godot/drivers/gles3/shaders/tonemap.glsl
Hugo Locurcio 5da2675856
Clamp negative colors regardless of the tonemapper to avoid artifacts
Color artifacts could be visible when using negative lights with the
Filmic and ACES tonemapping operators, as these did not clamp negative
colors.

(cherry picked from commit 313527b3fa)
2021-08-13 10:38:06 +02:00

383 lines
12 KiB
GLSL

/* clang-format off */
[vertex]
layout(location = 0) in highp vec4 vertex_attrib;
/* clang-format on */
layout(location = 4) in vec2 uv_in;
out vec2 uv_interp;
void main() {
gl_Position = vertex_attrib;
uv_interp = uv_in;
#ifdef V_FLIP
uv_interp.y = 1.0f - uv_interp.y;
#endif
}
/* clang-format off */
[fragment]
#if !defined(GLES_OVER_GL)
precision mediump float;
#endif
/* clang-format on */
in vec2 uv_interp;
uniform highp sampler2D source; //texunit:0
uniform float exposure;
uniform float white;
#ifdef USE_AUTO_EXPOSURE
uniform highp sampler2D source_auto_exposure; //texunit:1
uniform highp float auto_exposure_grey;
#endif
#if defined(USE_GLOW_LEVEL1) || defined(USE_GLOW_LEVEL2) || defined(USE_GLOW_LEVEL3) || defined(USE_GLOW_LEVEL4) || defined(USE_GLOW_LEVEL5) || defined(USE_GLOW_LEVEL6) || defined(USE_GLOW_LEVEL7)
#define USING_GLOW // only use glow when at least one glow level is selected
uniform highp sampler2D source_glow; //texunit:2
uniform highp float glow_intensity;
#endif
#ifdef USE_BCS
uniform vec3 bcs;
#endif
#ifdef USE_FXAA
uniform vec2 pixel_size;
#endif
#ifdef USE_COLOR_CORRECTION
uniform sampler2D color_correction; //texunit:3
#endif
layout(location = 0) out vec4 frag_color;
#ifdef USE_GLOW_FILTER_BICUBIC
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
float w0(float a) {
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
}
float w1(float a) {
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
}
float w2(float a) {
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
}
float w3(float a) {
return (1.0f / 6.0f) * (a * a * a);
}
// g0 and g1 are the two amplitude functions
float g0(float a) {
return w0(a) + w1(a);
}
float g1(float a) {
return w2(a) + w3(a);
}
// h0 and h1 are the two offset functions
float h0(float a) {
return -1.0f + w1(a) / (w0(a) + w1(a));
}
float h1(float a) {
return 1.0f + w3(a) / (w2(a) + w3(a));
}
uniform ivec2 glow_texture_size;
vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
float lod = float(p_lod);
vec2 tex_size = vec2(glow_texture_size >> p_lod);
vec2 texel_size = vec2(1.0f) / tex_size;
uv = uv * tex_size + vec2(0.5f);
vec2 iuv = floor(uv);
vec2 fuv = fract(uv);
float g0x = g0(fuv.x);
float g1x = g1(fuv.x);
float h0x = h0(fuv.x);
float h1x = h1(fuv.x);
float h0y = h0(fuv.y);
float h1y = h1(fuv.y);
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * texel_size;
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * texel_size;
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * texel_size;
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * texel_size;
return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
(g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
}
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
#else
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
#endif
vec3 tonemap_filmic(vec3 color, float white) {
// exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
// also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
// has no effect on the curve's general shape or visual properties
const float exposure_bias = 2.0f;
const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
const float B = 0.30f * exposure_bias;
const float C = 0.10f;
const float D = 0.20f;
const float E = 0.01f;
const float F = 0.30f;
vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
float white_tonemapped = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F;
return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f));
}
vec3 tonemap_aces(vec3 color, float white) {
const float exposure_bias = 0.85f;
const float A = 2.51f * exposure_bias * exposure_bias;
