godot/servers/rendering/renderer_rd/renderer_storage_rd.h
Hugo Locurcio 5370f4876e
Remove leftovers from the DirectionalLight3D Optimized shadow depth range
The Optimized shadow depth range was removed in late 2020 in favor
of the Stable shadow depth range, but it still had a (broken) property
that allowed to enable it.
2021-07-02 20:32:43 +02:00

2352 lines
76 KiB
C++

/*************************************************************************/
/* renderer_storage_rd.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RENDERING_SERVER_STORAGE_RD_H
#define RENDERING_SERVER_STORAGE_RD_H
#include "core/templates/list.h"
#include "core/templates/local_vector.h"
#include "core/templates/rid_owner.h"
#include "servers/rendering/renderer_compositor.h"
#include "servers/rendering/renderer_rd/effects_rd.h"
#include "servers/rendering/renderer_rd/shader_compiler_rd.h"
#include "servers/rendering/renderer_rd/shaders/canvas_sdf.glsl.gen.h"
#include "servers/rendering/renderer_rd/shaders/particles.glsl.gen.h"
#include "servers/rendering/renderer_rd/shaders/particles_copy.glsl.gen.h"
#include "servers/rendering/renderer_rd/shaders/skeleton.glsl.gen.h"
#include "servers/rendering/renderer_rd/shaders/voxel_gi_sdf.glsl.gen.h"
#include "servers/rendering/renderer_scene_render.h"
#include "servers/rendering/rendering_device.h"
class RendererStorageRD : public RendererStorage {
public:
static _FORCE_INLINE_ void store_transform(const Transform3D &p_mtx, float *p_array) {
p_array[0] = p_mtx.basis.elements[0][0];
p_array[1] = p_mtx.basis.elements[1][0];
p_array[2] = p_mtx.basis.elements[2][0];
p_array[3] = 0;
p_array[4] = p_mtx.basis.elements[0][1];
p_array[5] = p_mtx.basis.elements[1][1];
p_array[6] = p_mtx.basis.elements[2][1];
p_array[7] = 0;
p_array[8] = p_mtx.basis.elements[0][2];
p_array[9] = p_mtx.basis.elements[1][2];
p_array[10] = p_mtx.basis.elements[2][2];
p_array[11] = 0;
p_array[12] = p_mtx.origin.x;
p_array[13] = p_mtx.origin.y;
p_array[14] = p_mtx.origin.z;
p_array[15] = 1;
}
static _FORCE_INLINE_ void store_basis_3x4(const Basis &p_mtx, float *p_array) {
p_array[0] = p_mtx.elements[0][0];
p_array[1] = p_mtx.elements[1][0];
p_array[2] = p_mtx.elements[2][0];
p_array[3] = 0;
p_array[4] = p_mtx.elements[0][1];
p_array[5] = p_mtx.elements[1][1];
p_array[6] = p_mtx.elements[2][1];
p_array[7] = 0;
p_array[8] = p_mtx.elements[0][2];
p_array[9] = p_mtx.elements[1][2];
p_array[10] = p_mtx.elements[2][2];
p_array[11] = 0;
}
static _FORCE_INLINE_ void store_transform_3x3(const Basis &p_mtx, float *p_array) {
p_array[0] = p_mtx.elements[0][0];
p_array[1] = p_mtx.elements[1][0];
p_array[2] = p_mtx.elements[2][0];
p_array[3] = 0;
p_array[4] = p_mtx.elements[0][1];
p_array[5] = p_mtx.elements[1][1];
p_array[6] = p_mtx.elements[2][1];
p_array[7] = 0;
p_array[8] = p_mtx.elements[0][2];
p_array[9] = p_mtx.elements[1][2];
p_array[10] = p_mtx.elements[2][2];
p_array[11] = 0;
}
static _FORCE_INLINE_ void store_transform_transposed_3x4(const Transform3D &p_mtx, float *p_array) {
p_array[0] = p_mtx.basis.elements[0][0];
p_array[1] = p_mtx.basis.elements[0][1];
p_array[2] = p_mtx.basis.elements[0][2];
p_array[3] = p_mtx.origin.x;
p_array[4] = p_mtx.basis.elements[1][0];
p_array[5] = p_mtx.basis.elements[1][1];
p_array[6] = p_mtx.basis.elements[1][2];
p_array[7] = p_mtx.origin.y;
p_array[8] = p_mtx.basis.elements[2][0];
p_array[9] = p_mtx.basis.elements[2][1];
p_array[10] = p_mtx.basis.elements[2][2];
p_array[11] = p_mtx.origin.z;
}
static _FORCE_INLINE_ void store_camera(const CameraMatrix &p_mtx, float *p_array) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
p_array[i * 4 + j] = p_mtx.matrix[i][j];
}
}
}
static _FORCE_INLINE_ void store_soft_shadow_kernel(const float *p_kernel, float *p_array) {
for (int i = 0; i < 128; i++) {
p_array[i] = p_kernel[i];
}
}
enum ShaderType {
SHADER_TYPE_2D,
SHADER_TYPE_3D,
SHADER_TYPE_PARTICLES,
SHADER_TYPE_SKY,
SHADER_TYPE_MAX
};
struct ShaderData {
virtual void set_code(const String &p_Code) = 0;
virtual void set_default_texture_param(const StringName &p_name, RID p_texture) = 0;
virtual void get_param_list(List<PropertyInfo> *p_param_list) const = 0;
virtual void get_instance_param_list(List<InstanceShaderParam> *p_param_list) const = 0;
virtual bool is_param_texture(const StringName &p_param) const = 0;
virtual bool is_animated() const = 0;
virtual bool casts_shadows() const = 0;
virtual Variant get_default_parameter(const StringName &p_parameter) const = 0;
virtual RS::ShaderNativeSourceCode get_native_source_code() const { return RS::ShaderNativeSourceCode(); }
virtual ~ShaderData() {}
};
typedef ShaderData *(*ShaderDataRequestFunction)();
struct MaterialData {
void update_uniform_buffer(const Map<StringName, ShaderLanguage::ShaderNode::Uniform> &p_uniforms, const uint32_t *p_uniform_offsets, const Map<StringName, Variant> &p_parameters, uint8_t *p_buffer, uint32_t p_buffer_size, bool p_use_linear_color);
void update_textures(const Map<StringName, Variant> &p_parameters, const Map<StringName, RID> &p_default_textures, const Vector<ShaderCompilerRD::GeneratedCode::Texture> &p_texture_uniforms, RID *p_textures, bool p_use_linear_color);
virtual void set_render_priority(int p_priority) = 0;
virtual void set_next_pass(RID p_pass) = 0;
virtual void update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) = 0;
virtual ~MaterialData();
private:
friend class RendererStorageRD;
RID self;
List<RID>::Element *global_buffer_E = nullptr;
List<RID>::Element *global_texture_E = nullptr;
uint64_t global_textures_pass = 0;
Map<StringName, uint64_t> used_global_textures;
};
typedef MaterialData *(*MaterialDataRequestFunction)(ShaderData *);
enum DefaultRDTexture {
DEFAULT_RD_TEXTURE_WHITE,
DEFAULT_RD_TEXTURE_BLACK,
DEFAULT_RD_TEXTURE_NORMAL,
DEFAULT_RD_TEXTURE_ANISO,
DEFAULT_RD_TEXTURE_MULTIMESH_BUFFER,
DEFAULT_RD_TEXTURE_CUBEMAP_BLACK,
DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_BLACK,
DEFAULT_RD_TEXTURE_CUBEMAP_WHITE,
DEFAULT_RD_TEXTURE_3D_WHITE,
DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE,
DEFAULT_RD_TEXTURE_2D_UINT,
DEFAULT_RD_TEXTURE_MAX
};
enum DefaultRDBuffer {
DEFAULT_RD_BUFFER_VERTEX,
DEFAULT_RD_BUFFER_NORMAL,
DEFAULT_RD_BUFFER_TANGENT,
DEFAULT_RD_BUFFER_COLOR,
DEFAULT_RD_BUFFER_TEX_UV,
DEFAULT_RD_BUFFER_TEX_UV2,
DEFAULT_RD_BUFFER_CUSTOM0,
DEFAULT_RD_BUFFER_CUSTOM1,
DEFAULT_RD_BUFFER_CUSTOM2,
DEFAULT_RD_BUFFER_CUSTOM3,
DEFAULT_RD_BUFFER_BONES,
DEFAULT_RD_BUFFER_WEIGHTS,
DEFAULT_RD_BUFFER_MAX,
};
private:
/* CANVAS TEXTURE API (2D) */
struct CanvasTexture {
RID diffuse;
RID normal_map;
RID specular;
Color specular_color = Color(1, 1, 1, 1);
float shininess = 1.0;
RS::CanvasItemTextureFilter texture_filter = RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT;
RS::CanvasItemTextureRepeat texture_repeat = RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT;
RID uniform_sets[RS::CANVAS_ITEM_TEXTURE_FILTER_MAX][RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX];
Size2i size_cache = Size2i(1, 1);
bool use_normal_cache = false;
bool use_specular_cache = false;
bool cleared_cache = true;
void clear_sets();
~CanvasTexture();
};
RID_Owner<CanvasTexture, true> canvas_texture_owner;
/* TEXTURE API */
struct Texture {
enum Type {
TYPE_2D,
TYPE_LAYERED,
TYPE_3D
};
Type type;
RS::TextureLayeredType layered_type = RS::TEXTURE_LAYERED_2D_ARRAY;
RenderingDevice::TextureType rd_type;
RID rd_texture;
RID rd_texture_srgb;
RenderingDevice::DataFormat rd_format;
RenderingDevice::DataFormat rd_format_srgb;
RD::TextureView rd_view;
Image::Format format;
Image::Format validated_format;
int width;
int height;
int depth;
int layers;
int mipmaps;
int height_2d;
int width_2d;
struct BufferSlice3D {
Size2i size;
uint32_t offset = 0;
uint32_t buffer_size = 0;
