godot/core/math/octree.h
Rémi Verschelde 3890256fc5 Style: Cleanups, added headers, renamed files
Made sure files in core/ and tools/ have a proper Godot license header
when written by us. Also renamed aabb.{cpp,h} and object_type_db.{cpp,h}
to rect3.{cpp,h} and class_db.{cpp,h} respectively.

Also added a proper header to core/io/base64.{c,h} after clarifying
the licensing with the original author (public domain).
2017-01-16 08:04:23 +01:00

1468 lines
34 KiB
C++

/*************************************************************************/
/* octree.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef OCTREE_H
#define OCTREE_H
#include "vector3.h"
#include "rect3.h"
#include "list.h"
#include "variant.h"
#include "map.h"
#include "print_string.h"
/**
@author Juan Linietsky <reduzio@gmail.com>
*/
typedef uint32_t OctreeElementID;
#define OCTREE_ELEMENT_INVALID_ID 0
#define OCTREE_SIZE_LIMIT 1e15
template<class T,bool use_pairs=false,class AL=DefaultAllocator>
class Octree {
public:
typedef void* (*PairCallback)(void*,OctreeElementID, T*,int,OctreeElementID, T*,int);
typedef void (*UnpairCallback)(void*,OctreeElementID, T*,int,OctreeElementID, T*,int,void*);
private:
enum {
NEG=0,
POS=1,
};
enum {
OCTANT_NX_NY_NZ,
OCTANT_PX_NY_NZ,
OCTANT_NX_PY_NZ,
OCTANT_PX_PY_NZ,
OCTANT_NX_NY_PZ,
OCTANT_PX_NY_PZ,
OCTANT_NX_PY_PZ,
OCTANT_PX_PY_PZ
};
struct PairKey {
union {
struct {
OctreeElementID A;
OctreeElementID B;
};
uint64_t key;
};
_FORCE_INLINE_ bool operator<(const PairKey& p_pair) const {
return key<p_pair.key;
}
_FORCE_INLINE_ PairKey( OctreeElementID p_A, OctreeElementID p_B) {
if (p_A<p_B) {
A=p_A;
B=p_B;
} else {
B=p_A;
A=p_B;
}
}
_FORCE_INLINE_ PairKey() {}
};
struct Element;
struct Octant {
// cached for FAST plane check
Rect3 aabb;
uint64_t last_pass;
Octant *parent;
Octant *children[8];
int children_count; // cache for amount of childrens (fast check for removal)
int parent_index; // cache for parent index (fast check for removal)
List<Element*,AL> pairable_elements;
List<Element*,AL> elements;
Octant() {
children_count=0;
parent_index=-1;
last_pass=0;
parent=NULL;
for (int i=0;i<8;i++)
children[i]=NULL;
}
~Octant() {
/*
for (int i=0;i<8;i++)
memdelete_notnull(children[i]);
*/
}
};
struct PairData;
struct Element {
Octree *octree;
T *userdata;
int subindex;
bool pairable;
uint32_t pairable_mask;
uint32_t pairable_type;
uint64_t last_pass;
OctreeElementID _id;
Octant *common_parent;
Rect3 aabb;
Rect3 container_aabb;
List<PairData*,AL> pair_list;
struct OctantOwner {
Octant *octant;
typename List<Element*,AL>::Element *E;
}; // an element can be in max 8 octants
List<OctantOwner,AL> octant_owners;
Element() { last_pass=0; _id=0; pairable=false; subindex=0; userdata=0; octree=0; pairable_mask=0; pairable_type=0; common_parent=NULL; }
};
struct PairData {
int refcount;
bool intersect;
Element *A,*B;
void *ud;
typename List<PairData*,AL>::Element *eA,*eB;
};
typedef Map<OctreeElementID, Element, Comparator<OctreeElementID>, AL> ElementMap;
typedef Map<PairKey, PairData, Comparator<PairKey>, AL> PairMap;
ElementMap element_map;
PairMap pair_map;
PairCallback pair_callback;
UnpairCallback unpair_callback;
void *pair_callback_userdata;
void *unpair_callback_userdata;
OctreeElementID last_element_id;
uint64_t pass;
real_t unit_size;
Octant *root;
int octant_count;
int pair_count;
_FORCE_INLINE_ void _pair_check(PairData *p_pair) {
bool intersect=p_pair->A->aabb.intersects_inclusive( p_pair->B->aabb );
if (intersect!=p_pair->intersect) {
if (intersect) {
if (pair_callback) {
p_pair->ud=pair_callback(pair_callback_userdata,p_pair->A->_id, p_pair->A->userdata,p_pair->A->subindex,p_pair->B->_id, p_pair->B->userdata,p_pair->B->subindex);
}
pair_count++;
} else {
if (unpair_callback) {
