godot/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs

559 lines
20 KiB
C#

#if REAL_T_IS_DOUBLE
using real_t = System.Double;
#else
using real_t = System.Single;
#endif
using System;
using System.Runtime.InteropServices;
namespace Godot
{
/// <summary>
/// A unit quaternion used for representing 3D rotations.
/// Quaternions need to be normalized to be used for rotation.
///
/// It is similar to Basis, which implements matrix representation of
/// rotations, and can be parametrized using both an axis-angle pair
/// or Euler angles. Basis stores rotation, scale, and shearing,
/// while Quaternion only stores rotation.
///
/// Due to its compactness and the way it is stored in memory, certain
/// operations (obtaining axis-angle and performing SLERP, in particular)
/// are more efficient and robust against floating-point errors.
/// </summary>
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Quaternion : IEquatable<Quaternion>
{
/// <summary>
/// X component of the quaternion (imaginary `i` axis part).
/// Quaternion components should usually not be manipulated directly.
/// </summary>
public real_t x;
/// <summary>
/// Y component of the quaternion (imaginary `j` axis part).
/// Quaternion components should usually not be manipulated directly.
/// </summary>
public real_t y;
/// <summary>
/// Z component of the quaternion (imaginary `k` axis part).
/// Quaternion components should usually not be manipulated directly.
/// </summary>
public real_t z;
/// <summary>
/// W component of the quaternion (real part).
/// Quaternion components should usually not be manipulated directly.
/// </summary>
public real_t w;
/// <summary>
/// Access quaternion components using their index.
/// </summary>
/// <value>`[0]` is equivalent to `.x`, `[1]` is equivalent to `.y`, `[2]` is equivalent to `.z`, `[3]` is equivalent to `.w`.</value>
public real_t this[int index]
{
get
{
switch (index)
{
case 0:
return x;
case 1:
return y;
case 2:
return z;
case 3:
return w;
default:
throw new IndexOutOfRangeException();
}
}
set
{
switch (index)
{
case 0:
x = value;
break;
case 1:
y = value;
break;
case 2:
z = value;
break;
case 3:
w = value;
break;
default:
throw new IndexOutOfRangeException();
}
}
}
/// <summary>
/// Returns the length (magnitude) of the quaternion.
/// </summary>
/// <value>Equivalent to `Mathf.Sqrt(LengthSquared)`.</value>
public real_t Length
{
get { return Mathf.Sqrt(LengthSquared); }
}
/// <summary>
/// Returns the squared length (squared magnitude) of the quaternion.
/// This method runs faster than <see cref="Length"/>, so prefer it if
/// you need to compare quaternions or need the squared length for some formula.
/// </summary>
/// <value>Equivalent to `Dot(this)`.</value>
public real_t LengthSquared
{
get { return Dot(this); }
}
/// <summary>
/// Returns the angle between this quaternion and `to`.
/// This is the magnitude of the angle you would need to rotate
/// by to get from one to the other.
///
/// Note: This method has an abnormally high amount
/// of floating-point error, so methods such as
/// <see cref="Mathf.IsZeroApprox"/> will not work reliably.
/// </summary>
/// <param name="to">The other quaternion.</param>
/// <returns>The angle between the quaternions.</returns>
public real_t AngleTo(Quaternion to)
{
real_t dot = Dot(to);
return Mathf.Acos(Mathf.Clamp(dot * dot * 2 - 1, -1, 1));
}
/// <summary>
/// Performs a cubic spherical interpolation between quaternions `preA`,
/// this vector, `b`, and `postB`, by the given amount `t`.
/// </summary>
/// <param name="b">The destination quaternion.</param>
/// <param name="preA">A quaternion before this quaternion.</param>
/// <param name="postB">A quaternion after `b`.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The interpolated quaternion.</returns>
public Quaternion CubicSlerp(Quaternion b, Quaternion preA, Quaternion postB, real_t weight)
{
real_t t2 = (1.0f - weight) * weight * 2f;
Quaternion sp = Slerp(b, weight);
Quaternion sq = preA.Slerpni(postB, weight);
return sp.Slerpni(sq, t2);
}
/// <summary>
/// Returns the dot product of two quaternions.
