godot/thirdparty/rvo2/Vector3.h
Rémi Verschelde c7b53c03ae
SCons: Add explicit dependencies on thirdparty code in cloned env
Since we clone the environments to build thirdparty code, we don't get an
explicit dependency on the build objects produced by that environment.

So when we update thirdparty code, Godot code using it is not necessarily
rebuilt (I think it is for changed headers, but not for changed .c/.cpp files),
which can lead to an invalid compilation output (linking old Godot .o files
with a newer, potentially ABI breaking version of thirdparty code).

This was only seen as really problematic with bullet updates (leading to
crashes when rebuilding Godot after a bullet update without cleaning .o files),
but it's safer to fix it everywhere, even if it's a LOT of hacky boilerplate.
2020-12-18 10:29:34 +01:00

336 lines
12 KiB
C++

/*
* Vector3.h
* RVO2-3D Library
*
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
*/
/**
* \file Vector3.h
* \brief Contains the Vector3 class.
*/
#ifndef RVO_VECTOR3_H_
#define RVO_VECTOR3_H_
#include "API.h"
#include <cmath>
#include <cstddef>
#include <ostream>
namespace RVO {
/**
* \brief Defines a three-dimensional vector.
*/
class Vector3 {
public:
/**
* \brief Constructs and initializes a three-dimensional vector instance to zero.
*/
RVO_API inline Vector3()
{
val_[0] = 0.0f;
val_[1] = 0.0f;
val_[2] = 0.0f;
}
/**
* \brief Constructs and initializes a three-dimensional vector from the specified three-element array.
* \param val The three-element array containing the xyz-coordinates.
*/
RVO_API inline explicit Vector3(const float val[3])
{
val_[0] = val[0];
val_[1] = val[1];
val_[2] = val[2];
}
/**
* \brief Constructs and initializes a three-dimensional vector from the specified xyz-coordinates.
* \param x The x-coordinate of the three-dimensional vector.
* \param y The y-coordinate of the three-dimensional vector.
* \param z The z-coordinate of the three-dimensional vector.
*/
RVO_API inline Vector3(float x, float y, float z)
{
val_[0] = x;
val_[1] = y;
val_[2] = z;
}
/**
* \brief Returns the x-coordinate of this three-dimensional vector.
* \return The x-coordinate of the three-dimensional vector.
*/
RVO_API inline float x() const { return val_[0]; }
/**
* \brief Returns the y-coordinate of this three-dimensional vector.
* \return The y-coordinate of the three-dimensional vector.
*/
RVO_API inline float y() const { return val_[1]; }
/**
* \brief Returns the z-coordinate of this three-dimensional vector.
* \return The z-coordinate of the three-dimensional vector.
*/
RVO_API inline float z() const { return val_[2]; }
/**
* \brief Returns the specified coordinate of this three-dimensional vector.
* \param i The coordinate that should be returned (0 <= i < 3).
* \return The specified coordinate of the three-dimensional vector.
*/
RVO_API inline float operator[](size_t i) const { return val_[i]; }
/**
* \brief Returns a reference to the specified coordinate of this three-dimensional vector.
* \param i The coordinate to which a reference should be returned (0 <= i < 3).
* \return A reference to the specified coordinate of the three-dimensional vector.
*/
RVO_API inline float &operator[](size_t i) { return val_[i]; }
/**
* \brief Computes the negation of this three-dimensional vector.
* \return The negation of this three-dimensional vector.
*/
RVO_API inline Vector3 operator-() const
{
return Vector3(-val_[0], -val_[1], -val_[2]);
}
/**
* \brief Computes the dot product of this three-dimensional vector with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the dot product should be computed.
* \return The dot product of this three-dimensional vector with a specified three-dimensional vector.
*/
RVO_API inline float operator*(const Vector3 &vector) const
{
return val_[0] * vector[0] + val_[1] * vector[1] + val_[2] * vector[2];
}
/**
* \brief Computes the scalar multiplication of this three-dimensional vector with the specified scalar value.
* \param scalar The scalar value with which the scalar multiplication should be computed.
* \return The scalar multiplication of this three-dimensional vector with a specified scalar value.
*/
RVO_API inline Vector3 operator*(float scalar) const
{
return Vector3(val_[0] * scalar, val_[1] * scalar, val_[2] * scalar);
}
/**
* \brief Computes the scalar division of this three-dimensional vector with the specified scalar value.
* \param scalar The scalar value with which the scalar division should be computed.
* \return The scalar division of this three-dimensional vector with a specified scalar value.
*/
RVO_API inline Vector3 operator/(float scalar) const
{
const float invScalar = 1.0f / scalar;
return Vector3(val_[0] * invScalar, val_[1] * invScalar, val_[2] * invScalar);
}
/**
* \brief Computes the vector sum of this three-dimensional vector with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the vector sum should be computed.
* \return The vector sum of this three-dimensional vector with a specified three-dimensional vector.
*/
RVO_API inline Vector3 operator+(const Vector3 &vector) const
{
return Vector3(val_[0] + vector[0], val_[1] + vector[1], val_[2] + vector[2]);
}
/**
* \brief Computes the vector difference of this three-dimensional vector with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the vector difference should be computed.
