godot/servers/rendering/renderer_rd/shaders/scene_forward_mobile.glsl
Rémi Verschelde 3b11e33a09
clang-format: Disable alignment of operands, too unreliable
Sets `AlignOperands` to `DontAlign`.

`clang-format` developers seem to mostly care about space-based indentation and
every other version of clang-format breaks the bad mismatch of tabs and spaces
that it seems to use for operand alignment. So it's better without, so that it
respects our two-tabs `ContinuationIndentWidth`.
2021-10-28 15:19:35 +02:00

1571 lines
52 KiB
GLSL

#[vertex]
#version 450
#VERSION_DEFINES
/* Include our forward mobile UBOs definitions etc. */
#include "scene_forward_mobile_inc.glsl"
/* INPUT ATTRIBS */
layout(location = 0) in vec3 vertex_attrib;
//only for pure render depth when normal is not used
#ifdef NORMAL_USED
layout(location = 1) in vec3 normal_attrib;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 2) in vec4 tangent_attrib;
#endif
#if defined(COLOR_USED)
layout(location = 3) in vec4 color_attrib;
#endif
#ifdef UV_USED
layout(location = 4) in vec2 uv_attrib;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL)
layout(location = 5) in vec2 uv2_attrib;
#endif // MODE_RENDER_MATERIAL
#if defined(CUSTOM0_USED)
layout(location = 6) in vec4 custom0_attrib;
#endif
#if defined(CUSTOM1_USED)
layout(location = 7) in vec4 custom1_attrib;
#endif
#if defined(CUSTOM2_USED)
layout(location = 8) in vec4 custom2_attrib;
#endif
#if defined(CUSTOM3_USED)
layout(location = 9) in vec4 custom3_attrib;
#endif
#if defined(BONES_USED) || defined(USE_PARTICLE_TRAILS)
layout(location = 10) in uvec4 bone_attrib;
#endif
#if defined(WEIGHTS_USED) || defined(USE_PARTICLE_TRAILS)
layout(location = 11) in vec4 weight_attrib;
#endif
/* Varyings */
layout(location = 0) highp out vec3 vertex_interp;
#ifdef NORMAL_USED
layout(location = 1) mediump out vec3 normal_interp;
#endif
#if defined(COLOR_USED)
layout(location = 2) mediump out vec4 color_interp;
#endif
#ifdef UV_USED
layout(location = 3) mediump out vec2 uv_interp;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 4) mediump out vec2 uv2_interp;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 5) mediump out vec3 tangent_interp;
layout(location = 6) mediump out vec3 binormal_interp;
#endif
#ifdef MATERIAL_UNIFORMS_USED
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
#MATERIAL_UNIFORMS
} material;
#endif
#ifdef MODE_DUAL_PARABOLOID
layout(location = 8) out highp float dp_clip;
#endif
#ifdef USE_MULTIVIEW
#ifdef has_VK_KHR_multiview
#define ViewIndex gl_ViewIndex
#else
// !BAS! This needs to become an input once we implement our fallback!
#define ViewIndex 0
#endif
#else
// Set to zero, not supported in non stereo
#define ViewIndex 0
#endif //USE_MULTIVIEW
invariant gl_Position;
#GLOBALS
void main() {
vec4 instance_custom = vec4(0.0);
#if defined(COLOR_USED)
color_interp = color_attrib;
#endif
bool is_multimesh = bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH);
mat4 world_matrix = draw_call.transform;
mat3 world_normal_matrix;
if (bool(draw_call.flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) {
world_normal_matrix = transpose(inverse(mat3(world_matrix)));
} else {
world_normal_matrix = mat3(world_matrix);
}
if (is_multimesh) {
//multimesh, instances are for it
mat4 matrix;
#ifdef USE_PARTICLE_TRAILS
uint trail_size = (draw_call.flags >> INSTANCE_FLAGS_PARTICLE_TRAIL_SHIFT) & INSTANCE_FLAGS_PARTICLE_TRAIL_MASK;
uint stride = 3 + 1 + 1; //particles always uses this format
uint offset = trail_size * stride * gl_InstanceIndex;
#ifdef COLOR_USED
vec4 pcolor;
#endif
{
uint boffset = offset + bone_attrib.x * stride;
matrix = mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.x;
#ifdef COLOR_USED
pcolor = transforms.data[boffset + 3] * weight_attrib.x;
#endif
}
if (weight_attrib.y > 0.001) {
uint boffset = offset + bone_attrib.y * stride;
matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.y;
#ifdef COLOR_USED
pcolor += transforms.data[boffset + 3] * weight_attrib.y;
#endif
}
if (weight_attrib.z > 0.001) {
uint boffset = offset + bone_attrib.z * stride;
matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.z;
#ifdef COLOR_USED
pcolor += transforms.data[boffset + 3] * weight_attrib.z;
#endif
}
if (weight_attrib.w > 0.001) {
uint boffset = offset + bone_attrib.w * stride;
matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.w;
#ifdef COLOR_USED
pcolor += transforms.data[boffset + 3] * weight_attrib.w;
#endif
}
instance_custom = transforms.data[offset + 4];
#ifdef COLOR_USED
color_interp *= pcolor;
#endif
#else
uint stride = 0;
{
//TODO implement a small lookup table for the stride
if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
stride += 2;
} else {
stride += 3;
}
if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
stride += 1;
}
if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
stride += 1;
}
}
uint offset = stride * gl_InstanceIndex;
if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
offset += 2;
} else {
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0));
offset += 3;
}
if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
#ifdef COLOR_USED
color_interp *= transforms.data[offset];
#endif
offset += 1;
}
if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
instance_custom = transforms.data[offset];
}
#endif
//transpose
matrix = transpose(matrix);
world_matrix = world_matrix * matrix;
world_normal_matrix = world_normal_matrix * mat3(matrix);
}
vec3 vertex = vertex_attrib;
#ifdef NORMAL_USED
vec3 normal = normal_attrib * 2.0 - 1.0;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 tangent = tangent_attrib.xyz * 2.0 - 1.0;
float binormalf = tangent_attrib.a * 2.0 - 1.0;
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
#ifdef UV_USED
uv_interp = uv_attrib;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
uv2_interp = uv2_attrib;
#endif
#ifdef OVERRIDE_POSITION
vec4 position;
#endif
#ifdef USE_MULTIVIEW
mat4 projection_matrix = scene_data.projection_matrix_view[ViewIndex];
mat4 inv_projection_matrix = scene_data.inv_projection_matrix_view[ViewIndex];
#else
mat4 projection_matrix = scene_data.projection_matrix;
mat4 inv_projection_matrix = scene_data.inv_projection_matrix;
#endif //USE_MULTIVIEW
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = (world_matrix * vec4(vertex, 1.0)).xyz;
normal = world_normal_matrix * normal;
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent = world_normal_matrix * tangent;
binormal = world_normal_matrix * binormal;
#endif
#endif
float roughness = 1.0;
mat4 modelview = scene_data.inv_camera_matrix * world_matrix;
mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix;
{
#CODE : VERTEX
}
/* output */
// using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
vertex = (modelview * vec4(vertex, 1.0)).xyz;
#ifdef NORMAL_USED
normal = modelview_normal * normal;
#endif
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = modelview_normal * binormal;
tangent = modelview_normal * tangent;
#endif
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz;
normal = mat3(scene_data.inverse_normal_matrix) * normal;
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal;
tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent;
#endif
#endif
vertex_interp = vertex;
#ifdef NORMAL_USED
normal_interp = normal;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
#ifdef MODE_RENDER_DEPTH
#ifdef MODE_DUAL_PARABOLOID
vertex_interp.z *= scene_data.dual_paraboloid_side;
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
vec3 vtx = vertex_interp;
float distance = length(vtx);
vtx = normalize(vtx);
vtx.xy /= 1.0 - vtx.z;
vtx.z = (distance / scene_data.z_far);
vtx.z = vtx.z * 2.0 - 1.0;
vertex_interp = vtx;
#endif
#endif //MODE_RENDER_DEPTH
#ifdef OVERRIDE_POSITION
gl_Position = position;
#else
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif // OVERRIDE_POSITION
#ifdef MODE_RENDER_DEPTH
if (scene_data.pancake_shadows) {
if (gl_Position.z <= 0.00001) {
gl_Position.z = 0.00001;
}
}
#endif // MODE_RENDER_DEPTH
#ifdef MODE_RENDER_MATERIAL
if (scene_data.material_uv2_mode) {
vec2 uv_offset = draw_call.lightmap_uv_scale.xy; // we are abusing lightmap_uv_scale here, we shouldn't have a lightmap during a depth pass...