unpair_callback(pair_callback_userdata,p_pair->A->_id, p_pair->A->userdata,p_pair->A->subindex,p_pair->B->_id, p_pair->B->userdata,p_pair->B->subindex,p_pair->ud);
}
pair_count--;
}
p_pair->intersect=intersect;
}
}
_FORCE_INLINE_ void _pair_reference(Element* p_A,Element* p_B) {
if (p_A==p_B || (p_A->userdata==p_B->userdata && p_A->userdata))
return;
if ( !(p_A->pairable_type&p_B->pairable_mask) &&
!(p_B->pairable_type&p_A->pairable_mask) )
return; // none can pair with none
PairKey key(p_A->_id, p_B->_id);
typename PairMap::Element *E=pair_map.find(key);
if (!E) {
PairData pdata;
pdata.refcount=1;
pdata.A=p_A;
pdata.B=p_B;
pdata.intersect=false;
E=pair_map.insert(key,pdata);
E->get().eA=p_A->pair_list.push_back(&E->get());
E->get().eB=p_B->pair_list.push_back(&E->get());
/*
if (pair_callback)
pair_callback(pair_callback_userdata,p_A->userdata,p_B->userdata);
*/
} else {
E->get().refcount++;
}
}
_FORCE_INLINE_ void _pair_unreference(Element* p_A,Element* p_B) {
if (p_A==p_B)
return;
PairKey key(p_A->_id, p_B->_id);
typename PairMap::Element *E=pair_map.find(key);
if (!E) {
return; // no pair
}
E->get().refcount--;
if (E->get().refcount==0) {
// bye pair
if (E->get().intersect) {
if (unpair_callback) {
unpair_callback(pair_callback_userdata,p_A->_id, p_A->userdata,p_A->subindex,p_B->_id, p_B->userdata,p_B->subindex,E->get().ud);
}
pair_count--;
}
if (p_A==E->get().B) {
//may be reaching inverted
SWAP(p_A,p_B);
}
p_A->pair_list.erase( E->get().eA );
p_B->pair_list.erase( E->get().eB );
pair_map.erase(E);
}
}
_FORCE_INLINE_ void _element_check_pairs(Element *p_element) {
typename List<PairData*,AL>::Element *E=p_element->pair_list.front();
while(E) {
_pair_check( E->get() );
E=E->next();
}
}
_FORCE_INLINE_ void _optimize() {
while(root && root->children_count<2 && !root->elements.size() && !(use_pairs && root->pairable_elements.size())) {
Octant *new_root=NULL;
if (root->children_count==1) {
for(int i=0;i<8;i++) {
if (root->children[i]) {
new_root=root->children[i];
root->children[i]=NULL;
break;
}
}
ERR_FAIL_COND(!new_root);
new_root->parent=NULL;
new_root->parent_index=-1;
}
memdelete_allocator<Octant,AL>( root );
octant_count--;
root=new_root;
}
}
void _insert_element(Element *p_element,Octant *p_octant);
void _ensure_valid_root(const Rect3& p_aabb);
bool _remove_element_from_octant(Element *p_element,Octant *p_octant,Octant *p_limit=NULL);
void _remove_element(Element *p_element);
void _pair_element(Element *p_element,Octant *p_octant);
void _unpair_element(Element *p_element,Octant *p_octant);
struct _CullConvexData {
const Plane* planes;
int plane_count;
T** result_array;
int *result_idx;
int result_max;
uint32_t mask;
};
void _cull_convex(Octant *p_octant,_CullConvexData *p_cull);
void _cull_AABB(Octant *p_octant,const Rect3& p_aabb, T** p_result_array,int *p_result_idx,int p_result_max,int *p_subindex_array,uint32_t p_mask);
void _cull_segment(Octant *p_octant,const Vector3& p_from, const Vector3& p_to,T** p_result_array,int *p_result_idx,int p_result_max,int *p_subindex_array,uint32_t p_mask);
void _cull_point(Octant *p_octant,const Vector3& p_point,T** p_result_array,int *p_result_idx,int p_result_max,int *p_subindex_array,uint32_t p_mask);
void _remove_tree(Octant *p_octant) {
if (!p_octant)
return;
for(int i=0;i<8;i++) {
if (p_octant->children[i])
_remove_tree(p_octant->children[i]);
}
memdelete_allocator<Octant,AL>(p_octant);
}
public:
OctreeElementID create(T* p_userdata, const Rect3& p_aabb=Rect3(), int p_subindex=0, bool p_pairable=false,uint32_t p_pairable_type=0,uint32_t pairable_mask=1);
void move(OctreeElementID p_id, const Rect3& p_aabb);
void set_pairable(OctreeElementID p_id,bool p_pairable=false,uint32_t p_pairable_type=0,uint32_t pairable_mask=1);
void erase(OctreeElementID p_id);
bool is_pairable(OctreeElementID p_id) const;
