godot/modules/mono/glue/GodotSharp/GodotSharp/Core/Plane.cs
Aaron Franke 554c776e08
Reformat structure string operators
The order of numbers is not changed except for Transform2D. All logic is done inside of their structures (and not in Variant).

For the number of decimals printed, they now use String::num_real which works best with real_t, except for Color which is fixed at 4 decimals (this is a reliable number of float digits when converting from 16-bpc so it seems like a good choice)
2021-06-11 10:53:20 -04:00

375 lines
12 KiB
C#

using System;
using System.Runtime.InteropServices;
#if REAL_T_IS_DOUBLE
using real_t = System.Double;
#else
using real_t = System.Single;
#endif
namespace Godot
{
/// <summary>
/// Plane represents a normalized plane equation.
/// "Over" or "Above" the plane is considered the side of
/// the plane towards where the normal is pointing.
/// </summary>
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Plane : IEquatable<Plane>
{
private Vector3 _normal;
/// <summary>
/// The normal of the plane, which must be normalized.
/// In the scalar equation of the plane `ax + by + cz = d`, this is
/// the vector `(a, b, c)`, where `d` is the <see cref="D"/> property.
/// </summary>
/// <value>Equivalent to `x`, `y`, and `z`.</value>
public Vector3 Normal
{
get { return _normal; }
set { _normal = value; }
}
/// <summary>
/// The X component of the plane's normal vector.
/// </summary>
/// <value>Equivalent to <see cref="Normal"/>'s X value.</value>
public real_t x
{
get
{
return _normal.x;
}
set
{
_normal.x = value;
}
}
/// <summary>
/// The Y component of the plane's normal vector.
/// </summary>
/// <value>Equivalent to <see cref="Normal"/>'s Y value.</value>
public real_t y
{
get
{
return _normal.y;
}
set
{
_normal.y = value;
}
}
/// <summary>
/// The Z component of the plane's normal vector.
/// </summary>
/// <value>Equivalent to <see cref="Normal"/>'s Z value.</value>
public real_t z
{
get
{
return _normal.z;
}
set
{
_normal.z = value;
}
}
/// <summary>
/// The distance from the origin to the plane (in the direction of
/// <see cref="Normal"/>). This value is typically non-negative.
/// In the scalar equation of the plane `ax + by + cz = d`,
/// this is `d`, while the `(a, b, c)` coordinates are represented
/// by the <see cref="Normal"/> property.
/// </summary>
/// <value>The plane's distance from the origin.</value>
public real_t D { get; set; }
/// <summary>
/// The center of the plane, the point where the normal line intersects the plane.
/// </summary>
/// <value>Equivalent to <see cref="Normal"/> multiplied by `D`.</value>
public Vector3 Center
{
get
{
return _normal * D;
}
set
{
_normal = value.Normalized();
D = value.Length();
}
}
/// <summary>
/// Returns the shortest distance from this plane to the position `point`.
/// </summary>
/// <param name="point">The position to use for the calculation.</param>
/// <returns>The shortest distance.</returns>
public real_t DistanceTo(Vector3 point)
{
return _normal.Dot(point) - D;
}
/// <summary>
/// Returns true if point is inside the plane.
/// Comparison uses a custom minimum epsilon threshold.
/// </summary>
/// <param name="point">The point to check.</param>
/// <param name="epsilon">The tolerance threshold.</param>
/// <returns>A bool for whether or not the plane has the point.</returns>
public bool HasPoint(Vector3 point, real_t epsilon = Mathf.Epsilon)
{
real_t dist = _normal.Dot(point) - D;
return Mathf.Abs(dist) <= epsilon;
}
/// <summary>
/// Returns the intersection point of the three planes: `b`, `c`,
/// and this plane. If no intersection is found, `null` is returned.
/// </summary>
/// <param name="b">One of the three planes to use in the calculation.</param>
/// <param name="c">One of the three planes to use in the calculation.</param>
/// <returns>The intersection, or `null` if none is found.</returns>
public Vector3? Intersect3(Plane b, Plane c)
{
real_t denom = _normal.Cross(b._normal).Dot(c._normal);
if (Mathf.IsZeroApprox(denom))
{
return null;
}
Vector3 result = b._normal.Cross(c._normal) * D +
c._normal.Cross(_normal) * b.D +
_normal.Cross(b._normal) * c.D;
return result / denom;
}
/// <summary>
/// Returns the intersection point of a ray consisting of the
/// position `from` and the direction normal `dir` with this plane.
/// If no intersection is found, `null` is returned.
/// </summary>
/// <param name="from">The start of the ray.</param>
/// <param name="dir">The direction of the ray, normalized.</param>
/// <returns>The intersection, or `null` if none is found.</returns>
public Vector3? IntersectRay(Vector3 from, Vector3 dir)
{
real_t den = _normal.Dot(dir);
if (Mathf.IsZeroApprox(den))
{
return null;
}
real_t dist = (_normal.Dot(from) - D) / den;
// This is a ray, before the emitting pos (from) does not exist
if (dist > Mathf.Epsilon)
{
return null;
}
return from + dir * -dist;
}
/// <summary>
/// Returns the intersection point of a line segment from
/// position `begin` to position `end` with this plane.