const float B = 0.03f * exposure_bias;
const float C = 2.43f * exposure_bias * exposure_bias;
const float D = 0.59f * exposure_bias;
const float E = 0.14f;
vec3 color_tonemapped = (color * (A * color + B)) / (color * (C * color + D) + E);
float white_tonemapped = (white * (A * white + B)) / (white * (C * white + D) + E);
return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f));
}
vec3 tonemap_reinhard(vec3 color, float white) {
return clamp((white * color + color) / (color * white + white), vec3(0.0f), vec3(1.0f));
}
vec3 linear_to_srgb(vec3 color) { // convert linear rgb to srgb, assumes clamped input in range [0;1]
const vec3 a = vec3(0.055f);
return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
}
// inputs are LINEAR, If Linear tonemapping is selected no transform is performed else outputs are clamped [0, 1] color
vec3 apply_tonemapping(vec3 color, float white) {
#ifdef USE_REINHARD_TONEMAPPER
return tonemap_reinhard(color, white);
#endif
#ifdef USE_FILMIC_TONEMAPPER
return tonemap_filmic(color, white);
#endif
#ifdef USE_ACES_TONEMAPPER
return tonemap_aces(color, white);
#endif
return color; // no other selected -> linear: no color transform applied
}
vec3 gather_glow(sampler2D tex, vec2 uv) { // sample all selected glow levels
vec3 glow = vec3(0.0f);
#ifdef USE_GLOW_LEVEL1
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 1).rgb;
#endif
#ifdef USE_GLOW_LEVEL2
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 2).rgb;
#endif
#ifdef USE_GLOW_LEVEL3
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 3).rgb;
#endif
#ifdef USE_GLOW_LEVEL4
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 4).rgb;
#endif
#ifdef USE_GLOW_LEVEL5
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 5).rgb;
#endif
#ifdef USE_GLOW_LEVEL6
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 6).rgb;
#endif
#ifdef USE_GLOW_LEVEL7
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 7).rgb;
#endif
return glow;
}
vec3 apply_glow(vec3 color, vec3 glow) { // apply glow using the selected blending mode
#ifdef USE_GLOW_REPLACE
color = glow;
#endif
#ifdef USE_GLOW_SCREEN
//need color clamping
color = clamp(color, vec3(0.0f), vec3(1.0f));
color = max((color + glow) - (color * glow), vec3(0.0));
#endif
#ifdef USE_GLOW_SOFTLIGHT
//need color clamping
color = clamp(color, vec3(0.0f), vec3(1.0));
glow = glow * vec3(0.5f) + vec3(0.5f);
color.r = (glow.r <= 0.5f) ? (color.r - (1.0f - 2.0f * glow.r) * color.r * (1.0f - color.r)) : (((glow.r > 0.5f) && (color.r <= 0.25f)) ? (color.r + (2.0f * glow.r - 1.0f) * (4.0f * color.r * (4.0f * color.r + 1.0f) * (color.r - 1.0f) + 7.0f * color.r)) : (color.r + (2.0f * glow.r - 1.0f) * (sqrt(color.r) - color.r)));
color.g = (glow.g <= 0.5f) ? (color.g - (1.0f - 2.0f * glow.g) * color.g * (1.0f - color.g)) : (((glow.g > 0.5f) && (color.g <= 0.25f)) ? (color.g + (2.0f * glow.g - 1.0f) * (4.0f * color.g * (4.0f * color.g + 1.0f) * (color.g - 1.0f) + 7.0f * color.g)) : (color.g + (2.0f * glow.g - 1.0f) * (sqrt(color.g) - color.g)));
color.b = (glow.b <= 0.5f) ? (color.b - (1.0f - 2.0f * glow.b) * color.b * (1.0f - color.b)) : (((glow.b > 0.5f) && (color.b <= 0.25f)) ? (color.b + (2.0f * glow.b - 1.0f) * (4.0f * color.b * (4.0f * color.b + 1.0f) * (color.b - 1.0f) + 7.0f * color.b)) : (color.b + (2.0f * glow.b - 1.0f) * (sqrt(color.b) - color.b)));
#endif
#if !defined(USE_GLOW_SCREEN) && !defined(USE_GLOW_SOFTLIGHT) && !defined(USE_GLOW_REPLACE) // no other selected -> additive
color += glow;
#endif
return color;
}
vec3 apply_bcs(vec3 color, vec3 bcs) {
color = mix(vec3(0.0f), color, bcs.x);
color = mix(vec3(0.5f), color, bcs.y);
color = mix(vec3(dot(vec3(1.0f), color) * 0.33333f), color, bcs.z);
return color;
}
vec3 apply_color_correction(vec3 color, sampler2D correction_tex) {
color.r = texture(correction_tex, vec2(color.r, 0.0f)).r;
color.g = texture(correction_tex, vec2(color.g, 0.0f)).g;
color.b = texture(correction_tex, vec2(color.b, 0.0f)).b;