T *get(OctreeElementID p_id) const;
int get_subindex(OctreeElementID p_id) const;
int cull_convex(const Vector<Plane>& p_convex,T** p_result_array,int p_result_max,uint32_t p_mask=0xFFFFFFFF);
int cull_AABB(const Rect3& p_aabb,T** p_result_array,int p_result_max,int *p_subindex_array=NULL,uint32_t p_mask=0xFFFFFFFF);
int cull_segment(const Vector3& p_from, const Vector3& p_to,T** p_result_array,int p_result_max,int *p_subindex_array=NULL,uint32_t p_mask=0xFFFFFFFF);
int cull_point(const Vector3& p_point,T** p_result_array,int p_result_max,int *p_subindex_array=NULL,uint32_t p_mask=0xFFFFFFFF);
void set_pair_callback( PairCallback p_callback, void *p_userdata );
void set_unpair_callback( UnpairCallback p_callback, void *p_userdata );
int get_octant_count() const { return octant_count; }
int get_pair_count() const { return pair_count; }
Octree(real_t p_unit_size=1.0);
~Octree() { _remove_tree(root); }
};
/* PRIVATE FUNCTIONS */
template<class T,bool use_pairs,class AL>
T *Octree<T,use_pairs,AL>::get(OctreeElementID p_id) const {
const typename ElementMap::Element *E = element_map.find(p_id);
ERR_FAIL_COND_V(!E,NULL);
return E->get().userdata;
}
template<class T,bool use_pairs,class AL>
bool Octree<T,use_pairs,AL>::is_pairable(OctreeElementID p_id) const {
const typename ElementMap::Element *E = element_map.find(p_id);
ERR_FAIL_COND_V(!E,false);
return E->get().pairable;
}
template<class T,bool use_pairs,class AL>
int Octree<T,use_pairs,AL>::get_subindex(OctreeElementID p_id) const {
const typename ElementMap::Element *E = element_map.find(p_id);
ERR_FAIL_COND_V(!E,-1);
return E->get().subindex;
}
#define OCTREE_DIVISOR 4
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::_insert_element(Element *p_element,Octant *p_octant) {
float element_size = p_element->aabb.get_longest_axis_size() * 1.01; // avoid precision issues
if (p_octant->aabb.size.x/OCTREE_DIVISOR < element_size) {
//if (p_octant->aabb.size.x*0.5 < element_size) {
/* at smallest possible size for the element */
typename Element::OctantOwner owner;
owner.octant=p_octant;
if (use_pairs && p_element->pairable) {
p_octant->pairable_elements.push_back(p_element);
owner.E = p_octant->pairable_elements.back();
} else {
p_octant->elements.push_back(p_element);
owner.E = p_octant->elements.back();
}
p_element->octant_owners.push_back( owner );
if (p_element->common_parent==NULL) {
p_element->common_parent=p_octant;
p_element->container_aabb=p_octant->aabb;
} else {
p_element->container_aabb.merge_with(p_octant->aabb);
}
if (use_pairs && p_octant->children_count>0) {
pass++; //elements below this only get ONE reference added
for (int i=0;i<8;i++) {
if (p_octant->children[i]) {
_pair_element(p_element,p_octant->children[i]);
}
}
}
} else {
/* not big enough, send it to subitems */
int splits=0;
bool candidate=p_element->common_parent==NULL;
for (int i=0;i<8;i++) {
if (p_octant->children[i]) {
/* element exists, go straight to it */
if (p_octant->children[i]->aabb.intersects_inclusive( p_element->aabb ) ) {
_insert_element( p_element, p_octant->children[i] );
splits++;
}
} else {
/* check againt AABB where child should be */
Rect3 aabb=p_octant->aabb;
aabb.size*=0.5;
if (i&1)
aabb.pos.x+=aabb.size.x;
if (i&2)
aabb.pos.y+=aabb.size.y;
if (i&4)
aabb.pos.z+=aabb.size.z;
if (aabb.intersects_inclusive( p_element->aabb) ) {
/* if actually intersects, create the child */
Octant *child = memnew_allocator( Octant, AL );
p_octant->children[i]=child;
child->parent=p_octant;
child->parent_index=i;
child->aabb=aabb;
p_octant->children_count++;
_insert_element( p_element, child );
octant_count++;
splits++;
}
}
}
if (candidate && splits>1) {
p_element->common_parent=p_octant;
}
}
if (use_pairs) {
typename List<Element*,AL>::Element *E=p_octant->pairable_elements.front();
while(E) {