};
Vector<BufferSlice3D> buffer_slices_3d;
uint32_t buffer_size_3d = 0;
bool is_render_target;
bool is_proxy;
Ref<Image> image_cache_2d;
String path;
RID proxy_to;
Vector<RID> proxies;
Set<RID> lightmap_users;
RS::TextureDetectCallback detect_3d_callback = nullptr;
void *detect_3d_callback_ud = nullptr;
RS::TextureDetectCallback detect_normal_callback = nullptr;
void *detect_normal_callback_ud = nullptr;
RS::TextureDetectRoughnessCallback detect_roughness_callback = nullptr;
void *detect_roughness_callback_ud = nullptr;
CanvasTexture *canvas_texture = nullptr;
};
struct TextureToRDFormat {
RD::DataFormat format;
RD::DataFormat format_srgb;
RD::TextureSwizzle swizzle_r;
RD::TextureSwizzle swizzle_g;
RD::TextureSwizzle swizzle_b;
RD::TextureSwizzle swizzle_a;
TextureToRDFormat() {
format = RD::DATA_FORMAT_MAX;
format_srgb = RD::DATA_FORMAT_MAX;
swizzle_r = RD::TEXTURE_SWIZZLE_R;
swizzle_g = RD::TEXTURE_SWIZZLE_G;
swizzle_b = RD::TEXTURE_SWIZZLE_B;
swizzle_a = RD::TEXTURE_SWIZZLE_A;
}
};
//textures can be created from threads, so this RID_Owner is thread safe
mutable RID_Owner<Texture, true> texture_owner;
Ref<Image> _validate_texture_format(const Ref<Image> &p_image, TextureToRDFormat &r_format);
RID default_rd_textures[DEFAULT_RD_TEXTURE_MAX];
RID default_rd_samplers[RS::CANVAS_ITEM_TEXTURE_FILTER_MAX][RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX];
RID default_rd_storage_buffer;
/* DECAL ATLAS */
struct DecalAtlas {
struct Texture {
int panorama_to_dp_users;
int users;
Rect2 uv_rect;
};
struct SortItem {
RID texture;
Size2i pixel_size;
Size2i size;
Point2i pos;
bool operator<(const SortItem &p_item) const {
//sort larger to smaller
if (size.height == p_item.size.height) {
return size.width > p_item.size.width;
} else {
return size.height > p_item.size.height;
}
}
};
HashMap<RID, Texture> textures;
bool dirty = true;
int mipmaps = 5;
RID texture;
RID texture_srgb;
struct MipMap {
RID fb;
RID texture;
Size2i size;
};
Vector<MipMap> texture_mipmaps;
Size2i size;
} decal_atlas;
void _update_decal_atlas();
/* SHADER */
struct Material;
struct Shader {
ShaderData *data;
String code;
ShaderType type;
Map<StringName, RID> default_texture_parameter;
Set<Material *> owners;
};
ShaderDataRequestFunction shader_data_request_func[SHADER_TYPE_MAX];
mutable RID_Owner<Shader, true> shader_owner;
/* Material */
struct Material {
RID self;
MaterialData *data;
Shader *shader;
//shortcut to shader data and type
ShaderType shader_type;
uint32_t shader_id = 0;
bool update_requested;
bool uniform_dirty;
bool texture_dirty;
Material *update_next;
Map<StringName, Variant> params;
int32_t priority;
RID next_pass;
Dependency dependency;
};
MaterialDataRequestFunction material_data_request_func[SHADER_TYPE_MAX];
mutable RID_Owner<Material, true> material_owner;
Material *material_update_list;
void _material_queue_update(Material *material, bool p_uniform, bool p_texture);
void _update_queued_materials();
/* Mesh */
struct MeshInstance;
struct Mesh {
struct Surface {
RS::PrimitiveType primitive = RS::PRIMITIVE_POINTS;
uint32_t format = 0;
RID vertex_buffer;
RID attribute_buffer;
RID skin_buffer;
uint32_t vertex_count = 0;
uint32_t vertex_buffer_size = 0;
uint32_t skin_buffer_size = 0;
// A different pipeline needs to be allocated
// depending on the inputs available in the
// material.
// There are never that many geometry/material
// combinations, so a simple array is the most
// cache-efficient structure.
struct Version {
uint32_t input_mask = 0;
RD::VertexFormatID vertex_format = 0;
RID vertex_array;
};
SpinLock version_lock; //needed to access versions
Version *versions = nullptr; //allocated on demand
uint32_t version_count = 0;
RID index_buffer;
RID index_array;
uint32_t index_count = 0;
struct LOD {
float edge_length = 0.0;
RID index_buffer;
RID index_array;
};
LOD *lods = nullptr;
uint32_t lod_count = 0;
AABB aabb;
Vector<AABB> bone_aabbs;
RID blend_shape_buffer;
RID material;
uint32_t render_index = 0;
uint64_t render_pass = 0;
uint32_t multimesh_render_index = 0;
uint64_t multimesh_render_pass = 0;
uint32_t particles_render_index = 0;
uint64_t particles_render_pass = 0;
RID uniform_set;
};
uint32_t blend_shape_count = 0;
RS::BlendShapeMode blend_shape_mode = RS::BLEND_SHAPE_MODE_NORMALIZED;
Surface **surfaces = nullptr;
uint32_t surface_count = 0;
Vector<AABB> bone_aabbs;
bool has_bone_weights = false;
AABB aabb;
AABB custom_aabb;
Vector<RID> material_cache;
List<MeshInstance *> instances;
RID shadow_mesh;
Set<Mesh *> shadow_owners;
Dependency dependency;
};
mutable RID_Owner<Mesh, true> mesh_owner;
struct MeshInstance {
Mesh *mesh;
RID skeleton;
struct Surface {
RID vertex_buffer;
RID uniform_set;
Mesh::Surface::Version *versions = nullptr; //allocated on demand
uint32_t version_count = 0;
};
LocalVector<Surface> surfaces;
LocalVector<float> blend_weights;
RID blend_weights_buffer;
List<MeshInstance *>::Element *I = nullptr; //used to erase itself
uint64_t skeleton_version = 0;
bool dirty = false;
bool weights_dirty = false;
SelfList<MeshInstance> weight_update_list;
SelfList<MeshInstance> array_update_list;
MeshInstance() :
weight_update_list(this), array_update_list(this) {}
};
void _mesh_instance_clear(MeshInstance *mi);
void _mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface);
mutable RID_Owner<MeshInstance> mesh_instance_owner;
SelfList<MeshInstance>::List dirty_mesh_instance_weights;
SelfList<MeshInstance>::List dirty_mesh_instance_arrays;
struct SkeletonShader {
struct PushConstant {
uint32_t has_normal;
uint32_t has_tangent;
uint32_t has_skeleton;
uint32_t has_blend_shape;
uint32_t vertex_count;
uint32_t vertex_stride;
uint32_t skin_stride;
uint32_t skin_weight_offset;
uint32_t blend_shape_count;
uint32_t normalized_blend_shapes;
uint32_t pad0;
uint32_t pad1;
};
enum {
UNIFORM_SET_INSTANCE = 0,
UNIFORM_SET_SURFACE = 1,
UNIFORM_SET_SKELETON = 2,
};
enum {
SHADER_MODE_2D,
SHADER_MODE_3D,
SHADER_MODE_MAX
};
SkeletonShaderRD shader;
RID version;
RID version_shader[SHADER_MODE_MAX];
RID pipeline[SHADER_MODE_MAX];
RID default_skeleton_uniform_set;
} skeleton_shader;
void _mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint32_t p_input_mask, MeshInstance::Surface *mis = nullptr);
RID mesh_default_rd_buffers[DEFAULT_RD_BUFFER_MAX];
/* MultiMesh */
struct MultiMesh {
RID mesh;
int instances = 0;
RS::MultimeshTransformFormat xform_format = RS::MULTIMESH_TRANSFORM_3D;
bool uses_colors = false;
bool uses_custom_data = false;
int visible_instances = -1;
AABB aabb;
bool aabb_dirty = false;
bool buffer_set = false;
uint32_t stride_cache = 0;
uint32_t color_offset_cache = 0;
uint32_t custom_data_offset_cache = 0;
Vector<float> data_cache; //used if individual setting is used
bool *data_cache_dirty_regions = nullptr;
uint32_t data_cache_used_dirty_regions = 0;
RID buffer; //storage buffer
RID uniform_set_3d;
RID uniform_set_2d;
bool dirty = false;
MultiMesh *dirty_list = nullptr;
Dependency dependency;
};
mutable RID_Owner<MultiMesh, true> multimesh_owner;
MultiMesh *multimesh_dirty_list = nullptr;
_FORCE_INLINE_ void _multimesh_make_local(MultiMesh *multimesh) const;
_FORCE_INLINE_ void _multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb);
_FORCE_INLINE_ void _multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb);
_FORCE_INLINE_ void _multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances);
void _update_dirty_multimeshes();
/* PARTICLES */
struct ParticleData {
float xform[16];
float velocity[3];
uint32_t active;
float color[4];
float custom[3];
float lifetime;
uint32_t pad[3];
};
struct ParticlesFrameParams {
enum {
MAX_ATTRACTORS = 32,
MAX_COLLIDERS = 32,
MAX_3D_TEXTURES = 7
};
enum AttractorType {
ATTRACTOR_TYPE_SPHERE,
ATTRACTOR_TYPE_BOX,
