godot/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs
2021-11-04 11:24:46 -05:00

582 lines
21 KiB
C#

#if REAL_T_IS_DOUBLE
using real_t = System.Double;
#else
using real_t = System.Single;
#endif
using System;
using System.Runtime.InteropServices;
namespace Godot
{
/// <summary>
/// A unit quaternion used for representing 3D rotations.
/// Quaternions need to be normalized to be used for rotation.
///
/// It is similar to <see cref="Basis"/>, which implements matrix
/// representation of rotations, and can be parametrized using both
/// an axis-angle pair or Euler angles. Basis stores rotation, scale,
/// and shearing, while Quaternion only stores rotation.
///
/// Due to its compactness and the way it is stored in memory, certain
/// operations (obtaining axis-angle and performing SLERP, in particular)
/// are more efficient and robust against floating-point errors.
/// </summary>
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Quaternion : IEquatable<Quaternion>
{
/// <summary>
/// X component of the quaternion (imaginary <c>i</c> axis part).
/// Quaternion components should usually not be manipulated directly.
/// </summary>
public real_t x;
/// <summary>
/// Y component of the quaternion (imaginary <c>j</c> axis part).
/// Quaternion components should usually not be manipulated directly.
/// </summary>
public real_t y;
/// <summary>
/// Z component of the quaternion (imaginary <c>k</c> axis part).
/// Quaternion components should usually not be manipulated directly.
/// </summary>
public real_t z;
/// <summary>
/// W component of the quaternion (real part).
/// Quaternion components should usually not be manipulated directly.
/// </summary>
public real_t w;
/// <summary>
/// Access quaternion components using their index.
/// </summary>
/// <value>
/// <c>[0]</c> is equivalent to <see cref="x"/>,
/// <c>[1]</c> is equivalent to <see cref="y"/>,
/// <c>[2]</c> is equivalent to <see cref="z"/>,
/// <c>[3]</c> is equivalent to <see cref="w"/>.
/// </value>
public real_t this[int index]
{
get
{
switch (index)
{
case 0:
return x;
case 1:
return y;
case 2:
return z;
case 3:
return w;
default:
throw new IndexOutOfRangeException();
}
}
set
{
switch (index)
{
case 0:
x = value;
break;
case 1:
y = value;
break;
case 2:
z = value;
break;
case 3:
w = value;
break;
default:
throw new IndexOutOfRangeException();
}
}
}
/// <summary>
/// Returns the length (magnitude) of the quaternion.
/// </summary>
/// <seealso cref="LengthSquared"/>
/// <value>Equivalent to <c>Mathf.Sqrt(LengthSquared)</c>.</value>
public real_t Length
{
get { return Mathf.Sqrt(LengthSquared); }
}
/// <summary>
/// Returns the squared length (squared magnitude) of the quaternion.
/// This method runs faster than <see cref="Length"/>, so prefer it if
/// you need to compare quaternions or need the squared length for some formula.
/// </summary>
/// <value>Equivalent to <c>Dot(this)</c>.</value>
public real_t LengthSquared
{
get { return Dot(this); }
}
/// <summary>
/// Returns the angle between this quaternion and <paramref name="to"/>.
/// This is the magnitude of the angle you would need to rotate
/// by to get from one to the other.
///
/// Note: This method has an abnormally high amount
/// of floating-point error, so methods such as
/// <see cref="Mathf.IsZeroApprox"/> will not work reliably.
/// </summary>
/// <param name="to">The other quaternion.</param>
/// <returns>The angle between the quaternions.</returns>
public real_t AngleTo(Quaternion to)
{
real_t dot = Dot(to);
return Mathf.Acos(Mathf.Clamp(dot * dot * 2 - 1, -1, 1));
}
/// <summary>
/// Performs a cubic spherical interpolation between quaternions <paramref name="preA"/>, this quaternion,
/// <paramref name="b"/>, and <paramref name="postB"/>, by the given amount <paramref name="weight"/>.
/// </summary>
/// <param name="b">The destination quaternion.</param>
/// <param name="preA">A quaternion before this quaternion.</param>
/// <param name="postB">A quaternion after <paramref name="b"/>.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The interpolated quaternion.</returns>
public Quaternion CubicSlerp(Quaternion b, Quaternion preA, Quaternion postB, real_t weight)
{
real_t t2 = (1.0f - weight) * weight * 2f;
Quaternion sp = Slerp(b, weight);
Quaternion sq = preA.Slerpni(postB, weight);
return sp.Slerpni(sq, t2);
}
/// <summary>
/// Returns the dot product of two quaternions.