gl_Position.xy = (uv2_attrib.xy + uv_offset) * 2.0 - 1.0;
gl_Position.z = 0.00001;
gl_Position.w = 1.0;
}
#endif // MODE_RENDER_MATERIAL
}
#[fragment]
#version 450
#VERSION_DEFINES
/* Specialization Constants */
#if !defined(MODE_RENDER_DEPTH)
#if !defined(MODE_UNSHADED)
layout(constant_id = 0) const bool sc_use_light_projector = false;
layout(constant_id = 1) const bool sc_use_light_soft_shadows = false;
layout(constant_id = 2) const bool sc_use_directional_soft_shadows = false;
layout(constant_id = 3) const uint sc_soft_shadow_samples = 4;
layout(constant_id = 4) const uint sc_penumbra_shadow_samples = 4;
layout(constant_id = 5) const uint sc_directional_soft_shadow_samples = 4;
layout(constant_id = 6) const uint sc_directional_penumbra_shadow_samples = 4;
layout(constant_id = 8) const bool sc_projector_use_mipmaps = true;
layout(constant_id = 9) const bool sc_disable_omni_lights = false;
layout(constant_id = 10) const bool sc_disable_spot_lights = false;
layout(constant_id = 11) const bool sc_disable_reflection_probes = false;
layout(constant_id = 12) const bool sc_disable_directional_lights = false;
#endif //!MODE_UNSHADED
layout(constant_id = 7) const bool sc_decal_use_mipmaps = true;
layout(constant_id = 13) const bool sc_disable_decals = false;
layout(constant_id = 14) const bool sc_disable_fog = false;
#endif //!MODE_RENDER_DEPTH
layout(constant_id = 15) const float sc_luminance_multiplier = 2.0;
/* Include our forward mobile UBOs definitions etc. */
#include "scene_forward_mobile_inc.glsl"
/* Varyings */
layout(location = 0) highp in vec3 vertex_interp;
#ifdef NORMAL_USED
layout(location = 1) mediump in vec3 normal_interp;
#endif
#if defined(COLOR_USED)
layout(location = 2) mediump in vec4 color_interp;
#endif
#ifdef UV_USED
layout(location = 3) mediump in vec2 uv_interp;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 4) mediump in vec2 uv2_interp;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 5) mediump in vec3 tangent_interp;
layout(location = 6) mediump in vec3 binormal_interp;
#endif
#ifdef MODE_DUAL_PARABOLOID
layout(location = 8) highp in float dp_clip;
#endif
#ifdef USE_MULTIVIEW
#ifdef has_VK_KHR_multiview
#define ViewIndex gl_ViewIndex
#else
// !BAS! This needs to become an input once we implement our fallback!
#define ViewIndex 0
#endif
#else
// Set to zero, not supported in non stereo
#define ViewIndex 0
#endif //USE_MULTIVIEW
//defines to keep compatibility with vertex
#define world_matrix draw_call.transform
#ifdef USE_MULTIVIEW
#define projection_matrix scene_data.projection_matrix_view[ViewIndex]
#else
#define projection_matrix scene_data.projection_matrix
#endif
#if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE)
//both required for transmittance to be enabled
#define LIGHT_TRANSMITTANCE_USED
#endif
#ifdef MATERIAL_UNIFORMS_USED
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
#MATERIAL_UNIFORMS
} material;
#endif
#GLOBALS
/* clang-format on */
#ifdef MODE_RENDER_DEPTH
#ifdef MODE_RENDER_MATERIAL
layout(location = 0) out vec4 albedo_output_buffer;
layout(location = 1) out vec4 normal_output_buffer;
layout(location = 2) out vec4 orm_output_buffer;
layout(location = 3) out vec4 emission_output_buffer;
layout(location = 4) out float depth_output_buffer;
#endif // MODE_RENDER_MATERIAL
#else // RENDER DEPTH
#ifdef MODE_MULTIPLE_RENDER_TARGETS
layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness
layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter)
#else
layout(location = 0) out mediump vec4 frag_color;
#endif // MODE_MULTIPLE_RENDER_TARGETS
#endif // RENDER DEPTH
#include "scene_forward_aa_inc.glsl"
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
/* Make a default specular mode SPECULAR_SCHLICK_GGX. */
#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN) && !defined(SPECULAR_PHONG) && !defined(SPECULAR_TOON)
#define SPECULAR_SCHLICK_GGX
#endif
#include "scene_forward_lights_inc.glsl"
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifndef MODE_RENDER_DEPTH
/*
Only supporting normal fog here.