ATTRACTOR_TYPE_VECTOR_FIELD,
};
struct Attractor {
float transform[16];
float extents[3]; //exents or radius
uint32_t type;
uint32_t texture_index; //texture index for vector field
float strength;
float attenuation;
float directionality;
};
enum CollisionType {
COLLISION_TYPE_SPHERE,
COLLISION_TYPE_BOX,
COLLISION_TYPE_SDF,
COLLISION_TYPE_HEIGHT_FIELD,
COLLISION_TYPE_2D_SDF,
};
struct Collider {
float transform[16];
float extents[3]; //exents or radius
uint32_t type;
uint32_t texture_index; //texture index for vector field
float scale;
uint32_t pad[2];
};
uint32_t emitting;
float system_phase;
float prev_system_phase;
uint32_t cycle;
float explosiveness;
float randomness;
float time;
float delta;
uint32_t frame;
uint32_t pad0;
uint32_t pad1;
uint32_t pad2;
uint32_t random_seed;
uint32_t attractor_count;
uint32_t collider_count;
float particle_size;
float emission_transform[16];
Attractor attractors[MAX_ATTRACTORS];
Collider colliders[MAX_COLLIDERS];
};
struct ParticleEmissionBufferData {
};
struct ParticleEmissionBuffer {
struct Data {
float xform[16];
float velocity[3];
uint32_t flags;
float color[4];
float custom[4];
};
int32_t particle_count;
int32_t particle_max;
uint32_t pad1;
uint32_t pad2;
Data data[1]; //its 2020 and empty arrays are still non standard in C++
};
struct Particles {
RS::ParticlesMode mode = RS::PARTICLES_MODE_3D;
bool inactive = true;
float inactive_time = 0.0;
bool emitting = false;
bool one_shot = false;
int amount = 0;
float lifetime = 1.0;
float pre_process_time = 0.0;
float explosiveness = 0.0;
float randomness = 0.0;
bool restart_request = false;
AABB custom_aabb = AABB(Vector3(-4, -4, -4), Vector3(8, 8, 8));
bool use_local_coords = true;
bool has_collision_cache = false;
bool has_sdf_collision = false;
Transform2D sdf_collision_transform;
Rect2 sdf_collision_to_screen;
RID sdf_collision_texture;
RID process_material;
uint32_t frame_counter = 0;
RS::ParticlesTransformAlign transform_align = RS::PARTICLES_TRANSFORM_ALIGN_DISABLED;
RS::ParticlesDrawOrder draw_order = RS::PARTICLES_DRAW_ORDER_INDEX;
Vector<RID> draw_passes;
Vector<Transform3D> trail_bind_poses;
bool trail_bind_poses_dirty = false;
RID trail_bind_pose_buffer;
RID trail_bind_pose_uniform_set;
RID particle_buffer;
RID particle_instance_buffer;
RID frame_params_buffer;
RID particles_material_uniform_set;
RID particles_copy_uniform_set;
RID particles_transforms_buffer_uniform_set;
RID collision_textures_uniform_set;
RID collision_3d_textures[ParticlesFrameParams::MAX_3D_TEXTURES];
uint32_t collision_3d_textures_used = 0;
RID collision_heightmap_texture;
RID particles_sort_buffer;
RID particles_sort_uniform_set;
bool dirty = false;
Particles *update_list = nullptr;
RID sub_emitter;
float phase = 0.0;
float prev_phase = 0.0;
uint64_t prev_ticks = 0;
uint32_t random_seed = 0;
uint32_t cycle_number = 0;
float speed_scale = 1.0;
int fixed_fps = 30;
bool interpolate = true;
bool fractional_delta = false;
float frame_remainder = 0;
float collision_base_size = 0.01;
bool clear = true;
bool force_sub_emit = false;
Transform3D emission_transform;
Vector<uint8_t> emission_buffer_data;
ParticleEmissionBuffer *emission_buffer = nullptr;
RID emission_storage_buffer;
Set<RID> collisions;
Dependency dependency;
float trail_length = 1.0;
bool trails_enabled = false;
LocalVector<ParticlesFrameParams> frame_history;
LocalVector<ParticlesFrameParams> trail_params;
Particles() {
}
};
void _particles_process(Particles *p_particles, float p_delta);
void _particles_allocate_emission_buffer(Particles *particles);
void _particles_free_data(Particles *particles);
void _particles_update_buffers(Particles *particles);
struct ParticlesShader {
struct PushConstant {
float lifetime;
uint32_t clear;
uint32_t total_particles;
uint32_t trail_size;
uint32_t use_fractional_delta;
uint32_t sub_emitter_mode;
uint32_t can_emit;
uint32_t trail_pass;
};
ParticlesShaderRD shader;
ShaderCompilerRD compiler;
RID default_shader;
RID default_material;
RID default_shader_rd;
RID base_uniform_set;
struct CopyPushConstant {
float sort_direction[3];
uint32_t total_particles;
uint32_t trail_size;
uint32_t trail_total;
float frame_delta;
float frame_remainder;
float align_up[3];
uint32_t align_mode;
uint32_t order_by_lifetime;
uint32_t lifetime_split;
uint32_t lifetime_reverse;
uint32_t pad;
};
enum {
COPY_MODE_FILL_INSTANCES,
COPY_MODE_FILL_INSTANCES_2D,
COPY_MODE_FILL_SORT_BUFFER,
COPY_MODE_FILL_INSTANCES_WITH_SORT_BUFFER,
COPY_MODE_MAX,
};
ParticlesCopyShaderRD copy_shader;
RID copy_shader_version;
RID copy_pipelines[COPY_MODE_MAX];
LocalVector<float> pose_update_buffer;
} particles_shader;
Particles *particle_update_list = nullptr;
struct ParticlesShaderData : public ShaderData {
bool valid;
RID version;
bool uses_collision = false;
//PipelineCacheRD pipelines[SKY_VERSION_MAX];
Map<StringName, ShaderLanguage::ShaderNode::Uniform> uniforms;
Vector<ShaderCompilerRD::GeneratedCode::Texture> texture_uniforms;
Vector<uint32_t> ubo_offsets;
uint32_t ubo_size;
String path;
String code;
Map<StringName, RID> default_texture_params;
RID pipeline;
bool uses_time;
virtual void set_code(const String &p_Code);
virtual void set_default_texture_param(const StringName &p_name, RID p_texture);
virtual void get_param_list(List<PropertyInfo> *p_param_list) const;
virtual void get_instance_param_list(List<RendererStorage::InstanceShaderParam> *p_param_list) const;
virtual bool is_param_texture(const StringName &p_param) const;
virtual bool is_animated() const;
virtual bool casts_shadows() const;
virtual Variant get_default_parameter(const StringName &p_parameter) const;
virtual RS::ShaderNativeSourceCode get_native_source_code() const;
ParticlesShaderData();
virtual ~ParticlesShaderData();
};
ShaderData *_create_particles_shader_func();
static RendererStorageRD::ShaderData *_create_particles_shader_funcs() {
return base_singleton->_create_particles_shader_func();
}
struct ParticlesMaterialData : public MaterialData {
uint64_t last_frame;
ParticlesShaderData *shader_data;
RID uniform_buffer;
RID uniform_set;
Vector<RID> texture_cache;
Vector<uint8_t> ubo_data;
bool uniform_set_updated;
virtual void set_render_priority(int p_priority) {}
virtual void set_next_pass(RID p_pass) {}
virtual void update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty);
virtual ~ParticlesMaterialData();
};
MaterialData *_create_particles_material_func(ParticlesShaderData *p_shader);
static RendererStorageRD::MaterialData *_create_particles_material_funcs(ShaderData *p_shader) {
return base_singleton->_create_particles_material_func(static_cast<ParticlesShaderData *>(p_shader));
}
void update_particles();
mutable RID_Owner<Particles, true> particles_owner;
/* Particles Collision */
struct ParticlesCollision {
RS::ParticlesCollisionType type = RS::PARTICLES_COLLISION_TYPE_SPHERE_ATTRACT;
uint32_t cull_mask = 0xFFFFFFFF;
float radius = 1.0;
Vector3 extents = Vector3(1, 1, 1);
float attractor_strength = 1.0;
float attractor_attenuation = 1.0;
float attractor_directionality = 0.0;
RID field_texture;
RID heightfield_texture;
RID heightfield_fb;
Size2i heightfield_fb_size;
RS::ParticlesCollisionHeightfieldResolution heightfield_resolution = RS::PARTICLES_COLLISION_HEIGHTFIELD_RESOLUTION_1024;
Dependency dependency;
};
mutable RID_Owner<ParticlesCollision, true> particles_collision_owner;
struct ParticlesCollisionInstance {
RID collision;
Transform3D transform;
bool active = false;
};
mutable RID_Owner<ParticlesCollisionInstance> particles_collision_instance_owner;
/* visibility_notifier */
struct VisibilityNotifier {
AABB aabb;
Callable enter_callback;
Callable exit_callback;
Dependency dependency;
};
mutable RID_Owner<VisibilityNotifier> visibility_notifier_owner;
/* Skeleton */
struct Skeleton {