* \return The vector difference of this three-dimensional vector with a specified three-dimensional vector.
*/
RVO_API inline Vector3 operator-(const Vector3 &vector) const
{
return Vector3(val_[0] - vector[0], val_[1] - vector[1], val_[2] - vector[2]);
}
/**
* \brief Tests this three-dimensional vector for equality with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which to test for equality.
* \return True if the three-dimensional vectors are equal.
*/
RVO_API inline bool operator==(const Vector3 &vector) const
{
return val_[0] == vector[0] && val_[1] == vector[1] && val_[2] == vector[2];
}
/**
* \brief Tests this three-dimensional vector for inequality with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which to test for inequality.
* \return True if the three-dimensional vectors are not equal.
*/
RVO_API inline bool operator!=(const Vector3 &vector) const
{
return val_[0] != vector[0] || val_[1] != vector[1] || val_[2] != vector[2];
}
/**
* \brief Sets the value of this three-dimensional vector to the scalar multiplication of itself with the specified scalar value.
* \param scalar The scalar value with which the scalar multiplication should be computed.
* \return A reference to this three-dimensional vector.
*/
RVO_API inline Vector3 &operator*=(float scalar)
{
val_[0] *= scalar;
val_[1] *= scalar;
val_[2] *= scalar;
return *this;
}
/**
* \brief Sets the value of this three-dimensional vector to the scalar division of itself with the specified scalar value.
* \param scalar The scalar value with which the scalar division should be computed.
* \return A reference to this three-dimensional vector.
*/
RVO_API inline Vector3 &operator/=(float scalar)
{
const float invScalar = 1.0f / scalar;
val_[0] *= invScalar;
val_[1] *= invScalar;
val_[2] *= invScalar;
return *this;
}
/**
* \brief Sets the value of this three-dimensional vector to the vector
* sum of itself with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the vector sum should be computed.
* \return A reference to this three-dimensional vector.
*/
RVO_API inline Vector3 &operator+=(const Vector3 &vector)
{
val_[0] += vector[0];
val_[1] += vector[1];
val_[2] += vector[2];
return *this;
}
/**
* \brief Sets the value of this three-dimensional vector to the vector difference of itself with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the vector difference should be computed.
* \return A reference to this three-dimensional vector.
*/
RVO_API inline Vector3 &operator-=(const Vector3 &vector)
{
val_[0] -= vector[0];
val_[1] -= vector[1];
val_[2] -= vector[2];
return *this;
}
private:
float val_[3];
};
/**
* \relates Vector3
* \brief Computes the scalar multiplication of the specified three-dimensional vector with the specified scalar value.
* \param scalar The scalar value with which the scalar multiplication should be computed.
* \param vector The three-dimensional vector with which the scalar multiplication should be computed.
* \return The scalar multiplication of the three-dimensional vector with the scalar value.
*/
inline Vector3 operator*(float scalar, const Vector3 &vector)
{
return Vector3(scalar * vector[0], scalar * vector[1], scalar * vector[2]);
}
/**
* \relates Vector3
* \brief Computes the cross product of the specified three-dimensional vectors.
* \param vector1 The first vector with which the cross product should be computed.
* \param vector2 The second vector with which the cross product should be computed.
* \return The cross product of the two specified vectors.
*/
inline Vector3 cross(const Vector3 &vector1, const Vector3 &vector2)
{
return Vector3(vector1[1] * vector2[2] - vector1[2] * vector2[1], vector1[2] * vector2[0] - vector1[0] * vector2[2], vector1[0] * vector2[1] - vector1[1] * vector2[0]);
}
/**
* \relates Vector3
* \brief Inserts the specified three-dimensional vector into the specified output stream.
* \param os The output stream into which the three-dimensional vector should be inserted.
* \param vector The three-dimensional vector which to insert into the output stream.
* \return A reference to the output stream.
*/
inline std::ostream &operator<<(std::ostream &os, const Vector3 &vector)
{
os << "(" << vector[0] << "," << vector[1] << "," << vector[2] << ")";
return os;
}
/**
* \relates Vector3
* \brief Computes the length of a specified three-dimensional vector.
* \param vector The three-dimensional vector whose length is to be computed.
* \return The length of the three-dimensional vector.
*/
inline float abs(const Vector3 &vector)
{
return std::sqrt(vector * vector);
}
/**
* \relates Vector3
* \brief Computes the squared length of a specified three-dimensional vector.
* \param vector The three-dimensional vector whose squared length is to be computed.
* \return The squared length of the three-dimensional vector.
*/
inline float absSq(const Vector3 &vector)
{
return vector * vector;
}
/**
* \relates Vector3
* \brief Computes the normalization of the specified three-dimensional vector.
* \param vector The three-dimensional vector whose normalization is to be computed.
* \return The normalization of the three-dimensional vector.
*/
inline Vector3 normalize(const Vector3 &vector)
{
return vector / abs(vector);
}
}
#endif