttribArray(VS::ARRAY_COLOR);
glVertexAttribPointer( VS::ARRAY_COLOR, 4 ,GL_FLOAT, false, sizeof(Color), p_colors );
} else {
glDisableVertexAttribArray(VS::ARRAY_COLOR);
}
if (p_uvs) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glVertexAttribPointer( VS::ARRAY_TEX_UV, 2 ,GL_FLOAT, false, sizeof(Vector2), p_uvs );
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
}
glDrawArrays(prim[p_points],0,p_points);
#else
glBindBuffer(GL_ARRAY_BUFFER,gui_quad_buffer);
float b[32];
int ofs=0;
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer( VS::ARRAY_VERTEX, 2 ,GL_FLOAT, false, sizeof(float)*2, ((float*)0)+ofs );
for(int i=0;i<p_points;i++) {
b[ofs++]=p_vertices[i].x;
b[ofs++]=p_vertices[i].y;
}
if (p_colors) {
glEnableVertexAttribArray(VS::ARRAY_COLOR);
glVertexAttribPointer( VS::ARRAY_COLOR, 4 ,GL_FLOAT, false, sizeof(float)*4, ((float*)0)+ofs );
for(int i=0;i<p_points;i++) {
b[ofs++]=p_colors[i].r;
b[ofs++]=p_colors[i].g;
b[ofs++]=p_colors[i].b;
b[ofs++]=p_colors[i].a;
}
} else {
glDisableVertexAttribArray(VS::ARRAY_COLOR);
}
if (p_uvs) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glVertexAttribPointer( VS::ARRAY_TEX_UV, 2 ,GL_FLOAT, false, sizeof(float)*2, ((float*)0)+ofs );
for(int i=0;i<p_points;i++) {
b[ofs++]=p_uvs[i].x;
b[ofs++]=p_uvs[i].y;
}
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
}
glBufferSubData(GL_ARRAY_BUFFER,0,ofs*4,&b[0]);
glDrawArrays(prim[p_points],0,p_points);
glBindBuffer(GL_ARRAY_BUFFER,0);
#endif
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::_draw_gui_primitive2(int p_points, const Vector2 *p_vertices, const Color* p_colors, const Vector2 *p_uvs, const Vector2 *p_uvs2) {
static const GLenum prim[5]={GL_POINTS,GL_POINTS,GL_LINES,GL_TRIANGLES,GL_TRIANGLE_FAN};
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer( VS::ARRAY_VERTEX, 2 ,GL_FLOAT, false, sizeof(Vector2), p_vertices );
if (p_colors) {
glEnableVertexAttribArray(VS::ARRAY_COLOR);
glVertexAttribPointer( VS::ARRAY_COLOR, 4 ,GL_FLOAT, false, sizeof(Color), p_colors );
} else {
glDisableVertexAttribArray(VS::ARRAY_COLOR);
}
if (p_uvs) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glVertexAttribPointer( VS::ARRAY_TEX_UV, 2 ,GL_FLOAT, false, sizeof(Vector2), p_uvs );
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
}
if (p_uvs2) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV2);
glVertexAttribPointer( VS::ARRAY_TEX_UV2, 2 ,GL_FLOAT, false, sizeof(Vector2), p_uvs2 );
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV2);
}
glDrawArrays(prim[p_points],0,p_points);
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::_draw_textured_quad(const Rect2& p_rect, const Rect2& p_src_region, const Size2& p_tex_size,bool p_h_flip, bool p_v_flip ) {
Vector2 texcoords[4]= {
Vector2( p_src_region.pos.x/p_tex_size.width,
p_src_region.pos.y/p_tex_size.height),
Vector2((p_src_region.pos.x+p_src_region.size.width)/p_tex_size.width,
p_src_region.pos.y/p_tex_size.height),
Vector2( (p_src_region.pos.x+p_src_region.size.width)/p_tex_size.width,
(p_src_region.pos.y+p_src_region.size.height)/p_tex_size.height),
Vector2( p_src_region.pos.x/p_tex_size.width,
(p_src_region.pos.y+p_src_region.size.height)/p_tex_size.height)
};
if (p_h_flip) {
SWAP( texcoords[0], texcoords[1] );
SWAP( texcoords[2], texcoords[3] );
}
if (p_v_flip) {
SWAP( texcoords[1], texcoords[2] );
SWAP( texcoords[0], texcoords[3] );
}
Vector2 coords[4]= {
Vector2( p_rect.pos.x, p_rect.pos.y ),
Vector2( p_rect.pos.x+p_rect.size.width, p_rect.pos.y ),
Vector2( p_rect.pos.x+p_rect.size.width, p_rect.pos.y+p_rect.size.height ),
Vector2( p_rect.pos.x,p_rect.pos.y+p_rect.size.height )
};
_draw_gui_primitive(4,coords,0,texcoords);
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::_draw_quad(const Rect2& p_rect) {
Vector2 coords[4]= {
Vector2( p_rect.pos.x,p_rect.pos.y ),
Vector2( p_rect.pos.x+p_rect.size.width,p_rect.pos.y ),
Vector2( p_rect.pos.x+p_rect.size.width,p_rect.pos.y+p_rect.size.height ),
Vector2( p_rect.pos.x,p_rect.pos.y+p_rect.size.height )
};
_draw_gui_primitive(4,coords,0,0);
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::canvas_draw_rect(const Rect2& p_rect, int p_flags, const Rect2& p_source,RID p_texture,const Color& p_modulate) {
Color m = p_modulate;
m.a*=canvas_opacity;
_set_color_attrib(m);
Texture *texture = _bind_canvas_texture(p_texture);
if ( texture ) {
if (!(p_flags&CANVAS_RECT_REGION)) {
Rect2 region = Rect2(0,0,texture->width,texture->height);
_draw_textured_quad(p_rect,region,region.size,p_flags&CANVAS_RECT_FLIP_H,p_flags&CANVAS_RECT_FLIP_V);
} else {
_draw_textured_quad(p_rect, p_source, Size2(texture->width,texture->height),p_flags&CANVAS_RECT_FLIP_H,p_flags&CANVAS_RECT_FLIP_V );
}
} else {
//glDisable(GL_TEXTURE_2D);
_draw_quad( p_rect );
//print_line("rect: "+p_rect);
}
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::canvas_draw_style_box(const Rect2& p_rect, RID p_texture,const float *p_margin, bool p_draw_center,const Color& p_modulate) {
Color m = p_modulate;
m.a*=canvas_opacity;
_set_color_attrib(m);
Texture* texture=_bind_canvas_texture(p_texture);
ERR_FAIL_COND(!texture);
/* CORNERS */
_draw_textured_quad( // top left
Rect2( p_rect.pos, Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_TOP])),
Rect2( Point2(), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_TOP])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // top right