bool use_2d = false;
int size = 0;
Vector<float> data;
RID buffer;
bool dirty = false;
Skeleton *dirty_list = nullptr;
Transform2D base_transform_2d;
RID uniform_set_3d;
RID uniform_set_mi;
uint64_t version = 1;
Dependency dependency;
};
mutable RID_Owner<Skeleton, true> skeleton_owner;
_FORCE_INLINE_ void _skeleton_make_dirty(Skeleton *skeleton);
Skeleton *skeleton_dirty_list = nullptr;
void _update_dirty_skeletons();
/* LIGHT */
struct Light {
RS::LightType type;
float param[RS::LIGHT_PARAM_MAX];
Color color = Color(1, 1, 1, 1);
Color shadow_color;
RID projector;
bool shadow = false;
bool negative = false;
bool reverse_cull = false;
RS::LightBakeMode bake_mode = RS::LIGHT_BAKE_DYNAMIC;
uint32_t max_sdfgi_cascade = 2;
uint32_t cull_mask = 0xFFFFFFFF;
RS::LightOmniShadowMode omni_shadow_mode = RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID;
RS::LightDirectionalShadowMode directional_shadow_mode = RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL;
bool directional_blend_splits = false;
bool directional_sky_only = false;
uint64_t version = 0;
Dependency dependency;
};
mutable RID_Owner<Light, true> light_owner;
/* REFLECTION PROBE */
struct ReflectionProbe {
RS::ReflectionProbeUpdateMode update_mode = RS::REFLECTION_PROBE_UPDATE_ONCE;
int resolution = 256;
float intensity = 1.0;
RS::ReflectionProbeAmbientMode ambient_mode = RS::REFLECTION_PROBE_AMBIENT_ENVIRONMENT;
Color ambient_color;
float ambient_color_energy = 1.0;
float max_distance = 0;
Vector3 extents = Vector3(1, 1, 1);
Vector3 origin_offset;
bool interior = false;
bool box_projection = false;
bool enable_shadows = false;
uint32_t cull_mask = (1 << 20) - 1;
float lod_threshold = 0.01;
Dependency dependency;
};
mutable RID_Owner<ReflectionProbe, true> reflection_probe_owner;
/* DECAL */
struct Decal {
Vector3 extents = Vector3(1, 1, 1);
RID textures[RS::DECAL_TEXTURE_MAX];
float emission_energy = 1.0;
float albedo_mix = 1.0;
Color modulate = Color(1, 1, 1, 1);
uint32_t cull_mask = (1 << 20) - 1;
float upper_fade = 0.3;
float lower_fade = 0.3;
bool distance_fade = false;
float distance_fade_begin = 10;
float distance_fade_length = 1;
float normal_fade = 0.0;
Dependency dependency;
};
mutable RID_Owner<Decal, true> decal_owner;
/* VOXEL GI */
struct VoxelGI {
RID octree_buffer;
RID data_buffer;
RID sdf_texture;
uint32_t octree_buffer_size = 0;
uint32_t data_buffer_size = 0;
Vector<int> level_counts;
int cell_count = 0;
Transform3D to_cell_xform;
AABB bounds;
Vector3i octree_size;
float dynamic_range = 4.0;
float energy = 1.0;
float bias = 1.4;
float normal_bias = 0.0;
float propagation = 0.7;
bool interior = false;
bool use_two_bounces = false;
float anisotropy_strength = 0.5;
uint32_t version = 1;
uint32_t data_version = 1;
Dependency dependency;
};
VoxelGiSdfShaderRD voxel_gi_sdf_shader;
RID voxel_gi_sdf_shader_version;
RID voxel_gi_sdf_shader_version_shader;
RID voxel_gi_sdf_shader_pipeline;
mutable RID_Owner<VoxelGI, true> voxel_gi_owner;
/* REFLECTION PROBE */
struct Lightmap {
RID light_texture;
bool uses_spherical_harmonics = false;
bool interior = false;
AABB bounds = AABB(Vector3(), Vector3(1, 1, 1));
int32_t array_index = -1; //unassigned
PackedVector3Array points;
PackedColorArray point_sh;
PackedInt32Array tetrahedra;
PackedInt32Array bsp_tree;
struct BSP {
static const int32_t EMPTY_LEAF = INT32_MIN;
float plane[4];
int32_t over = EMPTY_LEAF, under = EMPTY_LEAF;
};
Dependency dependency;
};
bool using_lightmap_array; //high end uses this
/* for high end */
Vector<RID> lightmap_textures;
uint64_t lightmap_array_version = 0;
mutable RID_Owner<Lightmap, true> lightmap_owner;
float lightmap_probe_capture_update_speed = 4;
/* RENDER TARGET */
struct RenderTarget {
Size2i size;
uint32_t view_count;
RID framebuffer;
RID color;
//used for retrieving from CPU
RD::DataFormat color_format = RD::DATA_FORMAT_R4G4_UNORM_PACK8;
RD::DataFormat color_format_srgb = RD::DATA_FORMAT_R4G4_UNORM_PACK8;
Image::Format image_format = Image::FORMAT_L8;
bool flags[RENDER_TARGET_FLAG_MAX];
bool sdf_enabled = false;
RID backbuffer; //used for effects
RID backbuffer_fb;
RID backbuffer_mipmap0;
struct BackbufferMipmap {
RID mipmap;
RID mipmap_copy;
};
Vector<BackbufferMipmap> backbuffer_mipmaps;
RID framebuffer_uniform_set;
RID backbuffer_uniform_set;
RID sdf_buffer_write;
RID sdf_buffer_write_fb;
RID sdf_buffer_process[2];
RID sdf_buffer_read;
RID sdf_buffer_process_uniform_sets[2];
RS::ViewportSDFOversize sdf_oversize = RS::VIEWPORT_SDF_OVERSIZE_120_PERCENT;
RS::ViewportSDFScale sdf_scale = RS::VIEWPORT_SDF_SCALE_50_PERCENT;
Size2i process_size;
//texture generated for this owner (nor RD).
RID texture;
bool was_used;
//clear request
bool clear_requested;
Color clear_color;
};
mutable RID_Owner<RenderTarget> render_target_owner;
void _clear_render_target(RenderTarget *rt);
void _update_render_target(RenderTarget *rt);
void _create_render_target_backbuffer(RenderTarget *rt);
void _render_target_allocate_sdf(RenderTarget *rt);
void _render_target_clear_sdf(RenderTarget *rt);
Rect2i _render_target_get_sdf_rect(const RenderTarget *rt) const;
struct RenderTargetSDF {
enum {
SHADER_LOAD,
SHADER_LOAD_SHRINK,
SHADER_PROCESS,
SHADER_PROCESS_OPTIMIZED,
SHADER_STORE,
SHADER_STORE_SHRINK,
SHADER_MAX
};
struct PushConstant {
int32_t size[2];
int32_t stride;
int32_t shift;
int32_t base_size[2];
int32_t pad[2];
};
CanvasSdfShaderRD shader;
RID shader_version;
RID pipelines[SHADER_MAX];
} rt_sdf;
/* GLOBAL SHADER VARIABLES */
struct GlobalVariables {
enum {
BUFFER_DIRTY_REGION_SIZE = 1024
};
struct Variable {
Set<RID> texture_materials; // materials using this
RS::GlobalVariableType type;
Variant value;
Variant override;
int32_t buffer_index; //for vectors
int32_t buffer_elements; //for vectors
};
HashMap<StringName, Variable> variables;
struct Value {
float x;
float y;
float z;
float w;
};
struct ValueInt {
int32_t x;
int32_t y;
int32_t z;
int32_t w;
};
struct ValueUInt {
uint32_t x;
uint32_t y;
uint32_t z;
uint32_t w;
};
struct ValueUsage {
uint32_t elements = 0;
};
List<RID> materials_using_buffer;
List<RID> materials_using_texture;
RID buffer;
Value *buffer_values;
ValueUsage *buffer_usage;
bool *buffer_dirty_regions;
uint32_t buffer_dirty_region_count = 0;
uint32_t buffer_size;
bool must_update_texture_materials = false;
bool must_update_buffer_materials = false;
HashMap<RID, int32_t> instance_buffer_pos;
} global_variables;
int32_t _global_variable_allocate(uint32_t p_elements);
void _global_variable_store_in_buffer(int32_t p_index, RS::GlobalVariableType p_type, const Variant &p_value);
void _global_variable_mark_buffer_dirty(int32_t p_index, int32_t p_elements);
void _update_global_variables();
/* EFFECTS */
EffectsRD effects;
public:
virtual bool can_create_resources_async() const;
/* TEXTURE API */
virtual RID texture_allocate();
virtual void texture_2d_initialize(RID p_texture, const Ref<Image> &p_image);
virtual void texture_2d_layered_initialize(RID p_texture, const Vector<Ref<Image>> &p_layers, RS::TextureLayeredType p_layered_type);
virtual void texture_3d_initialize(RID p_texture, Image::Format p_format, int p_width, int p_height, int p_depth, bool p_mipmaps, const Vector<Ref<Image>> &p_data); //all slices, then all the mipmaps, must be coherent
virtual void texture_proxy_initialize(RID p_texture, RID p_base);
virtual void _texture_2d_update(RID p_texture, const Ref<Image> &p_image, int p_layer, bool p_immediate);
virtual void texture_2d_update(RID p_texture, const Ref<Image> &p_image, int p_layer = 0);
virtual void texture_3d_update(RID p_texture, const Vector<Ref<Image>> &p_data);
virtual void texture_proxy_update(RID p_texture, RID p_proxy_to);
//these two APIs can be used together or in combination with the others.
