godot/core/math/vector3.h
Rémi Verschelde a7f49ac9a1 Update copyright statements to 2020
Happy new year to the wonderful Godot community!

We're starting a new decade with a well-established, non-profit, free
and open source game engine, and tons of further improvements in the
pipeline from hundreds of contributors.

Godot will keep getting better, and we're looking forward to all the
games that the community will keep developing and releasing with it.
2020-01-01 11:16:22 +01:00

473 lines
12 KiB
C++

/*************************************************************************/
/* vector3.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef VECTOR3_H
#define VECTOR3_H
#include "core/math/math_funcs.h"
#include "core/ustring.h"
class Basis;
struct Vector3 {
enum Axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
};
union {
struct {
real_t x;
real_t y;
real_t z;
};
real_t coord[3];
};
_FORCE_INLINE_ const real_t &operator[](int p_axis) const {
return coord[p_axis];
}
_FORCE_INLINE_ real_t &operator[](int p_axis) {
return coord[p_axis];
}
void set_axis(int p_axis, real_t p_value);
real_t get_axis(int p_axis) const;
int min_axis() const;
int max_axis() const;
_FORCE_INLINE_ real_t length() const;
_FORCE_INLINE_ real_t length_squared() const;
_FORCE_INLINE_ void normalize();
_FORCE_INLINE_ Vector3 normalized() const;
_FORCE_INLINE_ bool is_normalized() const;
_FORCE_INLINE_ Vector3 inverse() const;
_FORCE_INLINE_ void zero();
void snap(Vector3 p_val);
Vector3 snapped(Vector3 p_val) const;
void rotate(const Vector3 &p_axis, real_t p_phi);
Vector3 rotated(const Vector3 &p_axis, real_t p_phi) const;
/* Static Methods between 2 vector3s */
_FORCE_INLINE_ Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const;
_FORCE_INLINE_ Vector3 slerp(const Vector3 &p_b, real_t p_t) const;
Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const;
Vector3 cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const;
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
_FORCE_INLINE_ Vector3 cross(const Vector3 &p_b) const;
_FORCE_INLINE_ real_t dot(const Vector3 &p_b) const;
Basis outer(const Vector3 &p_b) const;
Basis to_diagonal_matrix() const;
_FORCE_INLINE_ Vector3 abs() const;
_FORCE_INLINE_ Vector3 floor() const;
_FORCE_INLINE_ Vector3 sign() const;
_FORCE_INLINE_ Vector3 ceil() const;
_FORCE_INLINE_ Vector3 round() const;
_FORCE_INLINE_ real_t distance_to(const Vector3 &p_b) const;
_FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_b) const;
_FORCE_INLINE_ Vector3 posmod(const real_t p_mod) const;
_FORCE_INLINE_ Vector3 posmodv(const Vector3 &p_modv) const;
_FORCE_INLINE_ Vector3 project(const Vector3 &p_b) const;
_FORCE_INLINE_ real_t angle_to(const Vector3 &p_b) const;
_FORCE_INLINE_ Vector3 direction_to(const Vector3 &p_b) const;
_FORCE_INLINE_ Vector3 slide(const Vector3 &p_normal) const;
_FORCE_INLINE_ Vector3 bounce(const Vector3 &p_normal) const;
_FORCE_INLINE_ Vector3 reflect(const Vector3 &p_normal) const;
bool is_equal_approx(const Vector3 &p_v) const;
/* Operators */
_FORCE_INLINE_ Vector3 &operator+=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator+(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator-=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator-(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator*=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator*(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator/=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator/(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator*=(real_t p_scalar);
_FORCE_INLINE_ Vector3 operator*(real_t p_scalar) const;
_FORCE_INLINE_ Vector3 &operator/=(real_t p_scalar);
_FORCE_INLINE_ Vector3 operator/(real_t p_scalar) const;
_FORCE_INLINE_ Vector3 operator-() const;
_FORCE_INLINE_ bool operator==(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator!=(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator<(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator<=(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator>(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator>=(const Vector3 &p_v) const;
operator String() const;
_FORCE_INLINE_ Vector3(real_t p_x, real_t p_y, real_t p_z) {
x = p_x;
y = p_y;
z = p_z;
}
_FORCE_INLINE_ Vector3() { x = y = z = 0; }
};
Vector3 Vector3::cross(const Vector3 &p_b) const {
Vector3 ret(
(y * p_b.z) - (z * p_b.y),
(z * p_b.x) - (x * p_b.z),
(x * p_b.y) - (y * p_b.x));
return ret;
}
real_t Vector3::dot(const Vector3 &p_b) const {
return x * p_b.x + y * p_b.y + z * p_b.z;
}
Vector3 Vector3::abs() const {
return Vector3(Math::abs(x), Math::abs(y), Math::abs(z));
}
Vector3 Vector3::sign() const {
return Vector3(SGN(x), SGN(y), SGN(z));
}
Vector3 Vector3::floor() const {
return Vector3(Math::floor(x), Math::floor(y), Math::floor(z));
}
Vector3 Vector3::ceil() const {
return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z));
}
Vector3 Vector3::round() const {
return Vector3(Math::round(x), Math::round(y), Math::round(z));
}