Rect2( Point2( p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_TOP])),
Rect2( Point2(texture->width-p_margin[MARGIN_RIGHT],0), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_TOP])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // bottom left
Rect2( Point2(p_rect.pos.x,p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_BOTTOM])),
Rect2( Point2(0,texture->height-p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_BOTTOM])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // bottom right
Rect2( Point2( p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_BOTTOM])),
Rect2( Point2(texture->width-p_margin[MARGIN_RIGHT],texture->height-p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_BOTTOM])),
Size2( texture->width, texture->height ) );
Rect2 rect_center( p_rect.pos+Point2( p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2( p_rect.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], p_rect.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM] ));
Rect2 src_center( Point2( p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2( texture->width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], texture->height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM] ));
_draw_textured_quad( // top
Rect2( Point2(rect_center.pos.x,p_rect.pos.y),Size2(rect_center.size.width,p_margin[MARGIN_TOP])),
Rect2( Point2(p_margin[MARGIN_LEFT],0), Size2(src_center.size.width,p_margin[MARGIN_TOP])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // bottom
Rect2( Point2(rect_center.pos.x,rect_center.pos.y+rect_center.size.height),Size2(rect_center.size.width,p_margin[MARGIN_BOTTOM])),
Rect2( Point2(p_margin[MARGIN_LEFT],src_center.pos.y+src_center.size.height), Size2(src_center.size.width,p_margin[MARGIN_BOTTOM])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // left
Rect2( Point2(p_rect.pos.x,rect_center.pos.y),Size2(p_margin[MARGIN_LEFT],rect_center.size.height)),
Rect2( Point2(0,p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_LEFT],src_center.size.height)),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // right
Rect2( Point2(rect_center.pos.x+rect_center.size.width,rect_center.pos.y),Size2(p_margin[MARGIN_RIGHT],rect_center.size.height)),
Rect2( Point2(src_center.pos.x+src_center.size.width,p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_RIGHT],src_center.size.height)),
Size2( texture->width, texture->height ) );
if (p_draw_center) {
_draw_textured_quad(
rect_center,
src_center,
Size2( texture->width, texture->height ));
}
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::canvas_draw_primitive(const Vector<Point2>& p_points, const Vector<Color>& p_colors,const Vector<Point2>& p_uvs, RID p_texture,float p_width) {
ERR_FAIL_COND(p_points.size()<1);
_set_color_attrib(Color(1,1,1,canvas_opacity));
_bind_canvas_texture(p_texture);
_draw_gui_primitive(p_points.size(),p_points.ptr(),p_colors.ptr(),p_uvs.ptr());
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::canvas_draw_polygon(int p_vertex_count, const int* p_indices, const Vector2* p_vertices, const Vector2* p_uvs, const Color* p_colors,const RID& p_texture,bool p_singlecolor) {
bool do_colors=false;
if (p_singlecolor) {
Color m = *p_colors;
m.a*=canvas_opacity;
_set_color_attrib(m);
} else if (!p_colors) {
_set_color_attrib( Color(1,1,1,canvas_opacity));
} else
do_colors=true;
Texture *texture = _bind_canvas_texture(p_texture);
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer( VS::ARRAY_VERTEX, 2 ,GL_FLOAT, false, sizeof(Vector2), p_vertices );
if (do_colors) {
glEnableVertexAttribArray(VS::ARRAY_COLOR);
glVertexAttribPointer( VS::ARRAY_COLOR, 4 ,GL_FLOAT, false, sizeof(Color), p_colors );
} else {
glDisableVertexAttribArray(VS::ARRAY_COLOR);
}
if (texture && p_uvs) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glVertexAttribPointer( VS::ARRAY_TEX_UV, 2 ,GL_FLOAT, false, sizeof(Vector2), p_uvs );
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
}
if (p_indices) {
glDrawElements(GL_TRIANGLES, p_vertex_count, GL_UNSIGNED_INT, p_indices );
} else {
glDrawArrays(GL_TRIANGLES,0,p_vertex_count);
}
_rinfo.ci_draw_commands++;
};
void RasterizerGLES2::canvas_set_transform(const Matrix32& p_transform) {
canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX,p_transform);
//canvas_transform = Variant(p_transform);
}
/* ENVIRONMENT */
RID RasterizerGLES2::environment_create() {
Environment * env = memnew( Environment );
return environment_owner.make_rid(env);
}
void RasterizerGLES2::environment_set_background(RID p_env,VS::EnvironmentBG p_bg) {
ERR_FAIL_INDEX(p_bg,VS::ENV_BG_MAX);
Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND(!env);
env->bg_mode=p_bg;
}
VS::EnvironmentBG RasterizerGLES2::environment_get_background(RID p_env) const{
const Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND_V(!env,VS::ENV_BG_MAX);
return env->bg_mode;
}
void RasterizerGLES2::environment_set_background_param(RID p_env,VS::EnvironmentBGParam p_param, const Variant& p_value){
ERR_FAIL_INDEX(p_param,VS::ENV_BG_PARAM_MAX);
Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND(!env);
env->bg_param[p_param]=p_value;
}
Variant RasterizerGLES2::environment_get_background_param(RID p_env,VS::EnvironmentBGParam p_param) const{