_pair_reference( p_element,E->get() );
E=E->next();
}
if (p_element->pairable) {
// and always test non-pairable if element is pairable
E=p_octant->elements.front();
while(E) {
_pair_reference( p_element,E->get() );
E=E->next();
}
}
}
}
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::_ensure_valid_root(const Rect3& p_aabb) {
if (!root) {
// octre is empty
Rect3 base( Vector3(), Vector3(1.0,1.0,1.0) * unit_size);
while ( !base.encloses(p_aabb) ) {
if ( ABS(base.pos.x+base.size.x) <= ABS(base.pos.x) ) {
/* grow towards positive */
base.size*=2.0;
} else {
base.pos-=base.size;
base.size*=2.0;
}
}
root = memnew_allocator( Octant, AL );
root->parent=NULL;
root->parent_index=-1;
root->aabb=base;
octant_count++;
} else {
Rect3 base=root->aabb;
while( !base.encloses( p_aabb ) ) {
if (base.size.x > OCTREE_SIZE_LIMIT) {
ERR_EXPLAIN("Octree upper size limit reeached, does the AABB supplied contain NAN?");
ERR_FAIL();
}
Octant * gp = memnew_allocator( Octant, AL );
octant_count++;
root->parent=gp;
if ( ABS(base.pos.x+base.size.x) <= ABS(base.pos.x) ) {
/* grow towards positive */
base.size*=2.0;
gp->aabb=base;
gp->children[0]=root;
root->parent_index=0;
} else {
base.pos-=base.size;
base.size*=2.0;
gp->aabb=base;
gp->children[(1<<0)|(1<<1)|(1<<2)]=root; // add at all-positive
root->parent_index=(1<<0)|(1<<1)|(1<<2);
}
gp->children_count=1;
root=gp;
}
}
}
template<class T,bool use_pairs,class AL>
bool Octree<T,use_pairs,AL>::_remove_element_from_octant(Element *p_element,Octant *p_octant,Octant *p_limit) {
bool octant_removed=false;
while(true) {
// check all exit conditions
if (p_octant==p_limit) // reached limit, nothing to erase, exit
return octant_removed;
bool unpaired=false;
if (use_pairs && p_octant->last_pass!=pass) {
// check wether we should unpair stuff
// always test pairable
typename List<Element*,AL>::Element *E=p_octant->pairable_elements.front();
while(E) {
_pair_unreference( p_element,E->get() );
E=E->next();
}
if (p_element->pairable) {
// and always test non-pairable if element is pairable
E=p_octant->elements.front();
while(E) {
_pair_unreference( p_element,E->get() );
E=E->next();
}
}
p_octant->last_pass=pass;
unpaired=true;
}
bool removed=false;
Octant *parent=p_octant->parent;
if (p_octant->children_count==0 && p_octant->elements.empty() && p_octant->pairable_elements.empty()) {
// erase octant
if (p_octant==root) { // won't have a parent, just erase
root=NULL;
} else {
ERR_FAIL_INDEX_V(p_octant->parent_index,8,octant_removed);
parent->children[ p_octant->parent_index ]=NULL;
parent->children_count--;
}
memdelete_allocator<Octant,AL>(p_octant);
octant_count--;
removed=true;
octant_removed=true;
}
if (!removed && !unpaired)
return octant_removed; // no reason to keep going up anymore! was already visited and was not removed
p_octant=parent;
}
return octant_removed;
}
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::_unpair_element(Element *p_element,Octant *p_octant) {
// always test pairable
typename List<Element*,AL>::Element *E=p_octant->pairable_elements.front();
while(E) {
if (E->get()->last_pass!=pass) { // only remove ONE reference
_pair_unreference( p_element,E->get() );
E->get()->last_pass=pass;
}
E=E->next();
}
if (p_element->pairable) {
// and always test non-pairable if element is pairable
E=p_octant->elements.front();
while(E) {
if (E->get()->last_pass!=pass) { // only remove ONE reference
_pair_unreference( p_element,E->get() );
E->get()->last_pass=pass;
}
E=E->next();
}
}
p_octant->last_pass=pass;
if (p_octant->children_count==0)
return; // small optimization for leafs
for (int i=0;i<8;i++) {
if (p_octant->children[i])
_unpair_element(p_element,p_octant->children[i]);
}
}
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::_pair_element(Element *p_element,Octant *p_octant) {
