godot/thirdparty/thorvg/src/loaders/svg/tvgSvgPath.cpp
K. S. Ernest (iFire) Lee 609389af46 Use ThorVG instead of NanoSVG for importing SVGs
ThorVG is a platform-independent portable library for drawing vector-based scene and animation.
Fixups to ThorVG integration

Update 0.4.0


Update readme.
Restore upsample.

Missed on scsub.


Modules are needed.

Restore build.

Do the math properly.

Force ColorStops to be not const.
2021-11-10 02:37:59 -08:00

564 lines
17 KiB
C++

/*
* Copyright (c) 2020-2021 Samsung Electronics Co., Ltd. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* Copyright notice for the EFL:
* Copyright (C) EFL developers (see AUTHORS)
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define _USE_MATH_DEFINES //Math Constants are not defined in Standard C/C++.
#include <math.h>
#include <clocale>
#include <ctype.h>
#include "tvgSvgLoaderCommon.h"
#include "tvgSvgPath.h"
#include "tvgSvgUtil.h"
/************************************************************************/
/* Internal Class Implementation */
/************************************************************************/
static char* _skipComma(const char* content)
{
while (*content && isspace(*content)) {
content++;
}
if (*content == ',') return (char*)content + 1;
return (char*)content;
}
static bool _parseNumber(char** content, float* number)
{
char* end = NULL;
*number = svgUtilStrtof(*content, &end);
//If the start of string is not number
if ((*content) == end) return false;
//Skip comma if any
*content = _skipComma(end);
return true;
}
static bool _parseFlag(char** content, int* number)
{
char* end = NULL;
if (*(*content) != '0' && *(*content) != '1') return false;
*number = *(*content) - '0';
*content += 1;
end = *content;
*content = _skipComma(end);
return true;
}
void _pathAppendArcTo(Array<PathCommand>* cmds, Array<Point>* pts, Point* cur, Point* curCtl, float x, float y, float rx, float ry, float angle, bool largeArc, bool sweep)
{
float cxp, cyp, cx, cy;
float sx, sy;
float cosPhi, sinPhi;
float dx2, dy2;
float x1p, y1p;
float x1p2, y1p2;
float rx2, ry2;
float lambda;
float c;
float at;
float theta1, deltaTheta;
float nat;
float delta, bcp;
float cosPhiRx, cosPhiRy;
float sinPhiRx, sinPhiRy;
float cosTheta1, sinTheta1;
int segments;
//Some helpful stuff is available here:
//http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
sx = cur->x;
sy = cur->y;
//If start and end points are identical, then no arc is drawn
if ((fabsf(x - sx) < (1.0f / 256.0f)) && (fabsf(y - sy) < (1.0f / 256.0f))) return;
//Correction of out-of-range radii, see F6.6.1 (step 2)
rx = fabsf(rx);
ry = fabsf(ry);
angle = angle * M_PI / 180.0f;
cosPhi = cosf(angle);
sinPhi = sinf(angle);
dx2 = (sx - x) / 2.0f;
dy2 = (sy - y) / 2.0f;
x1p = cosPhi * dx2 + sinPhi * dy2;
y1p = cosPhi * dy2 - sinPhi * dx2;
x1p2 = x1p * x1p;
y1p2 = y1p * y1p;
rx2 = rx * rx;
ry2 = ry * ry;
lambda = (x1p2 / rx2) + (y1p2 / ry2);