ERR_FAIL_INDEX_V(p_param,VS::ENV_BG_PARAM_MAX,Variant());
const Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND_V(!env,Variant());
return env->bg_param[p_param];
}
void RasterizerGLES2::environment_set_enable_fx(RID p_env,VS::EnvironmentFx p_effect,bool p_enabled){
ERR_FAIL_INDEX(p_effect,VS::ENV_FX_MAX);
Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND(!env);
env->fx_enabled[p_effect]=p_enabled;
}
bool RasterizerGLES2::environment_is_fx_enabled(RID p_env,VS::EnvironmentFx p_effect) const{
ERR_FAIL_INDEX_V(p_effect,VS::ENV_FX_MAX,false);
const Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND_V(!env,false);
return env->fx_enabled[p_effect];
}
void RasterizerGLES2::environment_fx_set_param(RID p_env,VS::EnvironmentFxParam p_param,const Variant& p_value){
ERR_FAIL_INDEX(p_param,VS::ENV_FX_PARAM_MAX);
Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND(!env);
env->fx_param[p_param]=p_value;
}
Variant RasterizerGLES2::environment_fx_get_param(RID p_env,VS::EnvironmentFxParam p_param) const{
ERR_FAIL_INDEX_V(p_param,VS::ENV_FX_PARAM_MAX,Variant());
const Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND_V(!env,Variant());
return env->fx_param[p_param];
}
/*MISC*/
bool RasterizerGLES2::is_texture(const RID& p_rid) const {
return texture_owner.owns(p_rid);
}
bool RasterizerGLES2::is_material(const RID& p_rid) const {
return material_owner.owns(p_rid);
}
bool RasterizerGLES2::is_mesh(const RID& p_rid) const {
return mesh_owner.owns(p_rid);
}
bool RasterizerGLES2::is_immediate(const RID& p_rid) const {
return immediate_owner.owns(p_rid);
}
bool RasterizerGLES2::is_multimesh(const RID& p_rid) const {
return multimesh_owner.owns(p_rid);
}
bool RasterizerGLES2::is_particles(const RID &p_beam) const {
return particles_owner.owns(p_beam);
}
bool RasterizerGLES2::is_light(const RID& p_rid) const {
return light_owner.owns(p_rid);
}
bool RasterizerGLES2::is_light_instance(const RID& p_rid) const {
return light_instance_owner.owns(p_rid);
}
bool RasterizerGLES2::is_particles_instance(const RID& p_rid) const {
return particles_instance_owner.owns(p_rid);
}
bool RasterizerGLES2::is_skeleton(const RID& p_rid) const {
return skeleton_owner.owns(p_rid);
}
bool RasterizerGLES2::is_environment(const RID& p_rid) const {
return environment_owner.owns(p_rid);
}
bool RasterizerGLES2::is_shader(const RID& p_rid) const {
return false;
}
void RasterizerGLES2::free(const RID& p_rid) {
if (texture_owner.owns(p_rid)) {
// delete the texture
Texture *texture = texture_owner.get(p_rid);
// glDeleteTextures( 1,&texture->tex_id );
_rinfo.texture_mem-=texture->total_data_size;
texture_owner.free(p_rid);
memdelete(texture);
} else if (shader_owner.owns(p_rid)) {
// delete the texture
Shader *shader = shader_owner.get(p_rid);
switch(shader->mode) {
case VS::SHADER_MATERIAL: {
material_shader.free_custom_shader(shader->custom_code_id);
} break;
case VS::SHADER_POST_PROCESS: {
//postprocess_shader.free_custom_shader(shader->custom_code_id);
} break;
}
if (shader->dirty_list.in_list())
_shader_dirty_list.remove(&shader->dirty_list);
//material_shader.free_custom_shader(shader->custom_code_id);
shader_owner.free(p_rid);
memdelete(shader);
} else if (material_owner.owns(p_rid)) {
Material *material = material_owner.get( p_rid );
ERR_FAIL_COND(!material);
_free_fixed_material(p_rid); //just in case
material_owner.free(p_rid);
memdelete(material);
} else if (mesh_owner.owns(p_rid)) {
Mesh *mesh = mesh_owner.get(p_rid);
ERR_FAIL_COND(!mesh);
for (int i=0;i<mesh->surfaces.size();i++) {
Surface *surface = mesh->surfaces[i];
if (surface->array_local != 0) {
memfree(surface->array_local);
};
if (surface->index_array_local != 0) {
memfree(surface->index_array_local);
};
if (mesh->morph_target_count>0) {
for(int i=0;i<mesh->morph_target_count;i++) {
memdelete_arr(surface->morph_targets_local[i].array);
}
memdelete_arr(surface->morph_targets_local);
surface->morph_targets_local=NULL;
}
if (surface->vertex_id)
glDeleteBuffers(1,&surface->vertex_id);
if (surface->index_id)
glDeleteBuffers(1,&surface->index_id);
memdelete( surface );
};
mesh->surfaces.clear();
mesh_owner.free(p_rid);
memdelete(mesh);
} else if (multimesh_owner.owns(p_rid)) {
MultiMesh *multimesh = multimesh_owner.get(p_rid);
ERR_FAIL_COND(!multimesh);
if (multimesh->tex_id) {
glDeleteTextures(1,&multimesh->tex_id);
}
multimesh_owner.free(p_rid);
memdelete(multimesh);
} else if (immediate_owner.owns(p_rid)) {
Immediate *immediate = immediate_owner.get(p_rid);
ERR_FAIL_COND(!immediate);
immediate_owner.free(p_rid);
memdelete(immediate);
} else if (particles_owner.owns(p_rid)) {
Particles *particles = particles_owner.get(p_rid);
ERR_FAIL_COND(!particles);
particles_owner.free(p_rid);
memdelete(particles);
} else if (particles_instance_owner.owns(p_rid)) {
ParticlesInstance *particles_isntance = particles_instance_owner.get(p_rid);
ERR_FAIL_COND(!particles_isntance);
particles_instance_owner.free(p_rid);
memdelete(particles_isntance);
} else if (skeleton_owner.owns(p_rid)) {
Skeleton *skeleton = skeleton_owner.get( p_rid );
ERR_FAIL_COND(!skeleton);
if (skeleton->dirty_list.in_list())
_skeleton_dirty_list.remove(&skeleton->dirty_list);
if (skeleton->tex_id) {
glDeleteTextures(1,&skeleton->tex_id);
}
skeleton_owner.free(p_rid);
memdelete(skeleton);
} else if (light_owner.owns(p_rid)) {
