godot/servers/rendering/renderer_rd/light_cluster_builder.h

291 lines
8.8 KiB
C++

/*************************************************************************/
/* light_cluster_builder.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef LIGHT_CLUSTER_BUILDER_H
#define LIGHT_CLUSTER_BUILDER_H
#include "servers/rendering/renderer_rd/renderer_storage_rd.h"
class LightClusterBuilder {
public:
enum LightType {
LIGHT_TYPE_OMNI,
LIGHT_TYPE_SPOT
};
enum ItemType {
ITEM_TYPE_OMNI_LIGHT,
ITEM_TYPE_SPOT_LIGHT,
ITEM_TYPE_REFLECTION_PROBE,
ITEM_TYPE_DECAL,
ITEM_TYPE_MAX //should always be 4
};
enum {
COUNTER_SHIFT = 20, //one million total ids
POINTER_MASK = (1 << COUNTER_SHIFT) - 1,
COUNTER_MASK = 0xfff // 4096 items per cell
};
private:
struct LightData {
float position[3];
uint32_t type;
float radius;
float spot_aperture;
uint32_t pad[2];
};
uint32_t light_count = 0;
uint32_t light_max = 0;
LightData *lights = nullptr;
struct OrientedBoxData {
float position[3];
uint32_t pad;
float x_axis[3];
uint32_t pad2;
float y_axis[3];
uint32_t pad3;
float z_axis[3];
uint32_t pad4;
};
uint32_t refprobe_count = 0;
uint32_t refprobe_max = 0;
OrientedBoxData *refprobes = nullptr;
uint32_t decal_count = 0;
uint32_t decal_max = 0;
OrientedBoxData *decals = nullptr;
struct Item {
AABB aabb;
ItemType type;
uint32_t index;
};
Item *items = nullptr;
uint32_t item_count = 0;
uint32_t item_max = 0;
uint32_t width = 0;
uint32_t height = 0;
uint32_t depth = 0;
struct Cell {
uint32_t item_pointers[ITEM_TYPE_MAX];
};
Vector<uint8_t> cluster_data;
RID cluster_texture;
struct SortID {
uint32_t cell_index;
uint32_t item_index;
ItemType item_type;
};
SortID *sort_ids = nullptr;
Vector<uint32_t> ids;
uint32_t sort_id_count = 0;
uint32_t sort_id_max = 0;
RID items_buffer;
Transform view_xform;
CameraMatrix projection;
float z_far = 0;
float z_near = 0;
_FORCE_INLINE_ void _add_item(const AABB &p_aabb, ItemType p_type, uint32_t p_index) {
if (unlikely(item_count == item_max)) {
item_max = nearest_power_of_2_templated(item_max + 1);
items = (Item *)memrealloc(items, sizeof(Item) * item_max);
}
Item &item = items[item_count];
item.aabb = p_aabb;
item.index = p_index;
item.type = p_type;
item_count++;
}
public:
void begin(const Transform &p_view_transform, const CameraMatrix &p_cam_projection);
_FORCE_INLINE_ void add_light(LightType p_type, const Transform &p_transform, float p_radius, float p_spot_aperture) {
if (unlikely(light_count == light_max)) {
light_max = nearest_power_of_2_templated(light_max + 1);
lights = (LightData *)memrealloc(lights, sizeof(LightData) * light_max);
}
LightData &ld = lights[light_count];
ld.type = p_type;
ld.position[0] = p_transform.origin.x;
ld.position[1] = p_transform.origin.y;
ld.position[2] = p_transform.origin.z;
ld.radius = p_radius;
ld.spot_aperture = p_spot_aperture;
Transform xform = view_xform * p_transform;
ld.radius *= xform.basis.get_uniform_scale();
AABB aabb;
switch (p_type) {
case LIGHT_TYPE_OMNI: {
aabb.position = xform.origin;
aabb.size = Vector3(ld.radius, ld.radius, ld.radius);
aabb.position -= aabb.size;
aabb.size *= 2.0;
_add_item(aabb, ITEM_TYPE_OMNI_LIGHT, light_count);
} break;
case LIGHT_TYPE_SPOT: {
float r = ld.radius;
real_t len = Math::tan(Math::deg2rad(ld.spot_aperture)) * r;
aabb.position = xform.origin;