//Correction of out-of-range radii, see F6.6.2 (step 4)
if (lambda > 1.0f) {
//See F6.6.3
float lambdaRoot = sqrtf(lambda);
rx *= lambdaRoot;
ry *= lambdaRoot;
//Update rx2 and ry2
rx2 = rx * rx;
ry2 = ry * ry;
}
c = (rx2 * ry2) - (rx2 * y1p2) - (ry2 * x1p2);
//Check if there is no possible solution
//(i.e. we can't do a square root of a negative value)
if (c < 0.0f) {
//Scale uniformly until we have a single solution
//(see F6.2) i.e. when c == 0.0
float scale = sqrtf(1.0f - c / (rx2 * ry2));
rx *= scale;
ry *= scale;
//Update rx2 and ry2
rx2 = rx * rx;
ry2 = ry * ry;
//Step 2 (F6.5.2) - simplified since c == 0.0
cxp = 0.0f;
cyp = 0.0f;
//Step 3 (F6.5.3 first part) - simplified since cxp and cyp == 0.0
cx = 0.0f;
cy = 0.0f;
} else {
//Complete c calculation
c = sqrtf(c / ((rx2 * y1p2) + (ry2 * x1p2)));
//Inverse sign if Fa == Fs
if (largeArc == sweep) c = -c;
//Step 2 (F6.5.2)
cxp = c * (rx * y1p / ry);
cyp = c * (-ry * x1p / rx);
//Step 3 (F6.5.3 first part)
cx = cosPhi * cxp - sinPhi * cyp;
cy = sinPhi * cxp + cosPhi * cyp;
}
//Step 3 (F6.5.3 second part) we now have the center point of the ellipse
cx += (sx + x) / 2.0f;
cy += (sy + y) / 2.0f;
//Sstep 4 (F6.5.4)
//We dont' use arccos (as per w3c doc), see
//http://www.euclideanspace.com/maths/algebra/vectors/angleBetween/index.htm
//Note: atan2 (0.0, 1.0) == 0.0
at = atan2(((y1p - cyp) / ry), ((x1p - cxp) / rx));
theta1 = (at < 0.0f) ? 2.0f * M_PI + at : at;
nat = atan2(((-y1p - cyp) / ry), ((-x1p - cxp) / rx));
deltaTheta = (nat < at) ? 2.0f * M_PI - at + nat : nat - at;
if (sweep) {
//Ensure delta theta < 0 or else add 360 degrees
if (deltaTheta < 0.0f) deltaTheta += (float)(2.0f * M_PI);
} else {
//Ensure delta theta > 0 or else substract 360 degrees
if (deltaTheta > 0.0f) deltaTheta -= (float)(2.0f * M_PI);
}
//Add several cubic bezier to approximate the arc
//(smaller than 90 degrees)
//We add one extra segment because we want something
//Smaller than 90deg (i.e. not 90 itself)
segments = static_cast<int>(fabsf(deltaTheta / float(M_PI_2)) + 1.0f);
delta = deltaTheta / segments;
//http://www.stillhq.com/ctpfaq/2001/comp.text.pdf-faq-2001-04.txt (section 2.13)
bcp = 4.0f / 3.0f * (1.0f - cosf(delta / 2.0f)) / sinf(delta / 2.0f);
cosPhiRx = cosPhi * rx;
cosPhiRy = cosPhi * ry;
sinPhiRx = sinPhi * rx;
sinPhiRy = sinPhi * ry;
cosTheta1 = cosf(theta1);
sinTheta1 = sinf(theta1);
for (int i = 0; i < segments; ++i) {
//End angle (for this segment) = current + delta
float c1x, c1y, ex, ey, c2x, c2y;
float theta2 = theta1 + delta;
float cosTheta2 = cosf(theta2);
float sinTheta2 = sinf(theta2);
Point p[3];
//First control point (based on start point sx,sy)
c1x = sx - bcp * (cosPhiRx * sinTheta1 + sinPhiRy * cosTheta1);
c1y = sy + bcp * (cosPhiRy * cosTheta1 - sinPhiRx * sinTheta1);
//End point (for this segment)
ex = cx + (cosPhiRx * cosTheta2 - sinPhiRy * sinTheta2);
ey = cy + (sinPhiRx * cosTheta2 + cosPhiRy * sinTheta2);
//Second control point (based on end point ex,ey)