// always test pairable
typename List<Element*,AL>::Element *E=p_octant->pairable_elements.front();
while(E) {
if (E->get()->last_pass!=pass) { // only get ONE reference
_pair_reference( p_element,E->get() );
E->get()->last_pass=pass;
}
E=E->next();
}
if (p_element->pairable) {
// and always test non-pairable if element is pairable
E=p_octant->elements.front();
while(E) {
if (E->get()->last_pass!=pass) { // only get ONE reference
_pair_reference( p_element,E->get() );
E->get()->last_pass=pass;
}
E=E->next();
}
}
p_octant->last_pass=pass;
if (p_octant->children_count==0)
return; // small optimization for leafs
for (int i=0;i<8;i++) {
if (p_octant->children[i])
_pair_element(p_element,p_octant->children[i]);
}
}
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::_remove_element(Element *p_element) {
pass++; // will do a new pass for this
typename List< typename Element::OctantOwner,AL >::Element *I=p_element->octant_owners.front();
/* FIRST remove going up normally */
for(;I;I=I->next()) {
Octant *o=I->get().octant;
if (!use_pairs) // small speedup
o->elements.erase( I->get().E );
_remove_element_from_octant( p_element, o );
}
/* THEN remove going down */
I=p_element->octant_owners.front();
if (use_pairs) {
for(;I;I=I->next()) {
Octant *o=I->get().octant;
// erase children pairs, they are erased ONCE even if repeated
pass++;
for (int i=0;i<8;i++) {
if (o->children[i])
_unpair_element(p_element,o->children[i]);
}
if (p_element->pairable)
o->pairable_elements.erase( I->get().E );
else
o->elements.erase( I->get().E );
}
}
p_element->octant_owners.clear();
if(use_pairs) {
int remaining=p_element->pair_list.size();
//p_element->pair_list.clear();
ERR_FAIL_COND( remaining );
}
}
template<class T,bool use_pairs,class AL>
OctreeElementID Octree<T,use_pairs,AL>::create(T* p_userdata, const Rect3& p_aabb, int p_subindex,bool p_pairable,uint32_t p_pairable_type,uint32_t p_pairable_mask) {
// check for AABB validity
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_V( p_aabb.pos.x > 1e15 || p_aabb.pos.x < -1e15, 0 );
ERR_FAIL_COND_V( p_aabb.pos.y > 1e15 || p_aabb.pos.y < -1e15, 0 );
ERR_FAIL_COND_V( p_aabb.pos.z > 1e15 || p_aabb.pos.z < -1e15, 0 );
ERR_FAIL_COND_V( p_aabb.size.x > 1e15 || p_aabb.size.x < 0.0, 0 );
ERR_FAIL_COND_V( p_aabb.size.y > 1e15 || p_aabb.size.y < 0.0, 0 );
ERR_FAIL_COND_V( p_aabb.size.z > 1e15 || p_aabb.size.z < 0.0, 0 );
ERR_FAIL_COND_V( Math::is_nan(p_aabb.size.x) , 0 );
ERR_FAIL_COND_V( Math::is_nan(p_aabb.size.y) , 0 );
ERR_FAIL_COND_V( Math::is_nan(p_aabb.size.z) , 0 );
#endif
typename ElementMap::Element *E = element_map.insert(last_element_id++,
Element());
Element &e = E->get();
e.aabb=p_aabb;
e.userdata=p_userdata;
e.subindex=p_subindex;
e.last_pass=0;
e.octree=this;
e.pairable=p_pairable;
e.pairable_type=p_pairable_type;
e.pairable_mask=p_pairable_mask;
e._id=last_element_id-1;
if (!e.aabb.has_no_surface()) {
_ensure_valid_root(p_aabb);
_insert_element(&e,root);
if (use_pairs)
_element_check_pairs(&e);
}
return last_element_id-1;
}
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::move(OctreeElementID p_id, const Rect3& p_aabb) {
#ifdef DEBUG_ENABLED
// check for AABB validity
ERR_FAIL_COND( p_aabb.pos.x > 1e15 || p_aabb.pos.x < -1e15 );
ERR_FAIL_COND( p_aabb.pos.y > 1e15 || p_aabb.pos.y < -1e15 );
ERR_FAIL_COND( p_aabb.pos.z > 1e15 || p_aabb.pos.z < -1e15 );
ERR_FAIL_COND( p_aabb.size.x > 1e15 || p_aabb.size.x < 0.0 );
ERR_FAIL_COND( p_aabb.size.y > 1e15 || p_aabb.size.y < 0.0 );
ERR_FAIL_COND( p_aabb.size.z > 1e15 || p_aabb.size.z < 0.0 );
ERR_FAIL_COND( Math::is_nan(p_aabb.size.x) );
ERR_FAIL_COND( Math::is_nan(p_aabb.size.y) );
ERR_FAIL_COND( Math::is_nan(p_aabb.size.z) );
#endif
typename ElementMap::Element *E = element_map.find(p_id);
ERR_FAIL_COND(!E);
Element &e = E->get();