virtual void texture_2d_placeholder_initialize(RID p_texture);
virtual void texture_2d_layered_placeholder_initialize(RID p_texture, RenderingServer::TextureLayeredType p_layered_type);
virtual void texture_3d_placeholder_initialize(RID p_texture);
virtual Ref<Image> texture_2d_get(RID p_texture) const;
virtual Ref<Image> texture_2d_layer_get(RID p_texture, int p_layer) const;
virtual Vector<Ref<Image>> texture_3d_get(RID p_texture) const;
virtual void texture_replace(RID p_texture, RID p_by_texture);
virtual void texture_set_size_override(RID p_texture, int p_width, int p_height);
virtual void texture_set_path(RID p_texture, const String &p_path);
virtual String texture_get_path(RID p_texture) const;
virtual void texture_set_detect_3d_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata);
virtual void texture_set_detect_normal_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata);
virtual void texture_set_detect_roughness_callback(RID p_texture, RS::TextureDetectRoughnessCallback p_callback, void *p_userdata);
virtual void texture_debug_usage(List<RS::TextureInfo> *r_info);
virtual void texture_set_proxy(RID p_proxy, RID p_base);
virtual void texture_set_force_redraw_if_visible(RID p_texture, bool p_enable);
virtual Size2 texture_size_with_proxy(RID p_proxy);
virtual void texture_add_to_decal_atlas(RID p_texture, bool p_panorama_to_dp = false);
virtual void texture_remove_from_decal_atlas(RID p_texture, bool p_panorama_to_dp = false);
RID decal_atlas_get_texture() const;
RID decal_atlas_get_texture_srgb() const;
_FORCE_INLINE_ Rect2 decal_atlas_get_texture_rect(RID p_texture) {
DecalAtlas::Texture *t = decal_atlas.textures.getptr(p_texture);
if (!t) {
return Rect2();
}
return t->uv_rect;
}
//internal usage
_FORCE_INLINE_ RID texture_get_rd_texture(RID p_texture, bool p_srgb = false) {
if (p_texture.is_null()) {
return RID();
}
Texture *tex = texture_owner.getornull(p_texture);
if (!tex) {
return RID();
}
return (p_srgb && tex->rd_texture_srgb.is_valid()) ? tex->rd_texture_srgb : tex->rd_texture;
}
_FORCE_INLINE_ Size2i texture_2d_get_size(RID p_texture) {
if (p_texture.is_null()) {
return Size2i();
}
Texture *tex = texture_owner.getornull(p_texture);
if (!tex) {
return Size2i();
}
return Size2i(tex->width_2d, tex->height_2d);
}
_FORCE_INLINE_ RID texture_rd_get_default(DefaultRDTexture p_texture) {
return default_rd_textures[p_texture];
}
_FORCE_INLINE_ RID sampler_rd_get_default(RS::CanvasItemTextureFilter p_filter, RS::CanvasItemTextureRepeat p_repeat) {
return default_rd_samplers[p_filter][p_repeat];
}
/* CANVAS TEXTURE API */
RID canvas_texture_allocate();
void canvas_texture_initialize(RID p_canvas_texture);
virtual void canvas_texture_set_channel(RID p_canvas_texture, RS::CanvasTextureChannel p_channel, RID p_texture);
virtual void canvas_texture_set_shading_parameters(RID p_canvas_texture, const Color &p_specular_color, float p_shininess);
virtual void canvas_texture_set_texture_filter(RID p_canvas_texture, RS::CanvasItemTextureFilter p_filter);
virtual void canvas_texture_set_texture_repeat(RID p_canvas_texture, RS::CanvasItemTextureRepeat p_repeat);
bool canvas_texture_get_uniform_set(RID p_texture, RS::CanvasItemTextureFilter p_base_filter, RS::CanvasItemTextureRepeat p_base_repeat, RID p_base_shader, int p_base_set, RID &r_uniform_set, Size2i &r_size, Color &r_specular_shininess, bool &r_use_normal, bool &r_use_specular);
/* SHADER API */
RID shader_allocate();
void shader_initialize(RID p_shader);
void shader_set_code(RID p_shader, const String &p_code);
String shader_get_code(RID p_shader) const;
void shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const;
void shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture);
RID shader_get_default_texture_param(RID p_shader, const StringName &p_name) const;
Variant shader_get_param_default(RID p_shader, const StringName &p_param) const;
void shader_set_data_request_function(ShaderType p_shader_type, ShaderDataRequestFunction p_function);
virtual RS::ShaderNativeSourceCode shader_get_native_source_code(RID p_shader) const;
/* COMMON MATERIAL API */
RID material_allocate();
void material_initialize(RID p_material);
void material_set_shader(RID p_material, RID p_shader);
void material_set_param(RID p_material, const StringName &p_param, const Variant &p_value);
Variant material_get_param(RID p_material, const StringName &p_param) const;
void material_set_next_pass(RID p_material, RID p_next_material);
void material_set_render_priority(RID p_material, int priority);
bool material_is_animated(RID p_material);
bool material_casts_shadows(RID p_material);
void material_get_instance_shader_parameters(RID p_material, List<InstanceShaderParam> *r_parameters);
void material_update_dependency(RID p_material, DependencyTracker *p_instance);
void material_force_update_textures(RID p_material, ShaderType p_shader_type);
void material_set_data_request_function(ShaderType p_shader_type, MaterialDataRequestFunction p_function);
_FORCE_INLINE_ uint32_t material_get_shader_id(RID p_material) {
Material *material = material_owner.getornull(p_material);
return material->shader_id;
}
_FORCE_INLINE_ MaterialData *material_get_data(RID p_material, ShaderType p_shader_type) {
Material *material = material_owner.getornull(p_material);
if (!material || material->shader_type != p_shader_type) {
return nullptr;
} else {
return material->data;
}
}
/* MESH API */
RID mesh_allocate();
void mesh_initialize(RID p_mesh);
virtual void mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count);
/// Return stride
virtual void mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface);
virtual int mesh_get_blend_shape_count(RID p_mesh) const;
virtual void mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode);
virtual RS::BlendShapeMode mesh_get_blend_shape_mode(RID p_mesh) const;
virtual void mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data);
virtual void mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data);
virtual void mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data);
virtual void mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material);
virtual RID mesh_surface_get_material(RID p_mesh, int p_surface) const;
virtual RS::SurfaceData mesh_get_surface(RID p_mesh, int p_surface) const;
virtual int mesh_get_surface_count(RID p_mesh) const;
virtual void mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb);
virtual AABB mesh_get_custom_aabb(RID p_mesh) const;
virtual AABB mesh_get_aabb(RID p_mesh, RID p_skeleton = RID());
virtual void mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh);
virtual void mesh_clear(RID p_mesh);
virtual bool mesh_needs_instance(RID p_mesh, bool p_has_skeleton);
/* MESH INSTANCE */
virtual RID mesh_instance_create(RID p_base);
virtual void mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton);
virtual void mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight);
virtual void mesh_instance_check_for_update(RID p_mesh_instance);
virtual void update_mesh_instances();
_FORCE_INLINE_ const RID *mesh_get_surface_count_and_materials(RID p_mesh, uint32_t &r_surface_count) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, nullptr);
r_surface_count = mesh->surface_count;
if (r_surface_count == 0) {
return nullptr;
}
if (mesh->material_cache.is_empty()) {
mesh->material_cache.resize(mesh->surface_count);
for (uint32_t i = 0; i < r_surface_count; i++) {
mesh->material_cache.write[i] = mesh->surfaces[i]->material;
}
}
return mesh->material_cache.ptr();
}
_FORCE_INLINE_ void *mesh_get_surface(RID p_mesh, uint32_t p_surface_index) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, nullptr);
ERR_FAIL_UNSIGNED_INDEX_V(p_surface_index, mesh->surface_count, nullptr);
return mesh->surfaces[p_surface_index];
}
_FORCE_INLINE_ RID mesh_get_shadow_mesh(RID p_mesh) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, RID());
return mesh->shadow_mesh;
}
_FORCE_INLINE_ RS::PrimitiveType mesh_surface_get_primitive(void *p_surface) {
Mesh::Surface *surface = reinterpret_cast<Mesh::Surface *>(p_surface);
return surface->primitive;
}
_FORCE_INLINE_ bool mesh_surface_has_lod(void *p_surface) const {
Mesh::Surface *s = reinterpret_cast<Mesh::Surface *>(p_surface);
return s->lod_count > 0;
}
_FORCE_INLINE_ uint32_t mesh_surface_get_lod(void *p_surface, float p_model_scale, float p_distance_threshold, float p_lod_threshold) const {
Mesh::Surface *s = reinterpret_cast<Mesh::Surface *>(p_surface);
int32_t current_lod = -1;
for (uint32_t i = 0; i < s->lod_count; i++) {
float screen_size = s->lods[i].edge_length * p_model_scale / p_distance_threshold;
if (screen_size > p_lod_threshold) {
break;
}
current_lod = i;
}
if (current_lod == -1) {
return 0;
} else {
return current_lod + 1;
}
}
_FORCE_INLINE_ RID mesh_surface_get_index_array(void *p_surface, uint32_t p_lod) const {
Mesh::Surface *s = reinterpret_cast<Mesh::Surface *>(p_surface);
if (p_lod == 0) {
return s->index_array;
} else {
return s->lods[p_lod - 1].index_array;
}
}
_FORCE_INLINE_ void mesh_surface_get_vertex_arrays_and_format(void *p_surface, uint32_t p_input_mask, RID &r_vertex_array_rd, RD::VertexFormatID &r_vertex_format) {
Mesh::Surface *s = reinterpret_cast<Mesh::Surface *>(p_surface);
s->version_lock.lock();
//there will never be more than, at much, 3 or 4 versions, so iterating is the fastest way
for (uint32_t i = 0; i < s->version_count; i++) {
if (s->versions[i].input_mask != p_input_mask) {
continue;
}
//we have this version, hooray
r_vertex_format = s->versions[i].vertex_format;
r_vertex_array_rd = s->versions[i].vertex_array;
s->version_lock.unlock();
return;
}
uint32_t version = s->version_count;
s->version_count++;
s->versions = (Mesh::Surface::Version *)memrealloc(s->versions, sizeof(Mesh::Surface::Version) * s->version_count);
_mesh_surface_generate_version_for_input_mask(s->versions[version], s, p_input_mask);
r_vertex_format = s->versions[version].vertex_format;