Light *light = light_owner.get( p_rid );
ERR_FAIL_COND(!light)
light_owner.free(p_rid);
memdelete(light);
} else if (light_instance_owner.owns(p_rid)) {
LightInstance *light_instance = light_instance_owner.get( p_rid );
ERR_FAIL_COND(!light_instance);
light_instance->clear_shadow_buffers();
light_instance_owner.free(p_rid);
memdelete( light_instance );
} else if (environment_owner.owns(p_rid)) {
Environment *env = environment_owner.get( p_rid );
ERR_FAIL_COND(!env);
environment_owner.free(p_rid);
memdelete( env );
} else if (viewport_data_owner.owns(p_rid)) {
ViewportData *viewport_data = viewport_data_owner.get( p_rid );
ERR_FAIL_COND(!viewport_data);
glDeleteFramebuffers(1,&viewport_data->lum_fbo);
glDeleteTextures(1,&viewport_data->lum_color);
viewport_data_owner.free(p_rid);
memdelete( viewport_data );
} else if (render_target_owner.owns(p_rid)) {
RenderTarget *render_target = render_target_owner.get( p_rid );
ERR_FAIL_COND(!render_target);
render_target_set_size(p_rid,0,0); //clears framebuffer
texture_owner.free(render_target->texture);
memdelete(render_target->texture_ptr);
render_target_owner.free(p_rid);
memdelete( render_target );
};
}
bool RasterizerGLES2::ShadowBuffer::init(int p_size,bool p_use_depth) {
size=p_size;
// Create a framebuffer object
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
// Create a render buffer
glGenRenderbuffers(1, &rbo);
glBindRenderbuffer(GL_RENDERBUFFER, rbo);
// Create a texture for storing the depth
glGenTextures(1, &depth);
glBindTexture(GL_TEXTURE_2D, depth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
// Remove artifact on the edges of the shadowmap
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
//print_line("ERROR? "+itos(glGetError()));
if ( p_use_depth ) {
// We'll use a depth texture to store the depths in the shadow map
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, size, size, 0,
GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
#ifdef GLEW_ENABLED
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
#endif
// Attach the depth texture to FBO depth attachment point
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_TEXTURE_2D, depth, 0);
#ifdef GLEW_ENABLED
glDrawBuffer(GL_NONE);
#endif
} else {
// We'll use a RGBA texture into which we pack the depth info
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size, size, 0,
GL_RGBA, GL_UNSIGNED_BYTE, NULL);
// Attach the RGBA texture to FBO color attachment point
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, depth, 0);
// Allocate 16-bit depth buffer
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, size,size);
// Attach the render buffer as depth buffer - will be ignored
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_RENDERBUFFER, rbo);
}
#if 0
if (!p_use_depth) {
print_line("try no depth!");
glGenTextures(1, &rgba);
glBindTexture(GL_TEXTURE_2D, rgba);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size, size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rgba, 0);
/*
glGenRenderbuffers(1, &depth);
glBindRenderbuffer(GL_RENDERBUFFER, depth);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, p_size, p_size);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depth);
*/
glGenTextures(1, &depth);
glBindTexture(GL_TEXTURE_2D, depth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16, size, size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0);
} else {
// glGenRenderbuffers(1, &rbo);
// glBindRenderbuffer(GL_RENDERBUFFER, rbo);
glGenTextures(1, &depth);
glBindTexture(GL_TEXTURE_2D, depth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, size, size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0);
}
#endif
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
//printf("errnum: %x\n",status);
#ifdef GLEW_ENABLED
if (p_use_depth) {
glDrawBuffer(GL_BACK);
}
#endif
glBindFramebuffer(GL_FRAMEBUFFER, 0);
DEBUG_TEST_ERROR("Shadow Buffer Init");
ERR_FAIL_COND_V( status != GL_FRAMEBUFFER_COMPLETE,false );
#ifdef GLEW_ENABLED
if (p_use_depth) {
glDrawBuffer(GL_BACK);
}
#endif
#if 0
glGenFramebuffers(1, &fbo_blur);
glBindFramebuffer(GL_FRAMEBUFFER, fbo_blur);
glGenRenderbuffers(1, &rbo_blur);
glBindRenderbuffer(GL_RENDERBUFFER, rbo_blur);
glGenTextures(1, &blur);
glBindTexture(GL_TEXTURE_2D, blur);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size, size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
// glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16, size, size, 0,
// GL_DEPTH_COMPONENT16, GL_UNSIGNED_SHORT, NULL);
// Attach the RGBA texture to FBO color attachment point
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, blur, 0);
// Allocate 16-bit depth buffer
/* glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, size, size);
// Attach the render buffer as depth buffer - will be ignored
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_RENDERBUFFER, rbo_blur);
*/
status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
OS::get_singleton()->print("Status: %x\n",status);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
DEBUG_TEST_ERROR("Shadow Blur Buffer Init");
ERR_FAIL_COND_V( status != GL_FRAMEBUFFER_COMPLETE,false );
#endif
return true;
}
void RasterizerGLES2::_update_framebuffer() {
if (!use_framebuffers)
return;
int scale = GLOBAL_DEF("rasterizer/framebuffer_shrink",1);