*/
vec4 fog_process(vec3 vertex) {
vec3 fog_color = scene_data.fog_light_color;
if (scene_data.fog_aerial_perspective > 0.0) {
vec3 sky_fog_color = vec3(0.0);
vec3 cube_view = scene_data.radiance_inverse_xform * vertex;
// mip_level always reads from the second mipmap and higher so the fog is always slightly blurred
float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near));
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
float lod, blend;
blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod);
sky_fog_color = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod)).rgb;
sky_fog_color = mix(sky_fog_color, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod + 1)).rgb, blend);
#else
sky_fog_color = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective);
}
if (scene_data.fog_sun_scatter > 0.001) {
vec4 sun_scatter = vec4(0.0);
float sun_total = 0.0;
vec3 view = normalize(vertex);
for (uint i = 0; i < scene_data.directional_light_count; i++) {
vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy;
float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0);
fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
}
}
float fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data.fog_density));
if (abs(scene_data.fog_height_density) >= 0.0001) {
float y = (scene_data.camera_matrix * vec4(vertex, 1.0)).y;
float y_dist = y - scene_data.fog_height;
float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data.fog_height_density));
fog_amount = max(vfog_amount, fog_amount);
}
return vec4(fog_color, fog_amount);
}
#endif //!MODE_RENDER DEPTH
void main() {
#ifdef MODE_DUAL_PARABOLOID
if (dp_clip > 0.0)
discard;
#endif
//lay out everything, whathever is unused is optimized away anyway
vec3 vertex = vertex_interp;
vec3 view = -normalize(vertex_interp);
vec3 albedo = vec3(1.0);
vec3 backlight = vec3(0.0);
vec4 transmittance_color = vec4(0.0);
float transmittance_depth = 0.0;
float transmittance_boost = 0.0;
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
float clearcoat_gloss = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
vec4 fog = vec4(0.0);
#if defined(CUSTOM_RADIANCE_USED)
vec4 custom_radiance = vec4(0.0);
#endif
#if defined(CUSTOM_IRRADIANCE_USED)
vec4 custom_irradiance = vec4(0.0);
#endif
float ao = 1.0;
float ao_light_affect = 0.0;
float alpha = 1.0;
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 binormal = normalize(binormal_interp);
vec3 tangent = normalize(tangent_interp);
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
#ifdef NORMAL_USED
vec3 normal = normalize(normal_interp);
#if defined(DO_SIDE_CHECK)
if (!gl_FrontFacing) {
normal = -normal;
}
#endif
#endif //NORMAL_USED
#ifdef UV_USED
vec2 uv = uv_interp;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
vec2 uv2 = uv2_interp;
#endif
#if defined(COLOR_USED)
vec4 color = color_interp;
#endif
#if defined(NORMAL_MAP_USED)
vec3 normal_map = vec3(0.5);
#endif
float normal_map_depth = 1.0;
vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center
float sss_strength = 0.0;
#ifdef ALPHA_SCISSOR_USED
float alpha_scissor_threshold = 1.0;
#endif // ALPHA_SCISSOR_USED
#ifdef ALPHA_HASH_USED
float alpha_hash_scale = 1.0;
#endif // ALPHA_HASH_USED
#ifdef ALPHA_ANTIALIASING_EDGE_USED
float alpha_antialiasing_edge = 0.0;
vec2 alpha_texture_coordinate = vec2(0.0, 0.0);
#endif // ALPHA_ANTIALIASING_EDGE_USED
{
#CODE : FRAGMENT
}
#ifdef LIGHT_TRANSMITTANCE_USED
#ifdef SSS_MODE_SKIN
transmittance_color.a = sss_strength;
#else
transmittance_color.a *= sss_strength;
#endif
#endif
#ifndef USE_SHADOW_TO_OPACITY
#ifdef ALPHA_SCISSOR_USED
if (alpha < alpha_scissor_threshold) {
discard;
}
#endif // ALPHA_SCISSOR_USED
// alpha hash can be used in unison with alpha antialiasing
#ifdef ALPHA_HASH_USED
if (alpha < compute_alpha_hash_threshold(vertex, alpha_hash_scale)) {
discard;
}
#endif // ALPHA_HASH_USED
// If we are not edge antialiasing, we need to remove the output alpha channel from scissor and hash
#if (defined(ALPHA_SCISSOR_USED) || defined(ALPHA_HASH_USED)) && !defined(ALPHA_ANTIALIASING_EDGE_USED)
alpha = 1.0;
#endif
#ifdef ALPHA_ANTIALIASING_EDGE_USED