r_vertex_array_rd = s->versions[version].vertex_array;
s->version_lock.unlock();
}
_FORCE_INLINE_ void mesh_instance_surface_get_vertex_arrays_and_format(RID p_mesh_instance, uint32_t p_surface_index, uint32_t p_input_mask, RID &r_vertex_array_rd, RD::VertexFormatID &r_vertex_format) {
MeshInstance *mi = mesh_instance_owner.getornull(p_mesh_instance);
ERR_FAIL_COND(!mi);
Mesh *mesh = mi->mesh;
ERR_FAIL_UNSIGNED_INDEX(p_surface_index, mesh->surface_count);
MeshInstance::Surface *mis = &mi->surfaces[p_surface_index];
Mesh::Surface *s = mesh->surfaces[p_surface_index];
s->version_lock.lock();
//there will never be more than, at much, 3 or 4 versions, so iterating is the fastest way
for (uint32_t i = 0; i < mis->version_count; i++) {
if (mis->versions[i].input_mask != p_input_mask) {
continue;
}
//we have this version, hooray
r_vertex_format = mis->versions[i].vertex_format;
r_vertex_array_rd = mis->versions[i].vertex_array;
s->version_lock.unlock();
return;
}
uint32_t version = mis->version_count;
mis->version_count++;
mis->versions = (Mesh::Surface::Version *)memrealloc(mis->versions, sizeof(Mesh::Surface::Version) * mis->version_count);
_mesh_surface_generate_version_for_input_mask(mis->versions[version], s, p_input_mask, mis);
r_vertex_format = mis->versions[version].vertex_format;
r_vertex_array_rd = mis->versions[version].vertex_array;
s->version_lock.unlock();
}
_FORCE_INLINE_ RID mesh_get_default_rd_buffer(DefaultRDBuffer p_buffer) {
ERR_FAIL_INDEX_V(p_buffer, DEFAULT_RD_BUFFER_MAX, RID());
return mesh_default_rd_buffers[p_buffer];
}
_FORCE_INLINE_ uint32_t mesh_surface_get_render_pass_index(RID p_mesh, uint32_t p_surface_index, uint64_t p_render_pass, uint32_t *r_index) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
Mesh::Surface *s = mesh->surfaces[p_surface_index];
if (s->render_pass != p_render_pass) {
(*r_index)++;
s->render_pass = p_render_pass;
s->render_index = *r_index;
}
return s->render_index;
}
_FORCE_INLINE_ uint32_t mesh_surface_get_multimesh_render_pass_index(RID p_mesh, uint32_t p_surface_index, uint64_t p_render_pass, uint32_t *r_index) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
Mesh::Surface *s = mesh->surfaces[p_surface_index];
if (s->multimesh_render_pass != p_render_pass) {
(*r_index)++;
s->multimesh_render_pass = p_render_pass;
s->multimesh_render_index = *r_index;
}
return s->multimesh_render_index;
}
_FORCE_INLINE_ uint32_t mesh_surface_get_particles_render_pass_index(RID p_mesh, uint32_t p_surface_index, uint64_t p_render_pass, uint32_t *r_index) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
Mesh::Surface *s = mesh->surfaces[p_surface_index];
if (s->particles_render_pass != p_render_pass) {
(*r_index)++;
s->particles_render_pass = p_render_pass;
s->particles_render_index = *r_index;
}
return s->particles_render_index;
}
/* MULTIMESH API */
RID multimesh_allocate();
void multimesh_initialize(RID p_multimesh);
void multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors = false, bool p_use_custom_data = false);
int multimesh_get_instance_count(RID p_multimesh) const;
void multimesh_set_mesh(RID p_multimesh, RID p_mesh);
void multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform);
void multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform);
void multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color);
void multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color);
RID multimesh_get_mesh(RID p_multimesh) const;
Transform3D multimesh_instance_get_transform(RID p_multimesh, int p_index) const;
Transform2D multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const;
Color multimesh_instance_get_color(RID p_multimesh, int p_index) const;
Color multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const;
void multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer);
Vector<float> multimesh_get_buffer(RID p_multimesh) const;
void multimesh_set_visible_instances(RID p_multimesh, int p_visible);
int multimesh_get_visible_instances(RID p_multimesh) const;
AABB multimesh_get_aabb(RID p_multimesh) const;
_FORCE_INLINE_ RS::MultimeshTransformFormat multimesh_get_transform_format(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
return multimesh->xform_format;
}
_FORCE_INLINE_ bool multimesh_uses_colors(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
return multimesh->uses_colors;
}
_FORCE_INLINE_ bool multimesh_uses_custom_data(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
return multimesh->uses_custom_data;
}
_FORCE_INLINE_ uint32_t multimesh_get_instances_to_draw(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
if (multimesh->visible_instances >= 0) {
return multimesh->visible_instances;
}
return multimesh->instances;
}
_FORCE_INLINE_ RID multimesh_get_3d_uniform_set(RID p_multimesh, RID p_shader, uint32_t p_set) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
if (!multimesh->uniform_set_3d.is_valid()) {
Vector<RD::Uniform> uniforms;
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(multimesh->buffer);
uniforms.push_back(u);
multimesh->uniform_set_3d = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
}
return multimesh->uniform_set_3d;
}
_FORCE_INLINE_ RID multimesh_get_2d_uniform_set(RID p_multimesh, RID p_shader, uint32_t p_set) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
if (!multimesh->uniform_set_2d.is_valid()) {
Vector<RD::Uniform> uniforms;
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(multimesh->buffer);
uniforms.push_back(u);
multimesh->uniform_set_2d = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
}
return multimesh->uniform_set_2d;
}
/* SKELETON API */
RID skeleton_allocate();
void skeleton_initialize(RID p_skeleton);
void skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton = false);
void skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform);
void skeleton_set_world_transform(RID p_skeleton, bool p_enable, const Transform3D &p_world_transform);
int skeleton_get_bone_count(RID p_skeleton) const;
void skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform);
Transform3D skeleton_bone_get_transform(RID p_skeleton, int p_bone) const;
void skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform);
Transform2D skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const;
_FORCE_INLINE_ bool skeleton_is_valid(RID p_skeleton) {
return skeleton_owner.getornull(p_skeleton) != nullptr;
}
_FORCE_INLINE_ RID skeleton_get_3d_uniform_set(RID p_skeleton, RID p_shader, uint32_t p_set) const {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND_V(!skeleton, RID());
ERR_FAIL_COND_V(skeleton->size == 0, RID());
if (skeleton->use_2d) {
return RID();
}
if (!skeleton->uniform_set_3d.is_valid()) {
Vector<RD::Uniform> uniforms;
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(skeleton->buffer);
uniforms.push_back(u);
skeleton->uniform_set_3d = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
}
return skeleton->uniform_set_3d;
}
/* Light API */
void _light_initialize(RID p_rid, RS::LightType p_type);
RID directional_light_allocate();
void directional_light_initialize(RID p_light);
RID omni_light_allocate();
void omni_light_initialize(RID p_light);
RID spot_light_allocate();
void spot_light_initialize(RID p_light);
void light_set_color(RID p_light, const Color &p_color);
void light_set_param(RID p_light, RS::LightParam p_param, float p_value);
void light_set_shadow(RID p_light, bool p_enabled);
void light_set_shadow_color(RID p_light, const Color &p_color);
void light_set_projector(RID p_light, RID p_texture);
void light_set_negative(RID p_light, bool p_enable);
void light_set_cull_mask(RID p_light, uint32_t p_mask);
void light_set_reverse_cull_face_mode(RID p_light, bool p_enabled);
void light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode);
void light_set_max_sdfgi_cascade(RID p_light, uint32_t p_cascade);
void light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode);
void light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode);
void light_directional_set_blend_splits(RID p_light, bool p_enable);
bool light_directional_get_blend_splits(RID p_light) const;
void light_directional_set_sky_only(RID p_light, bool p_sky_only);
bool light_directional_is_sky_only(RID p_light) const;
RS::LightDirectionalShadowMode light_directional_get_shadow_mode(RID p_light);
RS::LightOmniShadowMode light_omni_get_shadow_mode(RID p_light);
_FORCE_INLINE_ RS::LightType light_get_type(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL);
return light->type;
}
AABB light_get_aabb(RID p_light) const;
_FORCE_INLINE_ float light_get_param(RID p_light, RS::LightParam p_param) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0);
return light->param[p_param];
}
_FORCE_INLINE_ RID light_get_projector(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RID());
return light->projector;
}
_FORCE_INLINE_ Color light_get_color(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, Color());
return light->color;
}
_FORCE_INLINE_ Color light_get_shadow_color(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, Color());
return light->shadow_color;
}
_FORCE_INLINE_ uint32_t light_get_cull_mask(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0);
return light->cull_mask;
}
_FORCE_INLINE_ bool light_has_shadow(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL);
return light->shadow;
}
_FORCE_INLINE_ bool light_is_negative(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL);
return light->negative;
}
_FORCE_INLINE_ float light_get_transmittance_bias(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0.0);
return light->param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS];
}
_FORCE_INLINE_ float light_get_shadow_volumetric_fog_fade(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0.0);
return light->param[RS::LIGHT_PARAM_SHADOW_VOLUMETRIC_FOG_FADE];
}
RS::LightBakeMode light_get_bake_mode(RID p_light);
uint32_t light_get_max_sdfgi_cascade(RID p_light);