/// </summary>
/// <param name="b">The other quaternion.</param>
/// <returns>The dot product.</returns>
public real_t Dot(Quaternion b)
{
return x * b.x + y * b.y + z * b.z + w * b.w;
}
/// <summary>
/// Returns Euler angles (in the YXZ convention: when decomposing,
/// first Z, then X, and Y last) corresponding to the rotation
/// represented by the unit quaternion. Returned vector contains
/// the rotation angles in the format (X angle, Y angle, Z angle).
/// </summary>
/// <returns>The Euler angle representation of this quaternion.</returns>
public Vector3 GetEuler()
{
#if DEBUG
if (!IsNormalized())
{
throw new InvalidOperationException("Quaternion is not normalized");
}
#endif
var basis = new Basis(this);
return basis.GetEuler();
}
/// <summary>
/// Returns the inverse of the quaternion.
/// </summary>
/// <returns>The inverse quaternion.</returns>
public Quaternion Inverse()
{
#if DEBUG
if (!IsNormalized())
{
throw new InvalidOperationException("Quaternion is not normalized");
}
#endif
return new Quaternion(-x, -y, -z, w);
}
/// <summary>
/// Returns whether the quaternion is normalized or not.
/// </summary>
/// <returns>A bool for whether the quaternion is normalized or not.</returns>
public bool IsNormalized()
{
return Mathf.Abs(LengthSquared - 1) <= Mathf.Epsilon;
}
/// <summary>
/// Returns a copy of the quaternion, normalized to unit length.
/// </summary>
/// <returns>The normalized quaternion.</returns>
public Quaternion Normalized()
{
return this / Length;
}
/// <summary>
/// Returns the result of the spherical linear interpolation between
/// this quaternion and `to` by amount `weight`.
///
/// Note: Both quaternions must be normalized.
/// </summary>
/// <param name="to">The destination quaternion for interpolation. Must be normalized.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting quaternion of the interpolation.</returns>
public Quaternion Slerp(Quaternion to, real_t weight)
{
#if DEBUG
if (!IsNormalized())
{
throw new InvalidOperationException("Quaternion is not normalized");
}
if (!to.IsNormalized())
{
throw new ArgumentException("Argument is not normalized", nameof(to));
}
#endif
// Calculate cosine.
real_t cosom = x * to.x + y * to.y + z * to.z + w * to.w;
var to1 = new Quaternion();
// Adjust signs if necessary.
if (cosom < 0.0)
{
cosom = -cosom;
to1.x = -to.x;
to1.y = -to.y;
to1.z = -to.z;
to1.w = -to.w;
}
else
{
to1.x = to.x;
to1.y = to.y;
to1.z = to.z;
to1.w = to.w;
}
real_t sinom, scale0, scale1;
// Calculate coefficients.
if (1.0 - cosom > Mathf.Epsilon)
{
// Standard case (Slerp).
real_t omega = Mathf.Acos(cosom);
sinom = Mathf.Sin(omega);
scale0 = Mathf.Sin((1.0f - weight) * omega) / sinom;
scale1 = Mathf.Sin(weight * omega) / sinom;
}
else
{
// Quaternions are very close so we can do a linear interpolation.
scale0 = 1.0f - weight;
scale1 = weight;
}
// Calculate final values.
return new Quaternion
(
scale0 * x + scale1 * to1.x,
scale0 * y + scale1 * to1.y,
scale0 * z + scale1 * to1.z,
scale0 * w + scale1 * to1.w
);
}
/// <summary>
/// Returns the result of the spherical linear interpolation between
/// this quaternion and `to` by amount `weight`, but without
/// checking if the rotation path is not bigger than 90 degrees.