int dwidth = OS::get_singleton()->get_video_mode().width/scale;
int dheight = OS::get_singleton()->get_video_mode().height/scale;
if (framebuffer.fbo && dwidth==framebuffer.width && dheight==framebuffer.height)
return;
bool use_fbo=true;
if (framebuffer.fbo!=0) {
glDeleteFramebuffers(1,&framebuffer.fbo);
#if 0
glDeleteTextures(1,&framebuffer.depth);
#else
glDeleteRenderbuffers(1,&framebuffer.depth);
#endif
glDeleteTextures(1,&framebuffer.color);
for(int i=0;i<framebuffer.luminance.size();i++) {
glDeleteTextures(1,&framebuffer.luminance[i].color);
glDeleteFramebuffers(1,&framebuffer.luminance[i].fbo);
}
for(int i=0;i<3;i++) {
glDeleteTextures(1,&framebuffer.blur[i].color);
glDeleteFramebuffers(1,&framebuffer.blur[i].fbo);
}
glDeleteTextures(1,&framebuffer.sample_color);
glDeleteFramebuffers(1,&framebuffer.sample_fbo);
framebuffer.luminance.clear();
framebuffer.blur_size=0;
framebuffer.fbo=0;
}
framebuffer.active=use_fbo;
framebuffer.width=dwidth;
framebuffer.height=dheight;
framebuffer.scale=scale;
if (!framebuffer.active)
return;
glGenFramebuffers(1, &framebuffer.fbo);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo);
//print_line("generating fbo, id: "+itos(framebuffer.fbo));
//depth
// Create a render buffer
#if 0
glGenTextures(1, &framebuffer.depth);
glBindTexture(GL_TEXTURE_2D, framebuffer.depth);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, framebuffer.width, framebuffer.height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE );
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, framebuffer.depth, 0);
#else
glGenRenderbuffers(1, &framebuffer.depth);
glBindRenderbuffer(GL_RENDERBUFFER, framebuffer.depth );
glRenderbufferStorage(GL_RENDERBUFFER, use_depth24?_DEPTH_COMPONENT24_OES:GL_DEPTH_COMPONENT16, framebuffer.width,framebuffer.height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, framebuffer.depth);
#endif
//color
// GLuint format_rgba = use_fp16_fb?_GL_RGBA16F_EXT:GL_RGBA;
GLuint format_rgba = GL_RGBA;
GLuint format_rgb = use_fp16_fb?_GL_RGB16F_EXT:GL_RGB;
GLuint format_type = use_fp16_fb?_GL_HALF_FLOAT_OES:GL_UNSIGNED_BYTE;
/*GLuint format_luminance = use_fp16_fb?GL_RGB16F:GL_RGBA;
GLuint format_luminance_type = use_fp16_fb?(use_fu_GL_HALF_FLOAT_OES):GL_UNSIGNED_BYTE;
GLuint format_luminance_components = use_fp16_fb?GL_RGB:GL_RGBA;*/
GLuint format_luminance = use_fp16_fb?_GL_RG_EXT:GL_RGBA;
GLuint format_luminance_type = use_fp16_fb?(full_float_fb_supported?GL_FLOAT:_GL_HALF_FLOAT_OES):GL_UNSIGNED_BYTE;
GLuint format_luminance_components = use_fp16_fb?_GL_RG_EXT:GL_RGBA;
glGenTextures(1, &framebuffer.color);
glBindTexture(GL_TEXTURE_2D, framebuffer.color);
glTexImage2D(GL_TEXTURE_2D, 0, format_rgba, framebuffer.width, framebuffer.height, 0, GL_RGBA, format_type, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, framebuffer.color, 0);
#
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
if (status != GL_FRAMEBUFFER_COMPLETE) {
glDeleteFramebuffers(1,&framebuffer.fbo);
#if 0
glDeleteTextures(1,&framebuffer.depth);
#else
glDeleteRenderbuffers(1,&framebuffer.depth);
#endif
glDeleteTextures(1,&framebuffer.color);
framebuffer.fbo=0;
framebuffer.active=false;
//print_line("**************** NO FAMEBUFFEEEERRRR????");
WARN_PRINT("Could not create framebuffer!!");
}
//sample
glGenFramebuffers(1, &framebuffer.sample_fbo);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.sample_fbo);
glGenTextures(1, &framebuffer.sample_color);
glBindTexture(GL_TEXTURE_2D, framebuffer.sample_color);
glTexImage2D(GL_TEXTURE_2D, 0, format_rgba, framebuffer.width, framebuffer.height, 0, GL_RGBA, format_type, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, framebuffer.sample_color, 0);
#
status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
if (status != GL_FRAMEBUFFER_COMPLETE) {
glDeleteFramebuffers(1,&framebuffer.fbo);
#if 0
glDeleteTextures(1,&framebuffer.depth);
#else
glDeleteRenderbuffers(1,&framebuffer.depth);
#endif
glDeleteTextures(1,&framebuffer.color);
glDeleteTextures(1,&framebuffer.sample_color);
glDeleteFramebuffers(1,&framebuffer.sample_fbo);
framebuffer.fbo=0;
framebuffer.active=false;
//print_line("**************** NO FAMEBUFFEEEERRRR????");
WARN_PRINT("Could not create framebuffer!!");
}
//blur
int size = GLOBAL_DEF("rasterizer/blur_buffer_size",256);
if (size!=framebuffer.blur_size) {
for(int i=0;i<3;i++) {
if (framebuffer.blur[i].fbo) {
glDeleteFramebuffers(1,&framebuffer.blur[i].fbo);
glDeleteTextures(1,&framebuffer.blur[i].color);
framebuffer.blur[i].fbo=0;
framebuffer.blur[i].color=0;
}
}
framebuffer.blur_size=size;
for(int i=0;i<3;i++) {
glGenFramebuffers(1, &framebuffer.blur[i].fbo);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[i].fbo);
glGenTextures(1, &framebuffer.blur[i].color);
glBindTexture(GL_TEXTURE_2D, framebuffer.blur[i].color);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, format_rgba, size, size, 0,
GL_RGBA, format_type, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, framebuffer.blur[i].color, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
DEBUG_TEST_ERROR("Shadow Buffer Init");
ERR_CONTINUE( status != GL_FRAMEBUFFER_COMPLETE );
}
}
// luminance
int base_size = GLOBAL_DEF("rasterizer/luminance_buffer_size",81);
if (framebuffer.luminance.empty() || framebuffer.luminance[0].size!=base_size) {
for(int i=0;i<framebuffer.luminance.size();i++) {