uint64_t light_get_version(RID p_light) const;
/* PROBE API */
RID reflection_probe_allocate();
void reflection_probe_initialize(RID p_reflection_probe);
void reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode);
void reflection_probe_set_intensity(RID p_probe, float p_intensity);
void reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode);
void reflection_probe_set_ambient_color(RID p_probe, const Color &p_color);
void reflection_probe_set_ambient_energy(RID p_probe, float p_energy);
void reflection_probe_set_max_distance(RID p_probe, float p_distance);
void reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents);
void reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset);
void reflection_probe_set_as_interior(RID p_probe, bool p_enable);
void reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable);
void reflection_probe_set_enable_shadows(RID p_probe, bool p_enable);
void reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers);
void reflection_probe_set_resolution(RID p_probe, int p_resolution);
void reflection_probe_set_lod_threshold(RID p_probe, float p_ratio);
AABB reflection_probe_get_aabb(RID p_probe) const;
RS::ReflectionProbeUpdateMode reflection_probe_get_update_mode(RID p_probe) const;
uint32_t reflection_probe_get_cull_mask(RID p_probe) const;
Vector3 reflection_probe_get_extents(RID p_probe) const;
Vector3 reflection_probe_get_origin_offset(RID p_probe) const;
float reflection_probe_get_origin_max_distance(RID p_probe) const;
float reflection_probe_get_lod_threshold(RID p_probe) const;
int reflection_probe_get_resolution(RID p_probe) const;
bool reflection_probe_renders_shadows(RID p_probe) const;
float reflection_probe_get_intensity(RID p_probe) const;
bool reflection_probe_is_interior(RID p_probe) const;
bool reflection_probe_is_box_projection(RID p_probe) const;
RS::ReflectionProbeAmbientMode reflection_probe_get_ambient_mode(RID p_probe) const;
Color reflection_probe_get_ambient_color(RID p_probe) const;
float reflection_probe_get_ambient_color_energy(RID p_probe) const;
void base_update_dependency(RID p_base, DependencyTracker *p_instance);
void skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance);
/* DECAL API */
RID decal_allocate();
void decal_initialize(RID p_decal);
virtual void decal_set_extents(RID p_decal, const Vector3 &p_extents);
virtual void decal_set_texture(RID p_decal, RS::DecalTexture p_type, RID p_texture);
virtual void decal_set_emission_energy(RID p_decal, float p_energy);
virtual void decal_set_albedo_mix(RID p_decal, float p_mix);
virtual void decal_set_modulate(RID p_decal, const Color &p_modulate);
virtual void decal_set_cull_mask(RID p_decal, uint32_t p_layers);
virtual void decal_set_distance_fade(RID p_decal, bool p_enabled, float p_begin, float p_length);
virtual void decal_set_fade(RID p_decal, float p_above, float p_below);
virtual void decal_set_normal_fade(RID p_decal, float p_fade);
_FORCE_INLINE_ Vector3 decal_get_extents(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->extents;
}
_FORCE_INLINE_ RID decal_get_texture(RID p_decal, RS::DecalTexture p_texture) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->textures[p_texture];
}
_FORCE_INLINE_ Color decal_get_modulate(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->modulate;
}
_FORCE_INLINE_ float decal_get_emission_energy(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->emission_energy;
}
_FORCE_INLINE_ float decal_get_albedo_mix(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->albedo_mix;
}
_FORCE_INLINE_ uint32_t decal_get_cull_mask(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->cull_mask;
}
_FORCE_INLINE_ float decal_get_upper_fade(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->upper_fade;
}
_FORCE_INLINE_ float decal_get_lower_fade(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->lower_fade;
}
_FORCE_INLINE_ float decal_get_normal_fade(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->normal_fade;
}
_FORCE_INLINE_ bool decal_is_distance_fade_enabled(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->distance_fade;
}
_FORCE_INLINE_ float decal_get_distance_fade_begin(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->distance_fade_begin;
}
_FORCE_INLINE_ float decal_get_distance_fade_length(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->distance_fade_length;
}
virtual AABB decal_get_aabb(RID p_decal) const;
/* VOXEL GI API */
RID voxel_gi_allocate();
void voxel_gi_initialize(RID p_voxel_gi);
void voxel_gi_allocate_data(RID p_voxel_gi, const Transform3D &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector<uint8_t> &p_octree_cells, const Vector<uint8_t> &p_data_cells, const Vector<uint8_t> &p_distance_field, const Vector<int> &p_level_counts);
AABB voxel_gi_get_bounds(RID p_voxel_gi) const;
Vector3i voxel_gi_get_octree_size(RID p_voxel_gi) const;
Vector<uint8_t> voxel_gi_get_octree_cells(RID p_voxel_gi) const;
Vector<uint8_t> voxel_gi_get_data_cells(RID p_voxel_gi) const;
Vector<uint8_t> voxel_gi_get_distance_field(RID p_voxel_gi) const;
Vector<int> voxel_gi_get_level_counts(RID p_voxel_gi) const;
Transform3D voxel_gi_get_to_cell_xform(RID p_voxel_gi) const;
void voxel_gi_set_dynamic_range(RID p_voxel_gi, float p_range);
float voxel_gi_get_dynamic_range(RID p_voxel_gi) const;
void voxel_gi_set_propagation(RID p_voxel_gi, float p_range);
float voxel_gi_get_propagation(RID p_voxel_gi) const;
void voxel_gi_set_energy(RID p_voxel_gi, float p_energy);
float voxel_gi_get_energy(RID p_voxel_gi) const;
void voxel_gi_set_bias(RID p_voxel_gi, float p_bias);
float voxel_gi_get_bias(RID p_voxel_gi) const;
void voxel_gi_set_normal_bias(RID p_voxel_gi, float p_range);
float voxel_gi_get_normal_bias(RID p_voxel_gi) const;
void voxel_gi_set_interior(RID p_voxel_gi, bool p_enable);
bool voxel_gi_is_interior(RID p_voxel_gi) const;
void voxel_gi_set_use_two_bounces(RID p_voxel_gi, bool p_enable);
bool voxel_gi_is_using_two_bounces(RID p_voxel_gi) const;
void voxel_gi_set_anisotropy_strength(RID p_voxel_gi, float p_strength);
float voxel_gi_get_anisotropy_strength(RID p_voxel_gi) const;
uint32_t voxel_gi_get_version(RID p_probe);
uint32_t voxel_gi_get_data_version(RID p_probe);
RID voxel_gi_get_octree_buffer(RID p_voxel_gi) const;
RID voxel_gi_get_data_buffer(RID p_voxel_gi) const;
RID voxel_gi_get_sdf_texture(RID p_voxel_gi);
/* LIGHTMAP CAPTURE */
RID lightmap_allocate();
void lightmap_initialize(RID p_lightmap);
virtual void lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics);
virtual void lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds);
virtual void lightmap_set_probe_interior(RID p_lightmap, bool p_interior);
virtual void lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree);
virtual PackedVector3Array lightmap_get_probe_capture_points(RID p_lightmap) const;
virtual PackedColorArray lightmap_get_probe_capture_sh(RID p_lightmap) const;
virtual PackedInt32Array lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const;
virtual PackedInt32Array lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const;
virtual AABB lightmap_get_aabb(RID p_lightmap) const;
virtual bool lightmap_is_interior(RID p_lightmap) const;
virtual void lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh);
virtual void lightmap_set_probe_capture_update_speed(float p_speed);
_FORCE_INLINE_ float lightmap_get_probe_capture_update_speed() const {
return lightmap_probe_capture_update_speed;
}
_FORCE_INLINE_ RID lightmap_get_texture(RID p_lightmap) const {
const Lightmap *lm = lightmap_owner.getornull(p_lightmap);
ERR_FAIL_COND_V(!lm, RID());
return lm->light_texture;
}
_FORCE_INLINE_ int32_t lightmap_get_array_index(RID p_lightmap) const {
ERR_FAIL_COND_V(!using_lightmap_array, -1); //only for arrays
const Lightmap *lm = lightmap_owner.getornull(p_lightmap);
return lm->array_index;
}
_FORCE_INLINE_ bool lightmap_uses_spherical_harmonics(RID p_lightmap) const {
ERR_FAIL_COND_V(!using_lightmap_array, false); //only for arrays
const Lightmap *lm = lightmap_owner.getornull(p_lightmap);
return lm->uses_spherical_harmonics;
}
_FORCE_INLINE_ uint64_t lightmap_array_get_version() const {
ERR_FAIL_COND_V(!using_lightmap_array, 0); //only for arrays
return lightmap_array_version;
}
_FORCE_INLINE_ int lightmap_array_get_size() const {
ERR_FAIL_COND_V(!using_lightmap_array, 0); //only for arrays
return lightmap_textures.size();
}
_FORCE_INLINE_ const Vector<RID> &lightmap_array_get_textures() const {
ERR_FAIL_COND_V(!using_lightmap_array, lightmap_textures); //only for arrays
return lightmap_textures;
}
/* PARTICLES */
RID particles_allocate();
void particles_initialize(RID p_particles_collision);
void particles_set_mode(RID p_particles, RS::ParticlesMode p_mode);
void particles_set_emitting(RID p_particles, bool p_emitting);
void particles_set_amount(RID p_particles, int p_amount);
void particles_set_lifetime(RID p_particles, float p_lifetime);
void particles_set_one_shot(RID p_particles, bool p_one_shot);
void particles_set_pre_process_time(RID p_particles, float p_time);
void particles_set_explosiveness_ratio(RID p_particles, float p_ratio);
void particles_set_randomness_ratio(RID p_particles, float p_ratio);
void particles_set_custom_aabb(RID p_particles, const AABB &p_aabb);
void particles_set_speed_scale(RID p_particles, float p_scale);
void particles_set_use_local_coordinates(RID p_particles, bool p_enable);
void particles_set_process_material(RID p_particles, RID p_material);
void particles_set_fixed_fps(RID p_particles, int p_fps);
void particles_set_interpolate(RID p_particles, bool p_enable);
void particles_set_fractional_delta(RID p_particles, bool p_enable);
void particles_set_collision_base_size(RID p_particles, float p_size);
void particles_set_transform_align(RID p_particles, RS::ParticlesTransformAlign p_transform_align);
void particles_set_trails(RID p_particles, bool p_enable, float p_length);