// If alpha scissor is used, we must further the edge threshold, otherwise we won't get any edge feather
#ifdef ALPHA_SCISSOR_USED
alpha_antialiasing_edge = clamp(alpha_scissor_threshold + alpha_antialiasing_edge, 0.0, 1.0);
#endif
alpha = compute_alpha_antialiasing_edge(alpha, alpha_texture_coordinate, alpha_antialiasing_edge);
#endif // ALPHA_ANTIALIASING_EDGE_USED
#ifdef USE_OPAQUE_PREPASS
if (alpha < opaque_prepass_threshold) {
discard;
}
#endif // USE_OPAQUE_PREPASS
#endif // !USE_SHADOW_TO_OPACITY
#ifdef NORMAL_MAP_USED
normal_map.xy = normal_map.xy * 2.0 - 1.0;
normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));
#endif
#ifdef LIGHT_ANISOTROPY_USED
if (anisotropy > 0.01) {
//rotation matrix
mat3 rot = mat3(tangent, binormal, normal);
//make local to space
tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
}
#endif
#ifdef ENABLE_CLIP_ALPHA
if (albedo.a < 0.99) {
//used for doublepass and shadowmapping
discard;
}
#endif
/////////////////////// FOG //////////////////////
#ifndef MODE_RENDER_DEPTH
#ifndef CUSTOM_FOG_USED
// fog must be processed as early as possible and then packed.
// to maximize VGPR usage
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
if (!sc_disable_fog && scene_data.fog_enabled) {
fog = fog_process(vertex);
}
#endif //!CUSTOM_FOG_USED
uint fog_rg = packHalf2x16(fog.rg);
uint fog_ba = packHalf2x16(fog.ba);
#endif //!MODE_RENDER_DEPTH
/////////////////////// DECALS ////////////////////////////////
#ifndef MODE_RENDER_DEPTH
vec3 vertex_ddx = dFdx(vertex);
vec3 vertex_ddy = dFdy(vertex);
if (!sc_disable_decals) { //Decals
// must implement
uint decal_indices = draw_call.decals.x;
for (uint i = 0; i < 8; i++) {
uint decal_index = decal_indices & 0xFF;
if (i == 4) {
decal_indices = draw_call.decals.y;
} else {
decal_indices = decal_indices >> 8;
}
if (decal_index == 0xFF) {
break;
}
vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz;
if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) {
continue; //out of decal
}
float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade);
if (decals.data[decal_index].normal_fade > 0.0) {
fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5);
}
//we need ddx/ddy for mipmaps, so simulate them
vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz;
vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz;
if (decals.data[decal_index].albedo_rect != vec4(0.0)) {
//has albedo
vec4 decal_albedo;
if (sc_decal_use_mipmaps) {
decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw);
} else {
decal_albedo = textureLod(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, 0.0);
}
decal_albedo *= decals.data[decal_index].modulate;
decal_albedo.a *= fade;
albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix);
if (decals.data[decal_index].normal_rect != vec4(0.0)) {
vec3 decal_normal;
if (sc_decal_use_mipmaps) {
decal_normal = textureGrad(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz;
} else {
decal_normal = textureLod(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, 0.0).xyz;
}
decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software
decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy)));
//convert to view space, use xzy because y is up
decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz;
normal = normalize(mix(normal, decal_normal, decal_albedo.a));
}
if (decals.data[decal_index].orm_rect != vec4(0.0)) {
vec3 decal_orm;
if (sc_decal_use_mipmaps) {
decal_orm = textureGrad(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz;
} else {
decal_orm = textureLod(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, 0.0).xyz;
}
ao = mix(ao, decal_orm.r, decal_albedo.a);
roughness = mix(roughness, decal_orm.g, decal_albedo.a);
metallic = mix(metallic, decal_orm.b, decal_albedo.a);
}
}
if (decals.data[decal_index].emission_rect != vec4(0.0)) {
//emission is additive, so its independent from albedo
if (sc_decal_use_mipmaps) {
emission += textureGrad(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade;
} else {
emission += textureLod(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, 0.0).xyz * decals.data[decal_index].emission_energy * fade;
}
}
}
} //Decals
#endif //!MODE_RENDER_DEPTH