/// </summary>
/// <param name="b">The other quaternion.</param>
/// <returns>The dot product.</returns>
public real_t Dot(Quaternion b)
{
return (x * b.x) + (y * b.y) + (z * b.z) + (w * b.w);
}
/// <summary>
/// Returns Euler angles (in the YXZ convention: when decomposing,
/// first Z, then X, and Y last) corresponding to the rotation
/// represented by the unit quaternion. Returned vector contains
/// the rotation angles in the format (X angle, Y angle, Z angle).
/// </summary>
/// <returns>The Euler angle representation of this quaternion.</returns>
public Vector3 GetEuler()
{
#if DEBUG
if (!IsNormalized())
{
throw new InvalidOperationException("Quaternion is not normalized");
}
#endif
var basis = new Basis(this);
return basis.GetEuler();
}
/// <summary>
/// Returns the inverse of the quaternion.
/// </summary>
/// <returns>The inverse quaternion.</returns>
public Quaternion Inverse()
{
#if DEBUG
if (!IsNormalized())
{
throw new InvalidOperationException("Quaternion is not normalized");
}
#endif
return new Quaternion(-x, -y, -z, w);
}
/// <summary>
/// Returns whether the quaternion is normalized or not.
/// </summary>
/// <returns>A <see langword="bool"/> for whether the quaternion is normalized or not.</returns>
public bool IsNormalized()
{
return Mathf.Abs(LengthSquared - 1) <= Mathf.Epsilon;
}
/// <summary>
/// Returns a copy of the quaternion, normalized to unit length.
/// </summary>
/// <returns>The normalized quaternion.</returns>
public Quaternion Normalized()
{
return this / Length;
}
/// <summary>
/// Returns the result of the spherical linear interpolation between
/// this quaternion and <paramref name="to"/> by amount <paramref name="weight"/>.
///
/// Note: Both quaternions must be normalized.
/// </summary>
/// <param name="to">The destination quaternion for interpolation. Must be normalized.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting quaternion of the interpolation.</returns>
public Quaternion Slerp(Quaternion to, real_t weight)
{
#if DEBUG
if (!IsNormalized())
{
throw new InvalidOperationException("Quaternion is not normalized");
}
if (!to.IsNormalized())
{
throw new ArgumentException("Argument is not normalized", nameof(to));
}
#endif
// Calculate cosine.
real_t cosom = x * to.x + y * to.y + z * to.z + w * to.w;
var to1 = new Quaternion();
// Adjust signs if necessary.
if (cosom < 0.0)
{
cosom = -cosom;
to1.x = -to.x;
to1.y = -to.y;
to1.z = -to.z;
to1.w = -to.w;
}
else
{
to1.x = to.x;
to1.y = to.y;
to1.z = to.z;
to1.w = to.w;
}
real_t sinom, scale0, scale1;
// Calculate coefficients.
if (1.0 - cosom > Mathf.Epsilon)
{
// Standard case (Slerp).
real_t omega = Mathf.Acos(cosom);
sinom = Mathf.Sin(omega);
scale0 = Mathf.Sin((1.0f - weight) * omega) / sinom;
scale1 = Mathf.Sin(weight * omega) / sinom;
}
else
{
// Quaternions are very close so we can do a linear interpolation.
scale0 = 1.0f - weight;
scale1 = weight;
}
// Calculate final values.
return new Quaternion
(
(scale0 * x) + (scale1 * to1.x),
(scale0 * y) + (scale1 * to1.y),
(scale0 * z) + (scale1 * to1.z),
(scale0 * w) + (scale1 * to1.w)
);
}
/// <summary>
/// Returns the result of the spherical linear interpolation between
/// this quaternion and <paramref name="to"/> by amount <paramref name="weight"/>, but without
/// checking if the rotation path is not bigger than 90 degrees.
/// </summary>
/// <param name="to">The destination quaternion for interpolation. Must be normalized.</param>
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting quaternion of the interpolation.</returns>
public Quaternion Slerpni(Quaternion to, real_t weight)
{
real_t dot = Dot(to);
if (Mathf.Abs(dot) > 0.9999f)
{
return this;
}
real_t theta = Mathf.Acos(dot);
real_t sinT = 1.0f / Mathf.Sin(theta);
real_t newFactor = Mathf.Sin(weight * theta) * sinT;
real_t invFactor = Mathf.Sin((1.0f - weight) * theta) * sinT;
return new Quaternion
(
(invFactor * x) + (newFactor * to.x),
(invFactor * y) + (newFactor * to.y),
(invFactor * z) + (newFactor * to.z),
(invFactor * w) + (newFactor * to.w)
);
}
/// <summary>
/// Returns a vector transformed (multiplied) by this quaternion.