c2x = ex + bcp * (cosPhiRx * sinTheta2 + sinPhiRy * cosTheta2);
c2y = ey + bcp * (sinPhiRx * sinTheta2 - cosPhiRy * cosTheta2);
cmds->push(PathCommand::CubicTo);
p[0] = {c1x, c1y};
p[1] = {c2x, c2y};
p[2] = {ex, ey};
pts->push(p[0]);
pts->push(p[1]);
pts->push(p[2]);
*curCtl = p[1];
*cur = p[2];
//Next start point is the current end point (same for angle)
sx = ex;
sy = ey;
theta1 = theta2;
//Avoid recomputations
cosTheta1 = cosTheta2;
sinTheta1 = sinTheta2;
}
}
static int _numberCount(char cmd)
{
int count = 0;
switch (cmd) {
case 'M':
case 'm':
case 'L':
case 'l':
case 'T':
case 't': {
count = 2;
break;
}
case 'C':
case 'c':
case 'E':
case 'e': {
count = 6;
break;
}
case 'H':
case 'h':
case 'V':
case 'v': {
count = 1;
break;
}
case 'S':
case 's':
case 'Q':
case 'q': {
count = 4;
break;
}
case 'A':
case 'a': {
count = 7;
break;
}
default:
break;
}
return count;
}
static bool _processCommand(Array<PathCommand>* cmds, Array<Point>* pts, char cmd, float* arr, int count, Point* cur, Point* curCtl, Point* startPoint, bool *isQuadratic)
{
switch (cmd) {
case 'm':
case 'l':
case 'c':
case 's':
case 'q':
case 't': {
for (int i = 0; i < count - 1; i += 2) {
arr[i] = arr[i] + cur->x;
arr[i + 1] = arr[i + 1] + cur->y;
}
break;
}
case 'h': {
arr[0] = arr[0] + cur->x;
break;
}
case 'v': {
arr[0] = arr[0] + cur->y;
break;
}
case 'a': {
arr[5] = arr[5] + cur->x;
arr[6] = arr[6] + cur->y;
break;
}
default: {
break;
}
}
switch (cmd) {
case 'm':
case 'M': {
Point p = {arr[0], arr[1]};
cmds->push(PathCommand::MoveTo);
pts->push(p);
*cur = {arr[0], arr[1]};
*startPoint = {arr[0], arr[1]};
break;
}
case 'l':
case 'L': {
Point p = {arr[0], arr[1]};
cmds->push(PathCommand::LineTo);
pts->push(p);
*cur = {arr[0], arr[1]};
break;
}
case 'c':
case 'C': {
Point p[3];
cmds->push(PathCommand::CubicTo);
p[0] = {arr[0], arr[1]};
p[1] = {arr[2], arr[3]};
p[2] = {arr[4], arr[5]};
pts->push(p[0]);
pts->push(p[1]);
pts->push(p[2]);
*curCtl = p[1];
*cur = p[2];
*isQuadratic = false;
break;
}
case 's':
case 'S': {
Point p[3], ctrl;
if ((cmds->count > 1) && (cmds->data[cmds->count - 1] == PathCommand::CubicTo) &&
!(*isQuadratic)) {
ctrl.x = 2 * cur->x - curCtl->x;
ctrl.y = 2 * cur->y - curCtl->y;
} else {
ctrl = *cur;
}
cmds->push(PathCommand::CubicTo);
p[0] = ctrl;
p[1] = {arr[0], arr[1]};
p[2] = {arr[2], arr[3]};
pts->push(p[0]);
pts->push(p[1]);
pts->push(p[2]);
*curCtl = p[1];
*cur = p[2];
*isQuadratic = false;
break;
}
case 'q':
case 'Q': {
Point p[3];
float ctrl_x0 = (cur->x + 2 * arr[0]) * (1.0 / 3.0);
float ctrl_y0 = (cur->y + 2 * arr[1]) * (1.0 / 3.0);
float ctrl_x1 = (arr[2] + 2 * arr[0]) * (1.0 / 3.0);
float ctrl_y1 = (arr[3] + 2 * arr[1]) * (1.0 / 3.0);
cmds->push(PathCommand::CubicTo);
p[0] = {ctrl_x0, ctrl_y0};
p[1] = {ctrl_x1, ctrl_y1};
p[2] = {arr[2], arr[3]};
pts->push(p[0]);
pts->push(p[1]);
pts->push(p[2]);
*curCtl = {arr[0], arr[1]};
*cur = p[2];
*isQuadratic = true;
break;
}