glDeleteFramebuffers(1,&framebuffer.luminance[i].fbo);
glDeleteTextures(1,&framebuffer.luminance[i].color);
}
framebuffer.luminance.clear();
while(base_size>0) {
FrameBuffer::Luminance lb;
lb.size=base_size;
glGenFramebuffers(1, &lb.fbo);
glBindFramebuffer(GL_FRAMEBUFFER, lb.fbo);
glGenTextures(1, &lb.color);
glBindTexture(GL_TEXTURE_2D, lb.color);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, format_luminance, lb.size, lb.size, 0,
format_luminance_components, format_luminance_type, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, lb.color, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
base_size/=3;
DEBUG_TEST_ERROR("Shadow Buffer Init");
ERR_CONTINUE( status != GL_FRAMEBUFFER_COMPLETE );
framebuffer.luminance.push_back(lb);
}
}
}
void RasterizerGLES2::set_base_framebuffer(GLuint p_id, Vector2 p_size) {
base_framebuffer=p_id;
if (p_size.x != 0) {
window_size = p_size;
};
}
#if 0
void RasterizerGLES2::_update_blur_buffer() {
int size = GLOBAL_DEF("rasterizer/blur_buffer_size",256);
if (size!=framebuffer.blur_size) {
for(int i=0;i<3;i++) {
if (framebuffer.blur[i].fbo) {
glDeleteFramebuffers(1,&framebuffer.blur[i].fbo);
glDeleteTextures(1,&framebuffer.blur[i].color);
framebuffer.blur[i].fbo=0;
framebuffer.blur[i].color=0;
}
}
framebuffer.blur_size=size;
for(int i=0;i<3;i++) {
glGenFramebuffers(1, &framebuffer.blur[i].fbo);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[i].fbo);
glGenTextures(1, &framebuffer.blur[i].color);
glBindTexture(GL_TEXTURE_2D, framebuffer.blur[i].color);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size, size, 0,
GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, framebuffer.blur[i].color, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
DEBUG_TEST_ERROR("Shadow Buffer Init");
ERR_CONTINUE( status != GL_FRAMEBUFFER_COMPLETE );
}
}
}
#endif
void RasterizerGLES2::init() {
#ifdef GLEW_ENABLED
GLuint res = glewInit();
ERR_FAIL_COND(res!=GLEW_OK);
#endif
scene_pass=1;
if (extensions.size()==0) {
set_extensions( (const char*)glGetString( GL_EXTENSIONS ));
}
GLint tmp = 0;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &tmp);
//print_line("GL_MAX_VERTEX_ATTRIBS "+itos(tmp));
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glFrontFace(GL_CW);
//glEnable(GL_TEXTURE_2D);
default_material=create_default_material();
material_shader.init();
canvas_shader.init();
copy_shader.init();
#ifdef GLEW_ENABLED
material_shader.set_conditional(MaterialShaderGLES2::USE_GLES_OVER_GL,true);
canvas_shader.set_conditional(CanvasShaderGLES2::USE_GLES_OVER_GL,true);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLES_OVER_GL,true);
#endif
shadow=NULL;
shadow_pass=0;
framebuffer.fbo=0;
framebuffer.width=0;
framebuffer.height=0;
// framebuffer.buff16=false;
// framebuffer.blur[0].fbo=false;
// framebuffer.blur[1].fbo=false;
framebuffer.active=false;
//do a single initial clear
glClearColor(0,0,0,1);
//glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
skinned_buffer_size = GLOBAL_DEF("rasterizer/skinned_buffer_size",DEFAULT_SKINNED_BUFFER_SIZE);
skinned_buffer = memnew_arr( uint8_t, skinned_buffer_size );
glGenTextures(1, &white_tex);
unsigned char whitetexdata[8*8*3];
for(int i=0;i<8*8*3;i++) {
whitetexdata[i]=255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,white_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE,whitetexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,0);
#ifdef GLEW_ENABLED
read_depth_supported=true;
pvr_supported=false;
etc_supported=false;
use_depth24 =true;
s3tc_supported = true;
atitc_supported = false;
use_hw_skeleton_xform = false;
// use_texture_instancing=false;
// use_attribute_instancing=true;
use_texture_instancing=false;
use_attribute_instancing=true;
full_float_fb_supported=true;
#ifdef OSX_ENABLED
use_rgba_shadowmaps=true;
use_fp16_fb=false;
#else
#endif
use_half_float=true;
#else
for (Set<String>::Element *E=extensions.front();E;E=E->next()) {
print_line(E->get());
}
read_depth_supported=extensions.has("GL_OES_depth_texture");
use_rgba_shadowmaps=!read_depth_supported;
if (shadow_filter>=SHADOW_FILTER_ESM && !extensions.has("GL_EXT_frag_depth")) {
use_rgba_shadowmaps=true; //no other way, go back to rgba
}
pvr_supported=extensions.has("GL_IMG_texture_compression_pvrtc");
etc_supported=extensions.has("GL_OES_compressed_ETC1_RGB8_texture");
use_depth24 = extensions.has("GL_OES_depth24");
s3tc_supported = extensions.has("GL_EXT_texture_compression_dxt1") || extensions.has("GL_EXT_texture_compression_s3tc") || extensions.has("WEBGL_compressed_texture_s3tc");
use_half_float = extensions.has("GL_OES_vertex_half_float");
atitc_supported=extensions.has("GL_AMD_compressed_ATC_texture");
print_line("S3TC: "+itos(s3tc_supported)+" ATITC: "+itos(atitc_supported));
GLint vtf;
glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS,&vtf);
use_hw_skeleton_xform=vtf>0 && extensions.has("GL_OES_texture_float");
//if (extensions.has("GL_QCOM_tiled_rendering"))
// use_hw_skeleton_xform=false;
GLint mva;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS,&mva);
if (vtf==0 && mva>8) {
//tegra 3, mali 400
use_attribute_instancing=true;
use_texture_instancing=false;
} else if (vtf>0 && extensions.has("GL_OES_texture_float")){
//use_texture_instancing=true;
use_texture_instancing=false; // i don't get it, uniforms are faster.