/// If no intersection is found, `null` is returned.
/// </summary>
/// <param name="begin">The start of the line segment.</param>
/// <param name="end">The end of the line segment.</param>
/// <returns>The intersection, or `null` if none is found.</returns>
public Vector3? IntersectSegment(Vector3 begin, Vector3 end)
{
Vector3 segment = begin - end;
real_t den = _normal.Dot(segment);
if (Mathf.IsZeroApprox(den))
{
return null;
}
real_t dist = (_normal.Dot(begin) - D) / den;
// Only allow dist to be in the range of 0 to 1, with tolerance.
if (dist < -Mathf.Epsilon || dist > 1.0f + Mathf.Epsilon)
{
return null;
}
return begin + segment * -dist;
}
/// <summary>
/// Returns true if `point` is located above the plane.
/// </summary>
/// <param name="point">The point to check.</param>
/// <returns>A bool for whether or not the point is above the plane.</returns>
public bool IsPointOver(Vector3 point)
{
return _normal.Dot(point) > D;
}
/// <summary>
/// Returns the plane scaled to unit length.
/// </summary>
/// <returns>A normalized version of the plane.</returns>
public Plane Normalized()
{
real_t len = _normal.Length();
if (len == 0)
{
return new Plane(0, 0, 0, 0);
}
return new Plane(_normal / len, D / len);
}
/// <summary>
/// Returns the orthogonal projection of `point` into the plane.
/// </summary>
/// <param name="point">The point to project.</param>
/// <returns>The projected point.</returns>
public Vector3 Project(Vector3 point)
{
return point - _normal * DistanceTo(point);
}
// Constants
private static readonly Plane _planeYZ = new Plane(1, 0, 0, 0);
private static readonly Plane _planeXZ = new Plane(0, 1, 0, 0);
private static readonly Plane _planeXY = new Plane(0, 0, 1, 0);
/// <summary>
/// A plane that extends in the Y and Z axes (normal vector points +X).
/// </summary>
/// <value>Equivalent to `new Plane(1, 0, 0, 0)`.</value>
public static Plane PlaneYZ { get { return _planeYZ; } }
/// <summary>
/// A plane that extends in the X and Z axes (normal vector points +Y).
/// </summary>
/// <value>Equivalent to `new Plane(0, 1, 0, 0)`.</value>
public static Plane PlaneXZ { get { return _planeXZ; } }
/// <summary>
/// A plane that extends in the X and Y axes (normal vector points +Z).
/// </summary>
/// <value>Equivalent to `new Plane(0, 0, 1, 0)`.</value>
public static Plane PlaneXY { get { return _planeXY; } }
/// <summary>
/// Constructs a plane from four values. `a`, `b` and `c` become the
/// components of the resulting plane's <see cref="Normal"/> vector.
/// `d` becomes the plane's distance from the origin.
/// </summary>
/// <param name="a">The X component of the plane's normal vector.</param>
/// <param name="b">The Y component of the plane's normal vector.</param>
/// <param name="c">The Z component of the plane's normal vector.</param>
/// <param name="d">The plane's distance from the origin. This value is typically non-negative.</param>
public Plane(real_t a, real_t b, real_t c, real_t d)
{
_normal = new Vector3(a, b, c);
this.D = d;
}
/// <summary>
/// Constructs a plane from a normal vector and the plane's distance to the origin.
/// </summary>
/// <param name="normal">The normal of the plane, must be normalized.</param>
/// <param name="d">The plane's distance from the origin. This value is typically non-negative.</param>
public Plane(Vector3 normal, real_t d)
{
this._normal = normal;
this.D = d;
}
/// <summary>
/// Constructs a plane from the three points, given in clockwise order.
/// </summary>
/// <param name="v1">The first point.</param>
/// <param name="v2">The second point.</param>
/// <param name="v3">The third point.</param>
public Plane(Vector3 v1, Vector3 v2, Vector3 v3)
{
_normal = (v1 - v3).Cross(v1 - v2);
_normal.Normalize();
D = _normal.Dot(v1);
}
public static Plane operator -(Plane plane)
{
return new Plane(-plane._normal, -plane.D);
}
public static bool operator ==(Plane left, Plane right)
{
return left.Equals(right);
}
public static bool operator !=(Plane left, Plane right)
{
return !left.Equals(right);
}
public override bool Equals(object obj)
{
if (obj is Plane)
{
return Equals((Plane)obj);
}
return false;
}
public bool Equals(Plane other)
{
return _normal == other._normal && D == other.D;
}
/// <summary>
/// Returns true if this plane and `other` are approximately equal, by running
/// <see cref="Mathf.IsEqualApprox(real_t, real_t)"/> on each component.
/// </summary>
/// <param name="other">The other plane to compare.</param>
/// <returns>Whether or not the planes are approximately equal.</returns>
public bool IsEqualApprox(Plane other)
{
return _normal.IsEqualApprox(other._normal) && Mathf.IsEqualApprox(D, other.D);
}
public override int GetHashCode()
{
return _normal.GetHashCode() ^ D.GetHashCode();
}
public override string ToString()
{
return String.Format("{0}, {1}", new object[]
{
_normal.ToString(),
D.ToString()
});
}
public string ToString(string format)
{
return String.Format("{0}, {1}", new object[]
{
_normal.ToString(format),
D.ToString(format)
});
}
}
}