/// </summary>
/// <param name="to">The destination quaternion for interpolation. Must be normalized.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting quaternion of the interpolation.</returns>
public Quaternion Slerpni(Quaternion to, real_t weight)
{
real_t dot = Dot(to);
if (Mathf.Abs(dot) > 0.9999f)
{
return this;
}
real_t theta = Mathf.Acos(dot);
real_t sinT = 1.0f / Mathf.Sin(theta);
real_t newFactor = Mathf.Sin(weight * theta) * sinT;
real_t invFactor = Mathf.Sin((1.0f - weight) * theta) * sinT;
return new Quaternion
(
invFactor * x + newFactor * to.x,
invFactor * y + newFactor * to.y,
invFactor * z + newFactor * to.z,
invFactor * w + newFactor * to.w
);
}
/// <summary>
/// Returns a vector transformed (multiplied) by this quaternion.
/// </summary>
/// <param name="v">A vector to transform.</param>
/// <returns>The transformed vector.</returns>
public Vector3 Xform(Vector3 v)
{
#if DEBUG
if (!IsNormalized())
{
throw new InvalidOperationException("Quaternion is not normalized");
}
#endif
var u = new Vector3(x, y, z);
Vector3 uv = u.Cross(v);
return v + ((uv * w) + u.Cross(uv)) * 2;
}
// Constants
private static readonly Quaternion _identity = new Quaternion(0, 0, 0, 1);
/// <summary>
/// The identity quaternion, representing no rotation.
/// Equivalent to an identity <see cref="Basis"/> matrix. If a vector is transformed by
/// an identity quaternion, it will not change.
/// </summary>
/// <value>Equivalent to `new Quaternion(0, 0, 0, 1)`.</value>
public static Quaternion Identity { get { return _identity; } }
/// <summary>
/// Constructs a quaternion defined by the given values.
/// </summary>
/// <param name="x">X component of the quaternion (imaginary `i` axis part).</param>
/// <param name="y">Y component of the quaternion (imaginary `j` axis part).</param>
/// <param name="z">Z component of the quaternion (imaginary `k` axis part).</param>
/// <param name="w">W component of the quaternion (real part).</param>
public Quaternion(real_t x, real_t y, real_t z, real_t w)
{
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
/// <summary>
/// Constructs a quaternion from the given quaternion.
/// </summary>
/// <param name="q">The existing quaternion.</param>
public Quaternion(Quaternion q)
{
this = q;
}
/// <summary>
/// Constructs a quaternion from the given <see cref="Basis"/>.
/// </summary>
/// <param name="basis">The basis to construct from.</param>
public Quaternion(Basis basis)
{
this = basis.Quaternion();
}
/// <summary>
/// Constructs a quaternion that will perform a rotation specified by
/// Euler angles (in the YXZ convention: when decomposing,
/// first Z, then X, and Y last),
/// given in the vector format as (X angle, Y angle, Z angle).
/// </summary>
/// <param name="eulerYXZ"></param>
public Quaternion(Vector3 eulerYXZ)
{
real_t half_a1 = eulerYXZ.y * 0.5f;
real_t half_a2 = eulerYXZ.x * 0.5f;
real_t half_a3 = eulerYXZ.z * 0.5f;
// R = Y(a1).X(a2).Z(a3) convention for Euler angles.
// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
// a3 is the angle of the first rotation, following the notation in this reference.
real_t cos_a1 = Mathf.Cos(half_a1);
real_t sin_a1 = Mathf.Sin(half_a1);
real_t cos_a2 = Mathf.Cos(half_a2);
real_t sin_a2 = Mathf.Sin(half_a2);
real_t cos_a3 = Mathf.Cos(half_a3);
real_t sin_a3 = Mathf.Sin(half_a3);
x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3;
y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3;
z = cos_a1 * cos_a2 * sin_a3 - sin_a1 * sin_a2 * cos_a3;
w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3;
}
/// <summary>
/// Constructs a quaternion that will rotate around the given axis
/// by the specified angle. The axis must be a normalized vector.