case 't':
case 'T': {
Point p[3], ctrl;
if ((cmds->count > 1) && (cmds->data[cmds->count - 1] == PathCommand::CubicTo) &&
*isQuadratic) {
ctrl.x = 2 * cur->x - curCtl->x;
ctrl.y = 2 * cur->y - curCtl->y;
} else {
ctrl = *cur;
}
float ctrl_x0 = (cur->x + 2 * ctrl.x) * (1.0 / 3.0);
float ctrl_y0 = (cur->y + 2 * ctrl.y) * (1.0 / 3.0);
float ctrl_x1 = (arr[0] + 2 * ctrl.x) * (1.0 / 3.0);
float ctrl_y1 = (arr[1] + 2 * ctrl.y) * (1.0 / 3.0);
cmds->push(PathCommand::CubicTo);
p[0] = {ctrl_x0, ctrl_y0};
p[1] = {ctrl_x1, ctrl_y1};
p[2] = {arr[0], arr[1]};
pts->push(p[0]);
pts->push(p[1]);
pts->push(p[2]);
*curCtl = {ctrl.x, ctrl.y};
*cur = p[2];
*isQuadratic = true;
break;
}
case 'h':
case 'H': {
Point p = {arr[0], cur->y};
cmds->push(PathCommand::LineTo);
pts->push(p);
cur->x = arr[0];
break;
}
case 'v':
case 'V': {
Point p = {cur->x, arr[0]};
cmds->push(PathCommand::LineTo);
pts->push(p);
cur->y = arr[0];
break;
}
case 'z':
case 'Z': {
cmds->push(PathCommand::Close);
*cur = *startPoint;
break;
}
case 'a':
case 'A': {
_pathAppendArcTo(cmds, pts, cur, curCtl, arr[5], arr[6], arr[0], arr[1], arr[2], arr[3], arr[4]);
*cur = *curCtl = {arr[5], arr[6]};
*isQuadratic = false;
break;
}
default: {
return false;
}
}
return true;
}
static char* _nextCommand(char* path, char* cmd, float* arr, int* count)
{
int large, sweep;
path = _skipComma(path);
if (isalpha(*path)) {
*cmd = *path;
path++;
*count = _numberCount(*cmd);
} else {
if (*cmd == 'm') *cmd = 'l';
else if (*cmd == 'M') *cmd = 'L';
}
if (*count == 7) {
//Special case for arc command
if (_parseNumber(&path, &arr[0])) {
if (_parseNumber(&path, &arr[1])) {
if (_parseNumber(&path, &arr[2])) {
if (_parseFlag(&path, &large)) {
if (_parseFlag(&path, &sweep)) {
if (_parseNumber(&path, &arr[5])) {
if (_parseNumber(&path, &arr[6])) {
arr[3] = (float)large;
arr[4] = (float)sweep;
return path;
}
}
}
}
}
}
}
*count = 0;
return NULL;
}
for (int i = 0; i < *count; i++) {
if (!_parseNumber(&path, &arr[i])) {
*count = 0;
return NULL;
}
path = _skipComma(path);
}
return path;
}
/************************************************************************/
/* External Class Implementation */
/************************************************************************/
bool svgPathToTvgPath(const char* svgPath, Array<PathCommand>& cmds, Array<Point>& pts)
{
float numberArray[7];
int numberCount = 0;
Point cur = { 0, 0 };
Point curCtl = { 0, 0 };
Point startPoint = { 0, 0 };
char cmd = 0;
bool isQuadratic = false;
char* path = (char*)svgPath;
char* curLocale;
curLocale = setlocale(LC_NUMERIC, NULL);
if (curLocale) curLocale = strdup(curLocale);
setlocale(LC_NUMERIC, "POSIX");
while ((path[0] != '\0')) {
path = _nextCommand(path, &cmd, numberArray, &numberCount);
if (!path) break;
if (!_processCommand(&cmds, &pts, cmd, numberArray, numberCount, &cur, &curCtl, &startPoint, &isQuadratic)) break;
}
setlocale(LC_NUMERIC, curLocale);
if (curLocale) free(curLocale);
return true;
}