void particles_set_trail_bind_poses(RID p_particles, const Vector<Transform3D> &p_bind_poses);
void particles_restart(RID p_particles);
void particles_emit(RID p_particles, const Transform3D &p_transform, const Vector3 &p_velocity, const Color &p_color, const Color &p_custom, uint32_t p_emit_flags);
void particles_set_subemitter(RID p_particles, RID p_subemitter_particles);
void particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order);
void particles_set_draw_passes(RID p_particles, int p_count);
void particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh);
void particles_request_process(RID p_particles);
AABB particles_get_current_aabb(RID p_particles);
AABB particles_get_aabb(RID p_particles) const;
void particles_set_emission_transform(RID p_particles, const Transform3D &p_transform);
bool particles_get_emitting(RID p_particles);
int particles_get_draw_passes(RID p_particles) const;
RID particles_get_draw_pass_mesh(RID p_particles, int p_pass) const;
void particles_set_view_axis(RID p_particles, const Vector3 &p_axis, const Vector3 &p_up_axis);
virtual bool particles_is_inactive(RID p_particles) const;
_FORCE_INLINE_ RS::ParticlesMode particles_get_mode(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, RS::PARTICLES_MODE_2D);
return particles->mode;
}
_FORCE_INLINE_ uint32_t particles_get_amount(RID p_particles, uint32_t &r_trail_divisor) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, 0);
if (particles->trails_enabled && particles->trail_bind_poses.size() > 1) {
r_trail_divisor = particles->trail_bind_poses.size();
} else {
r_trail_divisor = 1;
}
return particles->amount * r_trail_divisor;
}
_FORCE_INLINE_ bool particles_has_collision(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, 0);
return particles->has_collision_cache;
}
_FORCE_INLINE_ uint32_t particles_is_using_local_coords(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, false);
return particles->use_local_coords;
}
_FORCE_INLINE_ RID particles_get_instance_buffer_uniform_set(RID p_particles, RID p_shader, uint32_t p_set) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, RID());
if (particles->particles_transforms_buffer_uniform_set.is_null()) {
_particles_update_buffers(particles);
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(particles->particle_instance_buffer);
uniforms.push_back(u);
}
particles->particles_transforms_buffer_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
}
return particles->particles_transforms_buffer_uniform_set;
}
virtual void particles_add_collision(RID p_particles, RID p_particles_collision_instance);
virtual void particles_remove_collision(RID p_particles, RID p_particles_collision_instance);
virtual void particles_set_canvas_sdf_collision(RID p_particles, bool p_enable, const Transform2D &p_xform, const Rect2 &p_to_screen, RID p_texture);
/* PARTICLES COLLISION */
RID particles_collision_allocate();
void particles_collision_initialize(RID p_particles_collision);
virtual void particles_collision_set_collision_type(RID p_particles_collision, RS::ParticlesCollisionType p_type);
virtual void particles_collision_set_cull_mask(RID p_particles_collision, uint32_t p_cull_mask);
virtual void particles_collision_set_sphere_radius(RID p_particles_collision, float p_radius); //for spheres
virtual void particles_collision_set_box_extents(RID p_particles_collision, const Vector3 &p_extents); //for non-spheres
virtual void particles_collision_set_attractor_strength(RID p_particles_collision, float p_strength);
virtual void particles_collision_set_attractor_directionality(RID p_particles_collision, float p_directionality);
virtual void particles_collision_set_attractor_attenuation(RID p_particles_collision, float p_curve);
virtual void particles_collision_set_field_texture(RID p_particles_collision, RID p_texture); //for SDF and vector field, heightfield is dynamic
virtual void particles_collision_height_field_update(RID p_particles_collision); //for SDF and vector field
virtual void particles_collision_set_height_field_resolution(RID p_particles_collision, RS::ParticlesCollisionHeightfieldResolution p_resolution); //for SDF and vector field
virtual AABB particles_collision_get_aabb(RID p_particles_collision) const;
virtual Vector3 particles_collision_get_extents(RID p_particles_collision) const;
virtual bool particles_collision_is_heightfield(RID p_particles_collision) const;
RID particles_collision_get_heightfield_framebuffer(RID p_particles_collision) const;
virtual RID visibility_notifier_allocate();
virtual void visibility_notifier_initialize(RID p_notifier);
virtual void visibility_notifier_set_aabb(RID p_notifier, const AABB &p_aabb);
virtual void visibility_notifier_set_callbacks(RID p_notifier, const Callable &p_enter_callbable, const Callable &p_exit_callable);
virtual AABB visibility_notifier_get_aabb(RID p_notifier) const;
virtual void visibility_notifier_call(RID p_notifier, bool p_enter, bool p_deferred);
//used from 2D and 3D
virtual RID particles_collision_instance_create(RID p_collision);
virtual void particles_collision_instance_set_transform(RID p_collision_instance, const Transform3D &p_transform);
virtual void particles_collision_instance_set_active(RID p_collision_instance, bool p_active);
/* GLOBAL VARIABLES API */
virtual void global_variable_add(const StringName &p_name, RS::GlobalVariableType p_type, const Variant &p_value);
virtual void global_variable_remove(const StringName &p_name);
virtual Vector<StringName> global_variable_get_list() const;
virtual void global_variable_set(const StringName &p_name, const Variant &p_value);
virtual void global_variable_set_override(const StringName &p_name, const Variant &p_value);
virtual Variant global_variable_get(const StringName &p_name) const;
virtual RS::GlobalVariableType global_variable_get_type(const StringName &p_name) const;
RS::GlobalVariableType global_variable_get_type_internal(const StringName &p_name) const;
virtual void global_variables_load_settings(bool p_load_textures = true);
virtual void global_variables_clear();
virtual int32_t global_variables_instance_allocate(RID p_instance);
virtual void global_variables_instance_free(RID p_instance);
virtual void global_variables_instance_update(RID p_instance, int p_index, const Variant &p_value);
RID global_variables_get_storage_buffer() const;
/* RENDER TARGET API */
RID render_target_create();
void render_target_set_position(RID p_render_target, int p_x, int p_y);
void render_target_set_size(RID p_render_target, int p_width, int p_height, uint32_t p_view_count);
RID render_target_get_texture(RID p_render_target);
void render_target_set_external_texture(RID p_render_target, unsigned int p_texture_id);
void render_target_set_flag(RID p_render_target, RenderTargetFlags p_flag, bool p_value);
bool render_target_was_used(RID p_render_target);
void render_target_set_as_unused(RID p_render_target);
void render_target_copy_to_back_buffer(RID p_render_target, const Rect2i &p_region, bool p_gen_mipmaps);
void render_target_clear_back_buffer(RID p_render_target, const Rect2i &p_region, const Color &p_color);
void render_target_gen_back_buffer_mipmaps(RID p_render_target, const Rect2i &p_region);
RID render_target_get_back_buffer_uniform_set(RID p_render_target, RID p_base_shader);
virtual void render_target_request_clear(RID p_render_target, const Color &p_clear_color);
virtual bool render_target_is_clear_requested(RID p_render_target);
virtual Color render_target_get_clear_request_color(RID p_render_target);
virtual void render_target_disable_clear_request(RID p_render_target);
virtual void render_target_do_clear_request(RID p_render_target);
virtual void render_target_set_sdf_size_and_scale(RID p_render_target, RS::ViewportSDFOversize p_size, RS::ViewportSDFScale p_scale);
RID render_target_get_sdf_texture(RID p_render_target);
RID render_target_get_sdf_framebuffer(RID p_render_target);
void render_target_sdf_process(RID p_render_target);
virtual Rect2i render_target_get_sdf_rect(RID p_render_target) const;
void render_target_mark_sdf_enabled(RID p_render_target, bool p_enabled);
bool render_target_is_sdf_enabled(RID p_render_target) const;
Size2 render_target_get_size(RID p_render_target);
RID render_target_get_rd_framebuffer(RID p_render_target);
RID render_target_get_rd_texture(RID p_render_target);
RID render_target_get_rd_backbuffer(RID p_render_target);
RID render_target_get_rd_backbuffer_framebuffer(RID p_render_target);
RID render_target_get_framebuffer_uniform_set(RID p_render_target);
RID render_target_get_backbuffer_uniform_set(RID p_render_target);
void render_target_set_framebuffer_uniform_set(RID p_render_target, RID p_uniform_set);
void render_target_set_backbuffer_uniform_set(RID p_render_target, RID p_uniform_set);
RS::InstanceType get_base_type(RID p_rid) const;
bool free(RID p_rid);
bool has_os_feature(const String &p_feature) const;
void update_dirty_resources();
void set_debug_generate_wireframes(bool p_generate) {}
void render_info_begin_capture() {}
void render_info_end_capture() {}
int get_captured_render_info(RS::RenderInfo p_info) { return 0; }
uint64_t get_render_info(RS::RenderInfo p_info) { return 0; }
String get_video_adapter_name() const { return String(); }
String get_video_adapter_vendor() const { return String(); }
virtual void capture_timestamps_begin();
virtual void capture_timestamp(const String &p_name);
virtual uint32_t get_captured_timestamps_count() const;
virtual uint64_t get_captured_timestamps_frame() const;
virtual uint64_t get_captured_timestamp_gpu_time(uint32_t p_index) const;
virtual uint64_t get_captured_timestamp_cpu_time(uint32_t p_index) const;
virtual String get_captured_timestamp_name(uint32_t p_index) const;
RID get_default_rd_storage_buffer() { return default_rd_storage_buffer; }
static RendererStorageRD *base_singleton;
EffectsRD *get_effects();
RendererStorageRD();
~RendererStorageRD();
};
#endif // RASTERIZER_STORAGE_RD_H