#if 0
pass++;
if (!e.aabb.has_no_surface()) {
_remove_element(&e);
}
e.aabb=p_aabb;
if (!e.aabb.has_no_surface()) {
_ensure_valid_root(p_aabb);
_insert_element(&e,root);
if (use_pairs)
_element_check_pairs(&e);
}
_optimize();
#else
bool old_has_surf=!e.aabb.has_no_surface();
bool new_has_surf=!p_aabb.has_no_surface();
if (old_has_surf!=new_has_surf) {
if (old_has_surf) {
_remove_element(&e); // removing
e.common_parent=NULL;
e.aabb=Rect3();
_optimize();
} else {
_ensure_valid_root(p_aabb); // inserting
e.common_parent=NULL;
e.aabb=p_aabb;
_insert_element(&e,root);
if (use_pairs)
_element_check_pairs(&e);
}
return;
}
if (!old_has_surf) // doing nothing
return;
// it still is enclosed in the same AABB it was assigned to
if (e.container_aabb.encloses(p_aabb)) {
e.aabb=p_aabb;
if (use_pairs)
_element_check_pairs(&e); // must check pairs anyway
return;
}
Rect3 combined=e.aabb;
combined.merge_with(p_aabb);
_ensure_valid_root(combined);
ERR_FAIL_COND( e.octant_owners.front()==NULL );
/* FIND COMMON PARENT */
List<typename Element::OctantOwner,AL> owners = e.octant_owners; // save the octant owners
Octant *common_parent=e.common_parent;
ERR_FAIL_COND(!common_parent);
//src is now the place towards where insertion is going to happen
pass++;
while(common_parent && !common_parent->aabb.encloses(p_aabb))
common_parent=common_parent->parent;
ERR_FAIL_COND(!common_parent);
//prepare for reinsert
e.octant_owners.clear();
e.common_parent=NULL;
e.aabb=p_aabb;
_insert_element(&e,common_parent); // reinsert from this point
pass++;
for(typename List<typename Element::OctantOwner,AL>::Element *E=owners.front();E;) {
Octant *o=E->get().octant;
typename List<typename Element::OctantOwner,AL>::Element *N=E->next();
/*
if (!use_pairs)
o->elements.erase( E->get().E );
*/
if (use_pairs && e.pairable)
o->pairable_elements.erase( E->get().E );
else
o->elements.erase( E->get().E );
if (_remove_element_from_octant( &e, o, common_parent->parent )) {
owners.erase(E);
}
E=N;
}
if (use_pairs) {
//unpair child elements in anything that survived
for(typename List<typename Element::OctantOwner,AL>::Element *E=owners.front();E;E=E->next()) {
Octant *o=E->get().octant;
// erase children pairs, unref ONCE
pass++;
for (int i=0;i<8;i++) {
if (o->children[i])
_unpair_element(&e,o->children[i]);
}
}
_element_check_pairs(&e);
}
_optimize();
#endif
}
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::set_pairable(OctreeElementID p_id,bool p_pairable,uint32_t p_pairable_type,uint32_t p_pairable_mask) {
typename ElementMap::Element *E = element_map.find(p_id);
ERR_FAIL_COND(!E);
Element &e = E->get();
if (p_pairable == e.pairable && e.pairable_type==p_pairable_type && e.pairable_mask==p_pairable_mask)
return; // no changes, return
if (!e.aabb.has_no_surface()) {
_remove_element(&e);
}
e.pairable=p_pairable;
e.pairable_type=p_pairable_type;
e.pairable_mask=p_pairable_mask;
e.common_parent=NULL;
if (!e.aabb.has_no_surface()) {
_ensure_valid_root(e.aabb);
_insert_element(&e,root);
if (use_pairs)
_element_check_pairs(&e);
}
}
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::erase(OctreeElementID p_id) {
typename ElementMap::Element *E = element_map.find(p_id);
ERR_FAIL_COND(!E);
Element &e = E->get();
if (!e.aabb.has_no_surface()) {
_remove_element(&e);
}
element_map.erase(p_id);
_optimize();
}
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::_cull_convex(Octant *p_octant,_CullConvexData *p_cull) {
if (*p_cull->result_idx==p_cull->result_max)
return; //pointless
if (!p_octant->elements.empty()) {
typename List< Element*,AL >::Element *I;
I=p_octant->elements.front();
for(;I;I=I->next()) {
Element *e=I->get();
if (e->last_pass==pass || (use_pairs && !(e->pairable_type&p_cull->mask)))
continue;
e->last_pass=pass;