use_attribute_instancing=false;
} else {
use_texture_instancing=false;
use_attribute_instancing=false;
}
if (use_fp16_fb) {
use_fp16_fb=extensions.has("GL_OES_texture_half_float") && extensions.has("GL_EXT_color_buffer_half_float") && extensions.has("GL_EXT_texture_rg");
}
full_float_fb_supported=extensions.has("GL_EXT_color_buffer_float");
//etc_supported=false;
use_hw_skeleton_xform=false;
#endif
//use_rgba_shadowmaps=true;
//read_depth_supported=false;
{
//shadowmaps
OS::VideoMode vm=OS::get_singleton()->get_video_mode();
//don't use a shadowbuffer too big in GLES, this should be the maximum
int max_shadow_size = GLOBAL_DEF("rasterizer/max_shadow_buffer_size",1024);//nearest_power_of_2(MIN(vm.width,vm.height))/2;
int smsize=max_shadow_size;
while(smsize>=16) {
ShadowBuffer sb;
bool s = sb.init(smsize,!use_rgba_shadowmaps);
if (s)
near_shadow_buffers.push_back(sb);
smsize/=2;
}
blur_shadow_buffer.init(max_shadow_size,!use_rgba_shadowmaps);
//material_shader
material_shader.set_conditional(MaterialShaderGLES2::USE_DEPTH_SHADOWS,!use_rgba_shadowmaps);
}
shadow_material = material_create(); //empty with nothing
shadow_mat_ptr = material_owner.get(shadow_material);
overdraw_material = create_overdraw_debug_material();
copy_shader.set_conditional(CopyShaderGLES2::USE_8BIT_HDR,!use_fp16_fb);
canvas_shader.set_conditional(CanvasShaderGLES2::USE_PIXEL_SNAP,GLOBAL_DEF("rasterizer/use_pixel_snap",false));
npo2_textures_available=true;
//fragment_lighting=false;
_rinfo.texture_mem=0;
current_env=NULL;
current_rt=NULL;
current_vd=NULL;
current_debug=VS::SCENARIO_DEBUG_DISABLED;
glGenBuffers(1,&gui_quad_buffer);
glBindBuffer(GL_ARRAY_BUFFER,gui_quad_buffer);
glBufferData(GL_ARRAY_BUFFER,128,NULL,GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER,0); //unbind
_update_framebuffer();
DEBUG_TEST_ERROR("Initializing");
}
void RasterizerGLES2::finish() {
memdelete_arr(skinned_buffer);
}
int RasterizerGLES2::get_render_info(VS::RenderInfo p_info) {
switch(p_info) {
case VS::INFO_OBJECTS_IN_FRAME: {
return _rinfo.object_count;
} break;
case VS::INFO_VERTICES_IN_FRAME: {
return _rinfo.vertex_count;
} break;
case VS::INFO_MATERIAL_CHANGES_IN_FRAME: {
return _rinfo.mat_change_count;
} break;
case VS::INFO_SHADER_CHANGES_IN_FRAME: {
return _rinfo.shader_change_count;
} break;
case VS::INFO_DRAW_CALLS_IN_FRAME: {
return _rinfo.draw_calls;
} break;
case VS::INFO_SURFACE_CHANGES_IN_FRAME: {
return _rinfo.surface_count;
} break;
case VS::INFO_USAGE_VIDEO_MEM_TOTAL: {
return 0;
} break;
case VS::INFO_VIDEO_MEM_USED: {
return get_render_info(VS::INFO_TEXTURE_MEM_USED)+get_render_info(VS::INFO_VERTEX_MEM_USED);
} break;
case VS::INFO_TEXTURE_MEM_USED: {
return _rinfo.texture_mem;
} break;
case VS::INFO_VERTEX_MEM_USED: {
return 0;
} break;
}
return 0;
}
void RasterizerGLES2::set_extensions(const char *p_strings) {
Vector<String> strings = String(p_strings).split(" ",false);
for(int i=0;i<strings.size();i++) {
extensions.insert(strings[i]);
// print_line(strings[i]);
}
}
bool RasterizerGLES2::needs_to_draw_next_frame() const {
return draw_next_frame;
}
bool RasterizerGLES2::has_feature(VS::Features p_feature) const {
switch( p_feature) {
case VS::FEATURE_SHADERS: return true;
case VS::FEATURE_NEEDS_RELOAD_HOOK: return use_reload_hooks;
default: return false;
}
}
void RasterizerGLES2::reload_vram() {
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glFrontFace(GL_CW);
//do a single initial clear
glClearColor(0,0,0,1);
//glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glGenTextures(1, &white_tex);
unsigned char whitetexdata[8*8*3];
for(int i=0;i<8*8*3;i++) {
whitetexdata[i]=255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,white_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE,whitetexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,0);
List<RID> textures;
texture_owner.get_owned_list(&textures);
keep_copies=false;
for(List<RID>::Element *E=textures.front();E;E=E->next()) {
RID tid = E->get();
Texture *t=texture_owner.get(tid);
ERR_CONTINUE(!t);
t->tex_id=0;
t->data_size=0;
glGenTextures(1, &t->tex_id);
t->active=false;
if (t->render_target)
continue;
texture_allocate(tid,t->width,t->height,t->format,t->flags);
bool had_image=false;
for(int i=0;i<6;i++) {
if (!t->image[i].empty()) {
texture_set_data(tid,t->image[i],VS::CubeMapSide(i));
had_image=true;
}
}
if (!had_image && t->reloader) {