/// </summary>
/// <param name="v">A vector to transform.</param>
/// <returns>The transformed vector.</returns>
public Vector3 Xform(Vector3 v)
{
#if DEBUG
if (!IsNormalized())
{
throw new InvalidOperationException("Quaternion is not normalized");
}
#endif
var u = new Vector3(x, y, z);
Vector3 uv = u.Cross(v);
return v + (((uv * w) + u.Cross(uv)) * 2);
}
// Constants
private static readonly Quaternion _identity = new Quaternion(0, 0, 0, 1);
/// <summary>
/// The identity quaternion, representing no rotation.
/// Equivalent to an identity <see cref="Basis"/> matrix. If a vector is transformed by
/// an identity quaternion, it will not change.
/// </summary>
/// <value>Equivalent to <c>new Quaternion(0, 0, 0, 1)</c>.</value>
public static Quaternion Identity { get { return _identity; } }
/// <summary>
/// Constructs a <see cref="Quaternion"/> defined by the given values.
/// </summary>
/// <param name="x">X component of the quaternion (imaginary <c>i</c> axis part).</param>
/// <param name="y">Y component of the quaternion (imaginary <c>j</c> axis part).</param>
/// <param name="z">Z component of the quaternion (imaginary <c>k</c> axis part).</param>
/// <param name="w">W component of the quaternion (real part).</param>
public Quaternion(real_t x, real_t y, real_t z, real_t w)
{
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
/// <summary>
/// Constructs a <see cref="Quaternion"/> from the given <see cref="Quaternion"/>.
/// </summary>
/// <param name="q">The existing quaternion.</param>
public Quaternion(Quaternion q)
{
this = q;
}
/// <summary>
/// Constructs a <see cref="Quaternion"/> from the given <see cref="Basis"/>.
/// </summary>
/// <param name="basis">The <see cref="Basis"/> to construct from.</param>
public Quaternion(Basis basis)
{
this = basis.Quaternion();
}
/// <summary>
/// Constructs a <see cref="Quaternion"/> that will perform a rotation specified by
/// Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last),
/// given in the vector format as (X angle, Y angle, Z angle).
/// </summary>
/// <param name="eulerYXZ">Euler angles that the quaternion will be rotated by.</param>
public Quaternion(Vector3 eulerYXZ)
{
real_t halfA1 = eulerYXZ.y * 0.5f;
real_t halfA2 = eulerYXZ.x * 0.5f;
real_t halfA3 = eulerYXZ.z * 0.5f;
// R = Y(a1).X(a2).Z(a3) convention for Euler angles.
// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
// a3 is the angle of the first rotation, following the notation in this reference.
real_t cosA1 = Mathf.Cos(halfA1);
real_t sinA1 = Mathf.Sin(halfA1);
real_t cosA2 = Mathf.Cos(halfA2);
real_t sinA2 = Mathf.Sin(halfA2);
real_t cosA3 = Mathf.Cos(halfA3);
real_t sinA3 = Mathf.Sin(halfA3);
x = (sinA1 * cosA2 * sinA3) + (cosA1 * sinA2 * cosA3);
y = (sinA1 * cosA2 * cosA3) - (cosA1 * sinA2 * sinA3);
z = (cosA1 * cosA2 * sinA3) - (sinA1 * sinA2 * cosA3);
w = (sinA1 * sinA2 * sinA3) + (cosA1 * cosA2 * cosA3);
}
/// <summary>
/// Constructs a <see cref="Quaternion"/> that will rotate around the given axis
/// by the specified angle. The axis must be a normalized vector.