if (e->aabb.intersects_convex_shape(p_cull->planes,p_cull->plane_count)) {
if (*p_cull->result_idx<p_cull->result_max) {
p_cull->result_array[*p_cull->result_idx] = e->userdata;
(*p_cull->result_idx)++;
} else {
return; // pointless to continue
}
}
}
}
if (use_pairs && !p_octant->pairable_elements.empty()) {
typename List< Element*,AL >::Element *I;
I=p_octant->pairable_elements.front();
for(;I;I=I->next()) {
Element *e=I->get();
if (e->last_pass==pass || (use_pairs && !(e->pairable_type&p_cull->mask)))
continue;
e->last_pass=pass;
if (e->aabb.intersects_convex_shape(p_cull->planes,p_cull->plane_count)) {
if (*p_cull->result_idx<p_cull->result_max) {
p_cull->result_array[*p_cull->result_idx] = e->userdata;
(*p_cull->result_idx)++;
} else {
return; // pointless to continue
}
}
}
}
for (int i=0;i<8;i++) {
if (p_octant->children[i] && p_octant->children[i]->aabb.intersects_convex_shape(p_cull->planes,p_cull->plane_count)) {
_cull_convex(p_octant->children[i],p_cull);
}
}
}
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::_cull_AABB(Octant *p_octant,const Rect3& p_aabb, T** p_result_array,int *p_result_idx,int p_result_max,int *p_subindex_array,uint32_t p_mask) {
if (*p_result_idx==p_result_max)
return; //pointless
if (!p_octant->elements.empty()) {
typename List< Element*,AL >::Element *I;
I=p_octant->elements.front();
for(;I;I=I->next()) {
Element *e=I->get();
if (e->last_pass==pass || (use_pairs && !(e->pairable_type&p_mask)))
continue;
e->last_pass=pass;
if (p_aabb.intersects_inclusive(e->aabb)) {
if (*p_result_idx<p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array)
p_subindex_array[*p_result_idx] = e->subindex;
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
}
if (use_pairs && !p_octant->pairable_elements.empty()) {
typename List< Element*,AL >::Element *I;
I=p_octant->pairable_elements.front();
for(;I;I=I->next()) {
Element *e=I->get();
if (e->last_pass==pass || (use_pairs && !(e->pairable_type&p_mask)))
continue;
e->last_pass=pass;
if (p_aabb.intersects_inclusive(e->aabb)) {
if (*p_result_idx<p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array)
p_subindex_array[*p_result_idx] = e->subindex;
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
}
for (int i=0;i<8;i++) {
if (p_octant->children[i] && p_octant->children[i]->aabb.intersects_inclusive(p_aabb)) {
_cull_AABB(p_octant->children[i],p_aabb, p_result_array,p_result_idx,p_result_max,p_subindex_array,p_mask);
}
}
}
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::_cull_segment(Octant *p_octant,const Vector3& p_from, const Vector3& p_to,T** p_result_array,int *p_result_idx,int p_result_max,int *p_subindex_array,uint32_t p_mask) {
if (*p_result_idx==p_result_max)
return; //pointless
if (!p_octant->elements.empty()) {
typename List< Element*,AL >::Element *I;
I=p_octant->elements.front();
for(;I;I=I->next()) {
Element *e=I->get();
if (e->last_pass==pass || (use_pairs && !(e->pairable_type&p_mask)))
continue;
e->last_pass=pass;
if (e->aabb.intersects_segment(p_from,p_to)) {
if (*p_result_idx<p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array)
p_subindex_array[*p_result_idx] = e->subindex;
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
}
if (use_pairs && !p_octant->pairable_elements.empty()) {
typename List< Element*,AL >::Element *I;
I=p_octant->pairable_elements.front();
for(;I;I=I->next()) {
Element *e=I->get();
if (e->last_pass==pass || (use_pairs && !(e->pairable_type&p_mask)))
continue;
e->last_pass=pass;
if (e->aabb.intersects_segment(p_from,p_to)) {
if (*p_result_idx<p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array)
p_subindex_array[*p_result_idx] = e->subindex;
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
}
for (int i=0;i<8;i++) {
if (p_octant->children[i] && p_octant->children[i]->aabb.intersects_segment(p_from,p_to)) {