return color;
}
vec3 apply_fxaa(vec3 color, float exposure, vec2 uv_interp, vec2 pixel_size) {
const float FXAA_REDUCE_MIN = (1.0 / 128.0);
const float FXAA_REDUCE_MUL = (1.0 / 8.0);
const float FXAA_SPAN_MAX = 8.0;
vec3 rgbNW = textureLod(source, uv_interp + vec2(-1.0, -1.0) * pixel_size, 0.0).xyz * exposure;
vec3 rgbNE = textureLod(source, uv_interp + vec2(1.0, -1.0) * pixel_size, 0.0).xyz * exposure;
vec3 rgbSW = textureLod(source, uv_interp + vec2(-1.0, 1.0) * pixel_size, 0.0).xyz * exposure;
vec3 rgbSE = textureLod(source, uv_interp + vec2(1.0, 1.0) * pixel_size, 0.0).xyz * exposure;
vec3 rgbM = color;
vec3 luma = vec3(0.299, 0.587, 0.114);
float lumaNW = dot(rgbNW, luma);
float lumaNE = dot(rgbNE, luma);
float lumaSW = dot(rgbSW, luma);
float lumaSE = dot(rgbSE, luma);
float lumaM = dot(rgbM, luma);
float lumaMin = min(lumaM, min(min(lumaNW, lumaNE), min(lumaSW, lumaSE)));
float lumaMax = max(lumaM, max(max(lumaNW, lumaNE), max(lumaSW, lumaSE)));
vec2 dir;
dir.x = -((lumaNW + lumaNE) - (lumaSW + lumaSE));
dir.y = ((lumaNW + lumaSW) - (lumaNE + lumaSE));
float dirReduce = max((lumaNW + lumaNE + lumaSW + lumaSE) *
(0.25 * FXAA_REDUCE_MUL),
FXAA_REDUCE_MIN);
float rcpDirMin = 1.0 / (min(abs(dir.x), abs(dir.y)) + dirReduce);
dir = min(vec2(FXAA_SPAN_MAX, FXAA_SPAN_MAX),
max(vec2(-FXAA_SPAN_MAX, -FXAA_SPAN_MAX),
dir * rcpDirMin)) *
pixel_size;
vec3 rgbA = 0.5 * exposure * (textureLod(source, uv_interp + dir * (1.0 / 3.0 - 0.5), 0.0).xyz + textureLod(source, uv_interp + dir * (2.0 / 3.0 - 0.5), 0.0).xyz);
vec3 rgbB = rgbA * 0.5 + 0.25 * exposure * (textureLod(source, uv_interp + dir * -0.5, 0.0).xyz + textureLod(source, uv_interp + dir * 0.5, 0.0).xyz);
float lumaB = dot(rgbB, luma);
if ((lumaB < lumaMin) || (lumaB > lumaMax)) {
return rgbA;
} else {
return rgbB;
}
}
// From http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
// and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom)
// NOTE: `frag_coord` is in pixels (i.e. not normalized UV).
vec3 screen_space_dither(vec2 frag_coord) {
// Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR.
vec3 dither = vec3(dot(vec2(171.0, 231.0), frag_coord));
dither.rgb = fract(dither.rgb / vec3(103.0, 71.0, 97.0));
// Subtract 0.5 to avoid slightly brightening the whole viewport.
return (dither.rgb - 0.5) / 255.0;
}
void main() {
vec3 color = textureLod(source, uv_interp, 0.0f).rgb;
// Exposure
float full_exposure = exposure;
#ifdef USE_AUTO_EXPOSURE
full_exposure /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
#endif
color *= full_exposure;
#ifdef USE_FXAA
// FXAA must be applied before tonemapping.
color = apply_fxaa(color, full_exposure, uv_interp, pixel_size);
#endif
#ifdef USE_DEBANDING
// For best results, debanding should be done before tonemapping.
// Otherwise, we're adding noise to an already-quantized image.
color += screen_space_dither(gl_FragCoord.xy);
#endif
// Early Tonemap & SRGB Conversion; note that Linear tonemapping does not clamp to [0, 1]; some operations below expect a [0, 1] range and will clamp
// Ensure color values are positive.
// They can be negative in the case of negative lights, which leads to undesired behavior.
color = apply_tonemapping(max(vec3(0.0), color), white);
#ifdef KEEP_3D_LINEAR
// leave color as is (-> don't convert to SRGB)
#else
//need color clamping
color = clamp(color, vec3(0.0f), vec3(1.0f));
color = linear_to_srgb(color); // regular linear -> SRGB conversion (needs clamped values)
#endif
// Glow
#ifdef USING_GLOW
vec3 glow = gather_glow(source_glow, uv_interp) * glow_intensity;
// high dynamic range -> SRGB
glow = apply_tonemapping(glow, white);
glow = clamp(glow, vec3(0.0f), vec3(1.0f));
glow = linear_to_srgb(glow);
color = apply_glow(color, glow);
#endif
// Additional effects
#ifdef USE_BCS
color = apply_bcs(color, bcs);
#endif
#ifdef USE_COLOR_CORRECTION
color = apply_color_correction(color, color_correction);
#endif
frag_color = vec4(color, 1.0f);
}