/////////////////////// LIGHTING //////////////////////////////
#ifdef NORMAL_USED
if (scene_data.roughness_limiter_enabled) {
//https://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf
float roughness2 = roughness * roughness;
vec3 dndu = dFdx(normal), dndv = dFdy(normal);
float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv));
float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect
float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2);
roughness = sqrt(filteredRoughness2);
}
#endif // NORMAL_USED
//apply energy conservation
vec3 specular_light = vec3(0.0, 0.0, 0.0);
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
if (scene_data.use_reflection_cubemap) {
vec3 ref_vec = reflect(-view, normal);
float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
float lod, blend;
blend = modf(roughness * MAX_ROUGHNESS_LOD, lod);
specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb;
specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend);
#else // USE_RADIANCE_CUBEMAP_ARRAY
specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
specular_light *= horizon * horizon;
specular_light *= scene_data.ambient_light_color_energy.a;
}
#if defined(CUSTOM_RADIANCE_USED)
specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a);
#endif // CUSTOM_RADIANCE_USED
#ifndef USE_LIGHTMAP
//lightmap overrides everything
if (scene_data.use_ambient_light) {
ambient_light = scene_data.ambient_light_color_energy.rgb;
if (scene_data.use_ambient_cubemap) {
vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb;
#else
vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
}
}
#endif // !USE_LIGHTMAP
#if defined(CUSTOM_IRRADIANCE_USED)
ambient_light = mix(specular_light, custom_irradiance.rgb, custom_irradiance.a);
#endif // CUSTOM_IRRADIANCE_USED
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
//radiance
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifdef USE_LIGHTMAP
//lightmap
if (bool(draw_call.flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture
uint index = draw_call.gi_offset;
vec3 wnormal = mat3(scene_data.camera_matrix) * normal;
const float c1 = 0.429043;
const float c2 = 0.511664;
const float c3 = 0.743125;
const float c4 = 0.886227;
const float c5 = 0.247708;
ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) +
c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z +
c4 * lightmap_captures.data[index].sh[0].rgb -
c5 * lightmap_captures.data[index].sh[6].rgb +
2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y +
2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z +
2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z +
2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x +
2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y +
2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z);
} else if (bool(draw_call.flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap
bool uses_sh = bool(draw_call.flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP);
uint ofs = draw_call.gi_offset & 0xFFFF;
vec3 uvw;
uvw.xy = uv2 * draw_call.lightmap_uv_scale.zw + draw_call.lightmap_uv_scale.xy;
uvw.z = float((draw_call.gi_offset >> 16) & 0xFFFF);
if (uses_sh) {
uvw.z *= 4.0; //SH textures use 4 times more data
vec3 lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb;
vec3 lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb;
vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb;
vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb;
uint idx = draw_call.gi_offset >> 20;
vec3 n = normalize(lightmaps.data[idx].normal_xform * normal);
ambient_light += lm_light_l0 * 0.282095f;
ambient_light += lm_light_l1n1 * 0.32573 * n.y;
ambient_light += lm_light_l1_0 * 0.32573 * n.z;
ambient_light += lm_light_l1p1 * 0.32573 * n.x;
if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick
vec3 r = reflect(normalize(-vertex), normal);
specular_light += lm_light_l1n1 * 0.32573 * r.y;
specular_light += lm_light_l1_0 * 0.32573 * r.z;
specular_light += lm_light_l1p1 * 0.32573 * r.x;
}
} else {
ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb;
}
}
// No GI nor non low end mode...
#endif // USE_LIGHTMAP
// skipping ssao, do we remove ssao totally?