Object *rl = ObjectDB::get_instance(t->reloader);
if (rl)
rl->call(t->reloader_func,tid);
}
}
keep_copies=true;
List<RID> render_targets;
render_target_owner.get_owned_list(&render_targets);
for(List<RID>::Element *E=render_targets.front();E;E=E->next()) {
RenderTarget *rt = render_target_owner.get(E->get());
int w = rt->width;
int h = rt->height;
rt->width=0;
rt->height=0;
render_target_set_size(E->get(),w,h);
}
List<RID> meshes;
mesh_owner.get_owned_list(&meshes);
for(List<RID>::Element *E=meshes.front();E;E=E->next()) {
Mesh *mesh = mesh_owner.get(E->get());
Vector<Surface*> surfaces =mesh->surfaces;
mesh->surfaces.clear();
for(int i=0;i<surfaces.size();i++) {
mesh_add_surface(E->get(),surfaces[i]->primitive,surfaces[i]->data,surfaces[i]->morph_data,surfaces[i]->alpha_sort);
mesh_surface_set_material(E->get(),i,surfaces[i]->material);
if (surfaces[i]->array_local != 0) {
memfree(surfaces[i]->array_local);
};
if (surfaces[i]->index_array_local != 0) {
memfree(surfaces[i]->index_array_local);
};
memdelete( surfaces[i] );
}
}
List<RID> skeletons;
skeleton_owner.get_owned_list(&skeletons);
for(List<RID>::Element *E=skeletons.front();E;E=E->next()) {
Skeleton *sk = skeleton_owner.get(E->get());
if (!sk->tex_id)
continue; //does not use hw transform, leave alone
Vector<Skeleton::Bone> bones = sk->bones;
sk->bones.clear();
sk->tex_id=0;
sk->pixel_size=1.0;
skeleton_resize(E->get(),bones.size());
sk->bones=bones;
}
List<RID> multimeshes;
multimesh_owner.get_owned_list(&multimeshes);
for(List<RID>::Element *E=multimeshes.front();E;E=E->next()) {
MultiMesh *mm = multimesh_owner.get(E->get());
if (!mm->tex_id)
continue; //does not use hw transform, leave alone
Vector<MultiMesh::Element> elements = mm->elements;
mm->elements.clear();
mm->tw=1;
mm->th=1;
mm->tex_id=0;
mm->last_pass=0;
mm->visible = -1;
multimesh_set_instance_count(E->get(),elements.size());
mm->elements=elements;
}
if (framebuffer.fbo!=0) {
framebuffer.fbo=0;
framebuffer.depth=0;
framebuffer.color=0;
for(int i=0;i<3;i++) {
framebuffer.blur[i].fbo=0;
framebuffer.blur[i].color=0;
}
framebuffer.luminance.clear();
}
for(int i=0;i<near_shadow_buffers.size();i++) {
near_shadow_buffers[i].init(near_shadow_buffers[i].size,!use_rgba_shadowmaps);
}
blur_shadow_buffer.init(near_shadow_buffers[0].size,!use_rgba_shadowmaps);
canvas_shader.clear_caches();
material_shader.clear_caches();
blur_shader.clear_caches();
copy_shader.clear_caches();
List<RID> shaders;
shader_owner.get_owned_list(&shaders);
for(List<RID>::Element *E=shaders.front();E;E=E->next()) {
Shader *s = shader_owner.get(E->get());
s->custom_code_id=0;
s->version=1;
s->valid=false;
shader_set_mode(E->get(),s->mode);
}
List<RID> materials;
material_owner.get_owned_list(&materials);
for(List<RID>::Element *E=materials.front();E;E=E->next()) {
Material *m = material_owner.get(E->get());
RID shader = m->shader;
m->shader_version=0;
material_set_shader(E->get(),shader);
}
}
void RasterizerGLES2::set_use_framebuffers(bool p_use) {
use_framebuffers=p_use;
}
RasterizerGLES2* RasterizerGLES2::get_singleton() {
return _singleton;
};
RasterizerGLES2::RasterizerGLES2(bool p_compress_arrays,bool p_keep_ram_copy,bool p_default_fragment_lighting,bool p_use_reload_hooks) {
_singleton = this;
keep_copies=p_keep_ram_copy;
use_reload_hooks=p_use_reload_hooks;
pack_arrays=p_compress_arrays;
p_default_fragment_lighting=false;
fragment_lighting=GLOBAL_DEF("rasterizer/use_fragment_lighting",true);
read_depth_supported=true; //todo check for extension
shadow_filter=ShadowFilterTechnique((int)(GLOBAL_DEF("rasterizer/shadow_filter",SHADOW_FILTER_PCF5)));
Globals::get_singleton()->set_custom_property_info("rasterizer/shadow_filter",PropertyInfo(Variant::INT,"rasterizer/shadow_filter",PROPERTY_HINT_ENUM,"None,PCF5,PCF13,ESM"));
use_fp16_fb=bool(GLOBAL_DEF("rasterizer/fp16_framebuffer",true));
use_shadow_mapping=true;
use_fast_texture_filter=!bool(GLOBAL_DEF("rasterizer/trilinear_mipmap_filter",true));
skel_default.resize(1024*4);
for(int i=0;i<1024/3;i++) {
float * ptr = skel_default.ptr();
ptr+=i*4*4;
ptr[0]=1.0;
ptr[1]=0.0;
ptr[2]=0.0;
ptr[3]=0.0;
ptr[4]=0.0;
ptr[5]=1.0;
ptr[6]=0.0;
ptr[7]=0.0;
ptr[8]=0.0;
ptr[9]=0.0;
ptr[10]=1.0;
ptr[12]=0.0;
}
base_framebuffer=0;
frame = 0;
draw_next_frame=false;
use_framebuffers=true;
framebuffer.active=false;
tc0_id_cache=0;
tc0_idx=0;
};
RasterizerGLES2::~RasterizerGLES2() {
};
#endif