/// </summary>
/// <param name="axis">The axis to rotate around. Must be normalized.</param>
/// <param name="angle">The angle to rotate, in radians.</param>
public Quaternion(Vector3 axis, real_t angle)
{
#if DEBUG
if (!axis.IsNormalized())
{
throw new ArgumentException("Argument is not normalized", nameof(axis));
}
#endif
real_t d = axis.Length();
if (d == 0f)
{
x = 0f;
y = 0f;
z = 0f;
w = 0f;
}
else
{
real_t sinAngle = Mathf.Sin(angle * 0.5f);
real_t cosAngle = Mathf.Cos(angle * 0.5f);
real_t s = sinAngle / d;
x = axis.x * s;
y = axis.y * s;
z = axis.z * s;
w = cosAngle;
}
}
public static Quaternion operator *(Quaternion left, Quaternion right)
{
return new Quaternion
(
(left.w * right.x) + (left.x * right.w) + (left.y * right.z) - (left.z * right.y),
(left.w * right.y) + (left.y * right.w) + (left.z * right.x) - (left.x * right.z),
(left.w * right.z) + (left.z * right.w) + (left.x * right.y) - (left.y * right.x),
(left.w * right.w) - (left.x * right.x) - (left.y * right.y) - (left.z * right.z)
);
}
public static Quaternion operator +(Quaternion left, Quaternion right)
{
return new Quaternion(left.x + right.x, left.y + right.y, left.z + right.z, left.w + right.w);
}
public static Quaternion operator -(Quaternion left, Quaternion right)
{
return new Quaternion(left.x - right.x, left.y - right.y, left.z - right.z, left.w - right.w);
}
public static Quaternion operator -(Quaternion left)
{
return new Quaternion(-left.x, -left.y, -left.z, -left.w);
}
public static Vector3 operator *(Quaternion quat, Vector3 vec)
{
#if DEBUG
if (!quat.IsNormalized())
{
throw new InvalidOperationException("Quaternion is not normalized.");
}
#endif
var u = new Vector3(quat.x, quat.y, quat.z);
Vector3 uv = u.Cross(vec);
return vec + (((uv * quat.w) + u.Cross(uv)) * 2);
}
public static Vector3 operator *(Vector3 vec, Quaternion quat)
{
return quat.Inverse() * vec;
}
public static Quaternion operator *(Quaternion left, real_t right)
{
return new Quaternion(left.x * right, left.y * right, left.z * right, left.w * right);
}
public static Quaternion operator *(real_t left, Quaternion right)
{
return new Quaternion(right.x * left, right.y * left, right.z * left, right.w * left);
}
public static Quaternion operator /(Quaternion left, real_t right)
{
return left * (1.0f / right);
}
public static bool operator ==(Quaternion left, Quaternion right)
{
return left.Equals(right);
}
public static bool operator !=(Quaternion left, Quaternion right)
{
return !left.Equals(right);
}
/// <summary>
/// Returns <see langword="true"/> if this quaternion and <paramref name="obj"/> are equal.
/// </summary>
/// <param name="obj">The other object to compare.</param>
/// <returns>Whether or not the quaternion and the other object are equal.</returns>
public override bool Equals(object obj)
{
if (obj is Quaternion)
{
return Equals((Quaternion)obj);
}
return false;
}
/// <summary>
/// Returns <see langword="true"/> if this quaternion and <paramref name="other"/> are equal.
/// </summary>
/// <param name="other">The other quaternion to compare.</param>
/// <returns>Whether or not the quaternions are equal.</returns>
public bool Equals(Quaternion other)
{
return x == other.x && y == other.y && z == other.z && w == other.w;
}
/// <summary>
/// Returns <see langword="true"/> if this quaternion and <paramref name="other"/> are approximately equal,
/// by running <see cref="Mathf.IsEqualApprox(real_t, real_t)"/> on each component.
/// </summary>
/// <param name="other">The other quaternion to compare.</param>
/// <returns>Whether or not the quaternions are approximately equal.</returns>
public bool IsEqualApprox(Quaternion other)
{
return Mathf.IsEqualApprox(x, other.x) && Mathf.IsEqualApprox(y, other.y) && Mathf.IsEqualApprox(z, other.z) && Mathf.IsEqualApprox(w, other.w);
}
/// <summary>
/// Serves as the hash function for <see cref="Quaternion"/>.
/// </summary>
/// <returns>A hash code for this quaternion.</returns>
public override int GetHashCode()
{
return y.GetHashCode() ^ x.GetHashCode() ^ z.GetHashCode() ^ w.GetHashCode();
}
/// <summary>
/// Converts this <see cref="Quaternion"/> to a string.
/// </summary>
/// <returns>A string representation of this quaternion.</returns>
public override string ToString()
{
return $"({x}, {y}, {z}, {w})";
}
/// <summary>
/// Converts this <see cref="Quaternion"/> to a string with the given <paramref name="format"/>.
/// </summary>
/// <returns>A string representation of this quaternion.</returns>
public string ToString(string format)
{
return $"({x.ToString(format)}, {y.ToString(format)}, {z.ToString(format)}, {w.ToString(format)})";
}
}
}