Vector3 Vector3::linear_interpolate(const Vector3 &p_b, real_t p_t) const {
return Vector3(
x + (p_t * (p_b.x - x)),
y + (p_t * (p_b.y - y)),
z + (p_t * (p_b.z - z)));
}
Vector3 Vector3::slerp(const Vector3 &p_b, real_t p_t) const {
real_t theta = angle_to(p_b);
return rotated(cross(p_b).normalized(), theta * p_t);
}
real_t Vector3::distance_to(const Vector3 &p_b) const {
return (p_b - *this).length();
}
real_t Vector3::distance_squared_to(const Vector3 &p_b) const {
return (p_b - *this).length_squared();
}
Vector3 Vector3::posmod(const real_t p_mod) const {
return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod));
}
Vector3 Vector3::posmodv(const Vector3 &p_modv) const {
return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z));
}
Vector3 Vector3::project(const Vector3 &p_b) const {
return p_b * (dot(p_b) / p_b.length_squared());
}
real_t Vector3::angle_to(const Vector3 &p_b) const {
return Math::atan2(cross(p_b).length(), dot(p_b));
}
Vector3 Vector3::direction_to(const Vector3 &p_b) const {
Vector3 ret(p_b.x - x, p_b.y - y, p_b.z - z);
ret.normalize();
return ret;
}
/* Operators */
Vector3 &Vector3::operator+=(const Vector3 &p_v) {
x += p_v.x;
y += p_v.y;
z += p_v.z;
return *this;
}
Vector3 Vector3::operator+(const Vector3 &p_v) const {
return Vector3(x + p_v.x, y + p_v.y, z + p_v.z);
}
Vector3 &Vector3::operator-=(const Vector3 &p_v) {
x -= p_v.x;
y -= p_v.y;
z -= p_v.z;
return *this;
}
Vector3 Vector3::operator-(const Vector3 &p_v) const {
return Vector3(x - p_v.x, y - p_v.y, z - p_v.z);
}
Vector3 &Vector3::operator*=(const Vector3 &p_v) {
x *= p_v.x;
y *= p_v.y;
z *= p_v.z;
return *this;
}
Vector3 Vector3::operator*(const Vector3 &p_v) const {
return Vector3(x * p_v.x, y * p_v.y, z * p_v.z);
}
Vector3 &Vector3::operator/=(const Vector3 &p_v) {
x /= p_v.x;
y /= p_v.y;
z /= p_v.z;
return *this;
}
Vector3 Vector3::operator/(const Vector3 &p_v) const {
return Vector3(x / p_v.x, y / p_v.y, z / p_v.z);
}
Vector3 &Vector3::operator*=(real_t p_scalar) {
x *= p_scalar;
y *= p_scalar;
z *= p_scalar;
return *this;
}
_FORCE_INLINE_ Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) {
return p_vec * p_scalar;
}
Vector3 Vector3::operator*(real_t p_scalar) const {
return Vector3(x * p_scalar, y * p_scalar, z * p_scalar);
}
Vector3 &Vector3::operator/=(real_t p_scalar) {
x /= p_scalar;
y /= p_scalar;
z /= p_scalar;
return *this;
}
Vector3 Vector3::operator/(real_t p_scalar) const {
return Vector3(x / p_scalar, y / p_scalar, z / p_scalar);
}
Vector3 Vector3::operator-() const {
return Vector3(-x, -y, -z);
}
bool Vector3::operator==(const Vector3 &p_v) const {
return x == p_v.x && y == p_v.y && z == p_v.z;
}
bool Vector3::operator!=(const Vector3 &p_v) const {
return x != p_v.x || y != p_v.y || z != p_v.z;
}
bool Vector3::operator<(const Vector3 &p_v) const {
if (Math::is_equal_approx(x, p_v.x)) {
if (Math::is_equal_approx(y, p_v.y))
return z < p_v.z;
else
return y < p_v.y;
} else {
return x < p_v.x;
}
}
bool Vector3::operator>(const Vector3 &p_v) const {
if (Math::is_equal_approx(x, p_v.x)) {
if (Math::is_equal_approx(y, p_v.y))
return z > p_v.z;
else
return y > p_v.y;
} else {
return x > p_v.x;
}
}
bool Vector3::operator<=(const Vector3 &p_v) const {
if (Math::is_equal_approx(x, p_v.x)) {
if (Math::is_equal_approx(y, p_v.y))
return z <= p_v.z;
else
return y < p_v.y;
} else {
return x < p_v.x;
}
}
bool Vector3::operator>=(const Vector3 &p_v) const {
if (Math::is_equal_approx(x, p_v.x)) {
if (Math::is_equal_approx(y, p_v.y))
return z >= p_v.z;
else
return y > p_v.y;
} else {
return x > p_v.x;
}
}
_FORCE_INLINE_ Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
return p_a.cross(p_b);
}
_FORCE_INLINE_ real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) {
return p_a.dot(p_b);
}
real_t Vector3::length() const {
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
return Math::sqrt(x2 + y2 + z2);
}
real_t Vector3::length_squared() const {
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
return x2 + y2 + z2;
}
void Vector3::normalize() {
real_t lengthsq = length_squared();
if (lengthsq == 0) {
x = y = z = 0;
} else {
real_t length = Math::sqrt(lengthsq);
x /= length;
y /= length;
z /= length;
}
}
Vector3 Vector3::normalized() const {
Vector3 v = *this;
v.normalize();
return v;
}
bool Vector3::is_normalized() const {
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON);
}
Vector3 Vector3::inverse() const {
return Vector3(1.0 / x, 1.0 / y, 1.0 / z);
}
void Vector3::zero() {
x = y = z = 0;
}
// slide returns the component of the vector along the given plane, specified by its normal vector.
Vector3 Vector3::slide(const Vector3 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3());
#endif
return *this - p_normal * this->dot(p_normal);
}
Vector3 Vector3::bounce(const Vector3 &p_normal) const {
return -reflect(p_normal);
}
Vector3 Vector3::reflect(const Vector3 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3());
#endif
return 2.0 * p_normal * this->dot(p_normal) - *this;
}
#endif // VECTOR3_H