if (!sc_disable_reflection_probes) { //Reflection probes
vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
uint reflection_indices = draw_call.reflection_probes.x;
for (uint i = 0; i < 8; i++) {
uint reflection_index = reflection_indices & 0xFF;
if (i == 4) {
reflection_indices = draw_call.reflection_probes.y;
} else {
reflection_indices = reflection_indices >> 8;
}
if (reflection_index == 0xFF) {
break;
}
reflection_process(reflection_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
}
if (reflection_accum.a > 0.0) {
specular_light = reflection_accum.rgb / reflection_accum.a;
}
} //Reflection probes
// finalize ambient light here
ambient_light *= albedo.rgb;
ambient_light *= ao;
// convert ao to direct light ao
ao = mix(1.0, ao, ao_light_affect);
//this saves some VGPRs
vec3 f0 = F0(metallic, specular, albedo);
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
// scales the specular reflections, needs to be computed before lighting happens,
// but after environment, GI, and reflection probes are added
// Environment brdf approximation (Lazarov 2013)
// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float ndotv = clamp(dot(normal, view), 0.0, 1.0);
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
specular_light *= env.x * f0 + env.y;
#endif
}
#endif // !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#if !defined(MODE_RENDER_DEPTH)
//this saves some VGPRs
uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular));
#endif
// LIGHTING
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
if (!sc_disable_directional_lights) { //directional light
#ifndef SHADOWS_DISABLED
// Do shadow and lighting in two passes to reduce register pressure
uint shadow0 = 0;
uint shadow1 = 0;
for (uint i = 0; i < 8; i++) {
if (i >= scene_data.directional_light_count) {
break;
}
if (!bool(directional_lights.data[i].mask & draw_call.layer_mask)) {
continue; //not masked
}
float shadow = 1.0;
// Directional light shadow code is basically the same as forward clustered at this point in time minus `LIGHT_TRANSMITTANCE_USED` support.
// Not sure if there is a reason to change this seeing directional lights are part of our global data
// Should think about whether we may want to move this code into an include file or function??
#ifdef USE_SOFT_SHADOWS
//version with soft shadows, more expensive
if (directional_lights.data[i].shadow_enabled) {
float depth_z = -vertex.z;
vec4 pssm_coord;
vec3 shadow_color = vec3(0.0);
vec3 light_dir = directional_lights.data[i].direction;
#define BIAS_FUNC(m_var, m_idx) \
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \
normal_bias -= light_dir * dot(light_dir, normal_bias); \
m_var.xyz += normal_bias;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.x;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
shadow_color = directional_lights.data[i].shadow_color1.rgb;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
shadow_color = directional_lights.data[i].shadow_color2.rgb;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
shadow_color = directional_lights.data[i].shadow_color3.rgb;
} else {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
shadow_color = directional_lights.data[i].shadow_color4.rgb;
}
if (directional_lights.data[i].blend_splits) {
vec3 shadow_color_blend = vec3(0.0);
float pssm_blend;
float shadow2;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
shadow_color_blend = directional_lights.data[i].shadow_color2.rgb;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
shadow_color_blend = directional_lights.data[i].shadow_color3.rgb;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
shadow_color_blend = directional_lights.data[i].shadow_color4.rgb;
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
}
pssm_blend = sqrt(pssm_blend);
shadow = mix(shadow, shadow2, pssm_blend);
shadow_color = mix(shadow_color, shadow_color_blend, pssm_blend);
}
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
#undef BIAS_FUNC
}
#else
// Soft shadow disabled version
if (directional_lights.data[i].shadow_enabled) {
float depth_z = -vertex.z;
vec4 pssm_coord;
vec3 light_dir = directional_lights.data[i].direction;
vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp))));
#define BIAS_FUNC(m_var, m_idx) \
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
vec3 normal_bias = base_normal_bias * directional_lights.data[i].shadow_normal_bias[m_idx]; \
normal_bias -= light_dir * dot(light_dir, normal_bias); \
m_var.xyz += normal_bias;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
} else {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
}
pssm_coord /= pssm_coord.w;
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
if (directional_lights.data[i].blend_splits) {
float pssm_blend;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
}
pssm_coord /= pssm_coord.w;
float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
shadow = mix(shadow, shadow2, pssm_blend);
}
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