/// </summary>
/// <param name="axis">The axis to rotate around. Must be normalized.</param>
/// <param name="angle">The angle to rotate, in radians.</param>
public Quaternion(Vector3 axis, real_t angle)
{
#if DEBUG
if (!axis.IsNormalized())
{
throw new ArgumentException("Argument is not normalized", nameof(axis));
}
#endif
real_t d = axis.Length();
if (d == 0f)
{
x = 0f;
y = 0f;
z = 0f;
w = 0f;
}
else
{
real_t sinAngle = Mathf.Sin(angle * 0.5f);
real_t cosAngle = Mathf.Cos(angle * 0.5f);
real_t s = sinAngle / d;
x = axis.x * s;
y = axis.y * s;
z = axis.z * s;
w = cosAngle;
}
}
public static Quaternion operator *(Quaternion left, Quaternion right)
{
return new Quaternion
(
left.w * right.x + left.x * right.w + left.y * right.z - left.z * right.y,
left.w * right.y + left.y * right.w + left.z * right.x - left.x * right.z,
left.w * right.z + left.z * right.w + left.x * right.y - left.y * right.x,
left.w * right.w - left.x * right.x - left.y * right.y - left.z * right.z
);
}
public static Quaternion operator +(Quaternion left, Quaternion right)
{
return new Quaternion(left.x + right.x, left.y + right.y, left.z + right.z, left.w + right.w);
}
public static Quaternion operator -(Quaternion left, Quaternion right)
{
return new Quaternion(left.x - right.x, left.y - right.y, left.z - right.z, left.w - right.w);
}
public static Quaternion operator -(Quaternion left)
{
return new Quaternion(-left.x, -left.y, -left.z, -left.w);
}
public static Quaternion operator *(Quaternion left, Vector3 right)
{
return new Quaternion
(
left.w * right.x + left.y * right.z - left.z * right.y,
left.w * right.y + left.z * right.x - left.x * right.z,
left.w * right.z + left.x * right.y - left.y * right.x,
-left.x * right.x - left.y * right.y - left.z * right.z
);
}
public static Quaternion operator *(Vector3 left, Quaternion right)
{
return new Quaternion
(
right.w * left.x + right.y * left.z - right.z * left.y,
right.w * left.y + right.z * left.x - right.x * left.z,
right.w * left.z + right.x * left.y - right.y * left.x,
-right.x * left.x - right.y * left.y - right.z * left.z
);
}
public static Quaternion operator *(Quaternion left, real_t right)
{
return new Quaternion(left.x * right, left.y * right, left.z * right, left.w * right);
}
public static Quaternion operator *(real_t left, Quaternion right)
{
return new Quaternion(right.x * left, right.y * left, right.z * left, right.w * left);
}
public static Quaternion operator /(Quaternion left, real_t right)
{
return left * (1.0f / right);
}
public static bool operator ==(Quaternion left, Quaternion right)
{
return left.Equals(right);
}
public static bool operator !=(Quaternion left, Quaternion right)
{
return !left.Equals(right);
}
public override bool Equals(object obj)
{
if (obj is Quaternion)
{
return Equals((Quaternion)obj);
}
return false;
}
public bool Equals(Quaternion other)
{
return x == other.x && y == other.y && z == other.z && w == other.w;
}
/// <summary>
/// Returns true if this quaternion and `other` are approximately equal, by running
/// <see cref="Mathf.IsEqualApprox(real_t, real_t)"/> on each component.
/// </summary>
/// <param name="other">The other quaternion to compare.</param>
/// <returns>Whether or not the quaternions are approximately equal.</returns>
public bool IsEqualApprox(Quaternion other)
{
return Mathf.IsEqualApprox(x, other.x) && Mathf.IsEqualApprox(y, other.y) && Mathf.IsEqualApprox(z, other.z) && Mathf.IsEqualApprox(w, other.w);
}
public override int GetHashCode()
{
return y.GetHashCode() ^ x.GetHashCode() ^ z.GetHashCode() ^ w.GetHashCode();
}
public override string ToString()
{
return String.Format("({0}, {1}, {2}, {3})", x.ToString(), y.ToString(), z.ToString(), w.ToString());
}
public string ToString(string format)
{
return String.Format("({0}, {1}, {2}, {3})", x.ToString(format), y.ToString(format), z.ToString(format), w.ToString(format));
}
}
}