aabb.expand_to(xform.xform(Vector3(len, len, -r)));
aabb.expand_to(xform.xform(Vector3(-len, len, -r)));
aabb.expand_to(xform.xform(Vector3(-len, -len, -r)));
aabb.expand_to(xform.xform(Vector3(len, -len, -r)));
_add_item(aabb, ITEM_TYPE_SPOT_LIGHT, light_count);
} break;
}
light_count++;
}
_FORCE_INLINE_ void add_reflection_probe(const Transform &p_transform, const Vector3 &p_half_extents) {
if (unlikely(refprobe_count == refprobe_max)) {
refprobe_max = nearest_power_of_2_templated(refprobe_max + 1);
refprobes = (OrientedBoxData *)memrealloc(refprobes, sizeof(OrientedBoxData) * refprobe_max);
}
Transform xform = view_xform * p_transform;
OrientedBoxData &rp = refprobes[refprobe_count];
Vector3 origin = xform.origin;
rp.position[0] = origin.x;
rp.position[1] = origin.y;
rp.position[2] = origin.z;
Vector3 x_axis = xform.basis.get_axis(0) * p_half_extents.x;
rp.x_axis[0] = x_axis.x;
rp.x_axis[1] = x_axis.y;
rp.x_axis[2] = x_axis.z;
Vector3 y_axis = xform.basis.get_axis(1) * p_half_extents.y;
rp.y_axis[0] = y_axis.x;
rp.y_axis[1] = y_axis.y;
rp.y_axis[2] = y_axis.z;
Vector3 z_axis = xform.basis.get_axis(2) * p_half_extents.z;
rp.z_axis[0] = z_axis.x;
rp.z_axis[1] = z_axis.y;
rp.z_axis[2] = z_axis.z;
AABB aabb;
aabb.position = origin + x_axis + y_axis + z_axis;
aabb.expand_to(origin + x_axis + y_axis - z_axis);
aabb.expand_to(origin + x_axis - y_axis + z_axis);
aabb.expand_to(origin + x_axis - y_axis - z_axis);
aabb.expand_to(origin - x_axis + y_axis + z_axis);
aabb.expand_to(origin - x_axis + y_axis - z_axis);
aabb.expand_to(origin - x_axis - y_axis + z_axis);
aabb.expand_to(origin - x_axis - y_axis - z_axis);
_add_item(aabb, ITEM_TYPE_REFLECTION_PROBE, refprobe_count);
refprobe_count++;
}
_FORCE_INLINE_ void add_decal(const Transform &p_transform, const Vector3 &p_half_extents) {
if (unlikely(decal_count == decal_max)) {
decal_max = nearest_power_of_2_templated(decal_max + 1);
decals = (OrientedBoxData *)memrealloc(decals, sizeof(OrientedBoxData) * decal_max);
}
Transform xform = view_xform * p_transform;
OrientedBoxData &dc = decals[decal_count];
Vector3 origin = xform.origin;
dc.position[0] = origin.x;
dc.position[1] = origin.y;
dc.position[2] = origin.z;
Vector3 x_axis = xform.basis.get_axis(0) * p_half_extents.x;
dc.x_axis[0] = x_axis.x;
dc.x_axis[1] = x_axis.y;
dc.x_axis[2] = x_axis.z;
Vector3 y_axis = xform.basis.get_axis(1) * p_half_extents.y;
dc.y_axis[0] = y_axis.x;
dc.y_axis[1] = y_axis.y;
dc.y_axis[2] = y_axis.z;
Vector3 z_axis = xform.basis.get_axis(2) * p_half_extents.z;
dc.z_axis[0] = z_axis.x;
dc.z_axis[1] = z_axis.y;
dc.z_axis[2] = z_axis.z;
AABB aabb;
aabb.position = origin + x_axis + y_axis + z_axis;
aabb.expand_to(origin + x_axis + y_axis - z_axis);
aabb.expand_to(origin + x_axis - y_axis + z_axis);
aabb.expand_to(origin + x_axis - y_axis - z_axis);
aabb.expand_to(origin - x_axis + y_axis + z_axis);
aabb.expand_to(origin - x_axis + y_axis - z_axis);
aabb.expand_to(origin - x_axis - y_axis + z_axis);
aabb.expand_to(origin - x_axis - y_axis - z_axis);
_add_item(aabb, ITEM_TYPE_DECAL, decal_count);
decal_count++;
}
void bake_cluster();
void setup(uint32_t p_width, uint32_t p_height, uint32_t p_depth);
RID get_cluster_texture() const;
RID get_cluster_indices_buffer() const;
LightClusterBuilder();
~LightClusterBuilder();
};
#endif // LIGHT_CLUSTER_BUILDER_H