_cull_segment(p_octant->children[i],p_from,p_to, p_result_array,p_result_idx,p_result_max,p_subindex_array,p_mask);
}
}
}
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::_cull_point(Octant *p_octant,const Vector3& p_point,T** p_result_array,int *p_result_idx,int p_result_max,int *p_subindex_array,uint32_t p_mask) {
if (*p_result_idx==p_result_max)
return; //pointless
if (!p_octant->elements.empty()) {
typename List< Element*,AL >::Element *I;
I=p_octant->elements.front();
for(;I;I=I->next()) {
Element *e=I->get();
if (e->last_pass==pass || (use_pairs && !(e->pairable_type&p_mask)))
continue;
e->last_pass=pass;
if (e->aabb.has_point(p_point)) {
if (*p_result_idx<p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array)
p_subindex_array[*p_result_idx] = e->subindex;
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
}
if (use_pairs && !p_octant->pairable_elements.empty()) {
typename List< Element*,AL >::Element *I;
I=p_octant->pairable_elements.front();
for(;I;I=I->next()) {
Element *e=I->get();
if (e->last_pass==pass || (use_pairs && !(e->pairable_type&p_mask)))
continue;
e->last_pass=pass;
if (e->aabb.has_point(p_point)) {
if (*p_result_idx<p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array)
p_subindex_array[*p_result_idx] = e->subindex;
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
}
for (int i=0;i<8;i++) {
//could be optimized..
if (p_octant->children[i] && p_octant->children[i]->aabb.has_point(p_point)) {
_cull_point(p_octant->children[i],p_point, p_result_array,p_result_idx,p_result_max,p_subindex_array,p_mask);
}
}
}
template<class T,bool use_pairs,class AL>
int Octree<T,use_pairs,AL>::cull_convex(const Vector<Plane>& p_convex,T** p_result_array,int p_result_max,uint32_t p_mask) {
if (!root)
return 0;
int result_count=0;
pass++;
_CullConvexData cdata;
cdata.planes=&p_convex[0];
cdata.plane_count=p_convex.size();
cdata.result_array=p_result_array;
cdata.result_max=p_result_max;
cdata.result_idx=&result_count;
cdata.mask=p_mask;
_cull_convex(root,&cdata);
return result_count;
}
template<class T,bool use_pairs,class AL>
int Octree<T,use_pairs,AL>::cull_AABB(const Rect3& p_aabb,T** p_result_array,int p_result_max,int *p_subindex_array,uint32_t p_mask) {
if (!root)
return 0;
int result_count=0;
pass++;
_cull_AABB(root,p_aabb,p_result_array,&result_count,p_result_max,p_subindex_array,p_mask);
return result_count;
}
template<class T,bool use_pairs,class AL>
int Octree<T,use_pairs,AL>::cull_segment(const Vector3& p_from, const Vector3& p_to,T** p_result_array,int p_result_max,int *p_subindex_array,uint32_t p_mask) {
if (!root)
return 0;
int result_count=0;
pass++;
_cull_segment(root,p_from,p_to,p_result_array,&result_count,p_result_max,p_subindex_array,p_mask);
return result_count;
}
template<class T,bool use_pairs,class AL>
int Octree<T,use_pairs,AL>::cull_point(const Vector3& p_point,T** p_result_array,int p_result_max,int *p_subindex_array,uint32_t p_mask) {
if (!root)
return 0;
int result_count=0;
pass++;
_cull_point(root,p_point,p_result_array,&result_count,p_result_max,p_subindex_array,p_mask);
return result_count;
}
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::set_pair_callback( PairCallback p_callback, void *p_userdata ) {
pair_callback=p_callback;
pair_callback_userdata=p_userdata;
}
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::set_unpair_callback( UnpairCallback p_callback, void *p_userdata ) {
unpair_callback=p_callback;
unpair_callback_userdata=p_userdata;
}
template<class T,bool use_pairs,class AL>
Octree<T,use_pairs,AL>::Octree(real_t p_unit_size) {
last_element_id=1;
pass=1;
unit_size=p_unit_size;
root=NULL;
octant_count=0;
pair_count=0;
pair_callback=NULL;
unpair_callback=NULL;
pair_callback_userdata=NULL;
unpair_callback_userdata=NULL;
}
#endif