#undef BIAS_FUNC
}
#endif
if (i < 4) {
shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8);
} else {
shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8);
}
}
#endif // SHADOWS_DISABLED
for (uint i = 0; i < 8; i++) {
if (i >= scene_data.directional_light_count) {
break;
}
if (!bool(directional_lights.data[i].mask & draw_call.layer_mask)) {
continue; //not masked
}
// We're not doing light transmittence
float shadow = 1.0;
#ifndef SHADOWS_DISABLED
if (i < 4) {
shadow = float(shadow0 >> (i * 8) & 0xFF) / 255.0;
} else {
shadow = float(shadow1 >> ((i - 4) * 8) & 0xFF) / 255.0;
}
#endif
blur_shadow(shadow);
light_compute(normal, directional_lights.data[i].direction, normalize(view), 0.0, directional_lights.data[i].color * directional_lights.data[i].energy, shadow, f0, orms, 1.0,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
/* not supported here
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_boost,
transmittance_z,
#endif
*/
#ifdef LIGHT_RIM_USED
rim, rim_tint, albedo,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
#ifdef USE_SOFT_SHADOW
directional_lights.data[i].size,
#endif
#ifdef USE_SHADOW_TO_OPACITY
alpha,
#endif
diffuse_light,
specular_light);
}
} //directional light
if (!sc_disable_omni_lights) { //omni lights
uint light_indices = draw_call.omni_lights.x;
for (uint i = 0; i < 8; i++) {
uint light_index = light_indices & 0xFF;
if (i == 4) {
light_indices = draw_call.omni_lights.y;
} else {
light_indices = light_indices >> 8;
}
if (light_index == 0xFF) {
break;
}
float shadow = light_process_omni_shadow(light_index, vertex, normal);
shadow = blur_shadow(shadow);
light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
/*
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_boost,
#endif
*/
#ifdef LIGHT_RIM_USED
rim,
rim_tint,
albedo,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
tangent, binormal, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
alpha,
#endif
diffuse_light, specular_light);
}
} //omni lights
if (!sc_disable_spot_lights) { //spot lights
uint light_indices = draw_call.spot_lights.x;
for (uint i = 0; i < 8; i++) {
uint light_index = light_indices & 0xFF;
if (i == 4) {
light_indices = draw_call.spot_lights.y;
} else {
light_indices = light_indices >> 8;
}
if (light_index == 0xFF) {
break;
}
float shadow = light_process_spot_shadow(light_index, vertex, normal);
shadow = blur_shadow(shadow);
light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
/*
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_boost,
#endif
*/
#ifdef LIGHT_RIM_USED
rim,
rim_tint,
albedo,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
tangent, binormal, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
alpha,
#endif
diffuse_light, specular_light);
}
} //spot lights
#ifdef USE_SHADOW_TO_OPACITY
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#endif // ALPHA_SCISSOR_USED
#ifdef USE_OPAQUE_PREPASS
if (alpha < opaque_prepass_threshold) {
discard;
}
#endif // USE_OPAQUE_PREPASS
#endif // USE_SHADOW_TO_OPACITY
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifdef MODE_RENDER_DEPTH
#ifdef MODE_RENDER_MATERIAL
albedo_output_buffer.rgb = albedo;
albedo_output_buffer.a = alpha;
normal_output_buffer.rgb = normal * 0.5 + 0.5;
normal_output_buffer.a = 0.0;
depth_output_buffer.r = -vertex.z;
orm_output_buffer.r = ao;
orm_output_buffer.g = roughness;
orm_output_buffer.b = metallic;
orm_output_buffer.a = sss_strength;
emission_output_buffer.rgb = emission;
emission_output_buffer.a = 0.0;
#endif // MODE_RENDER_MATERIAL
#else // MODE_RENDER_DEPTH
// multiply by albedo
diffuse_light *= albedo; // ambient must be multiplied by albedo at the end
// apply direct light AO
ao = unpackUnorm4x8(orms).x;
specular_light *= ao;
diffuse_light *= ao;
// apply metallic
metallic = unpackUnorm4x8(orms).z;
diffuse_light *= 1.0 - metallic;
ambient_light *= 1.0 - metallic;
//restore fog
fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
#ifdef MODE_MULTIPLE_RENDER_TARGETS
#ifdef MODE_UNSHADED
diffuse_buffer = vec4(albedo.rgb, 0.0);
specular_buffer = vec4(0.0);
#else // MODE_UNSHADED
#ifdef SSS_MODE_SKIN
sss_strength = -sss_strength;
#endif // SSS_MODE_SKIN
diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength);
specular_buffer = vec4(specular_light, metallic);
#endif // MODE_UNSHADED
diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
#else //MODE_MULTIPLE_RENDER_TARGETS
#ifdef MODE_UNSHADED
frag_color = vec4(albedo, alpha);
#else // MODE_UNSHADED
frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
#endif // MODE_UNSHADED
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
// On mobile we use a UNORM buffer with 10bpp which results in a range from 0.0 - 1.0 resulting in HDR breaking
// We divide by sc_luminance_multiplier to support a range from 0.0 - 2.0 both increasing precision on bright and darker images
frag_color.rgb = frag_color.rgb / sc_luminance_multiplier;
#endif //MODE_MULTIPLE_RENDER_TARGETS
#endif //MODE_RENDER_DEPTH
}