godot/servers/physics_3d/space_3d_sw.cpp
PouleyKetchoupp d0ec46be68 Remove shape metadata from 2D physics server
Shape metadata was only used to get tile information when colliding with
tilemaps. It's not needed anymore since there's an API in tilemap using
body ids instead.
2021-09-30 10:45:36 -07:00

1225 lines
39 KiB
C++

/*************************************************************************/
/* space_3d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "space_3d_sw.h"
#include "collision_solver_3d_sw.h"
#include "core/config/project_settings.h"
#include "physics_server_3d_sw.h"
#define TEST_MOTION_MIN_CONTACT_DEPTH_FACTOR 0.05
_FORCE_INLINE_ static bool _can_collide_with(CollisionObject3DSW *p_object, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (!(p_object->get_collision_layer() & p_collision_mask)) {
return false;
}
if (p_object->get_type() == CollisionObject3DSW::TYPE_AREA && !p_collide_with_areas) {
return false;
}
if (p_object->get_type() == CollisionObject3DSW::TYPE_BODY && !p_collide_with_bodies) {
return false;
}
if (p_object->get_type() == CollisionObject3DSW::TYPE_SOFT_BODY && !p_collide_with_bodies) {
return false;
}
return true;
}
int PhysicsDirectSpaceState3DSW::intersect_point(const Vector3 &p_point, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
ERR_FAIL_COND_V(space->locked, false);
int amount = space->broadphase->cull_point(p_point, space->intersection_query_results, Space3DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
int cc = 0;
//Transform3D ai = p_xform.affine_inverse();
for (int i = 0; i < amount; i++) {
if (cc >= p_result_max) {
break;
}
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
//area can't be picked by ray (default)
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
continue;
}
const CollisionObject3DSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
Transform3D inv_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
inv_xform.affine_invert();
if (!col_obj->get_shape(shape_idx)->intersect_point(inv_xform.xform(p_point))) {
continue;
}
r_results[cc].collider_id = col_obj->get_instance_id();
if (r_results[cc].collider_id.is_valid()) {
r_results[cc].collider = ObjectDB::get_instance(r_results[cc].collider_id);
} else {
r_results[cc].collider = nullptr;
}
r_results[cc].rid = col_obj->get_self();
r_results[cc].shape = shape_idx;
cc++;
}
return cc;
}
bool PhysicsDirectSpaceState3DSW::intersect_ray(const Vector3 &p_from, const Vector3 &p_to, RayResult &r_result, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, bool p_pick_ray) {
ERR_FAIL_COND_V(space->locked, false);
Vector3 begin, end;
Vector3 normal;
begin = p_from;
end = p_to;
normal = (end - begin).normalized();
int amount = space->broadphase->cull_segment(begin, end, space->intersection_query_results, Space3DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
//todo, create another array that references results, compute AABBs and check closest point to ray origin, sort, and stop evaluating results when beyond first collision
bool collided = false;
Vector3 res_point, res_normal;
int res_shape;
const CollisionObject3DSW *res_obj;
real_t min_d = 1e10;
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
if (p_pick_ray && !(space->intersection_query_results[i]->is_ray_pickable())) {
continue;
}
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
continue;
}
const CollisionObject3DSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
Transform3D inv_xform = col_obj->get_shape_inv_transform(shape_idx) * col_obj->get_inv_transform();
Vector3 local_from = inv_xform.xform(begin);
Vector3 local_to = inv_xform.xform(end);
const Shape3DSW *shape = col_obj->get_shape(shape_idx);
Vector3 shape_point, shape_normal;
if (shape->intersect_segment(local_from, local_to, shape_point, shape_normal)) {
Transform3D xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
shape_point = xform.xform(shape_point);
real_t ld = normal.dot(shape_point);
if (ld < min_d) {
min_d = ld;
res_point = shape_point;
res_normal = inv_xform.basis.xform_inv(shape_normal).normalized();
res_shape = shape_idx;
res_obj = col_obj;
collided = true;
}
}
}
if (!collided) {
return false;
}
r_result.collider_id = res_obj->get_instance_id();
if (r_result.collider_id.is_valid()) {
r_result.collider = ObjectDB::get_instance(r_result.collider_id);
} else {
r_result.collider = nullptr;
}
r_result.normal = res_normal;
r_result.position = res_point;
r_result.rid = res_obj->get_self();
r_result.shape = res_shape;
return true;
}
int PhysicsDirectSpaceState3DSW::intersect_shape(const RID &p_shape, const Transform3D &p_xform, real_t p_margin, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
return 0;
}
Shape3DSW *shape = PhysicsServer3DSW::singletonsw->shape_owner.get_or_null(p_shape);
ERR_FAIL_COND_V(!shape, 0);
AABB aabb = p_xform.xform(shape->get_aabb());
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, Space3DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
int cc = 0;
//Transform3D ai = p_xform.affine_inverse();
for (int i = 0; i < amount; i++) {
if (cc >= p_result_max) {
break;
}
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
//area can't be picked by ray (default)
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
continue;
}
const CollisionObject3DSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
if (!CollisionSolver3DSW::solve_static(shape, p_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), nullptr, nullptr, nullptr, p_margin, 0)) {
continue;
}
if (r_results) {
r_results[cc].collider_id = col_obj->get_instance_id();
if (r_results[cc].collider_id.is_valid()) {
r_results[cc].collider = ObjectDB::get_instance(r_results[cc].collider_id);
} else {
r_results[cc].collider = nullptr;
}
r_results[cc].rid = col_obj->get_self();
r_results[cc].shape = shape_idx;
}
cc++;
}
return cc;
}
bool PhysicsDirectSpaceState3DSW::cast_motion(const RID &p_shape, const Transform3D &p_xform, const Vector3 &p_motion, real_t p_margin, real_t &p_closest_safe, real_t &p_closest_unsafe, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, ShapeRestInfo *r_info) {
Shape3DSW *shape = PhysicsServer3DSW::singletonsw->shape_owner.get_or_null(p_shape);
ERR_FAIL_COND_V(!shape, false);
AABB aabb = p_xform.xform(shape->get_aabb());
aabb = aabb.merge(AABB(aabb.position + p_motion, aabb.size)); //motion
aabb = aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, Space3DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
real_t best_safe = 1;
real_t best_unsafe = 1;
Transform3D xform_inv = p_xform.affine_inverse();
MotionShape3DSW mshape;
mshape.shape = shape;
mshape.motion = xform_inv.basis.xform(p_motion);
bool best_first = true;
Vector3 motion_normal = p_motion.normalized();
Vector3 closest_A, closest_B;
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
continue; //ignore excluded
}
const CollisionObject3DSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
Vector3 point_A, point_B;
Vector3 sep_axis = motion_normal;
Transform3D col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
if (CollisionSolver3DSW::solve_distance(&mshape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, aabb, &sep_axis)) {
continue;
}
//test initial overlap, ignore objects it's inside of.
sep_axis = motion_normal;
if (!CollisionSolver3DSW::solve_distance(shape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, aabb, &sep_axis)) {
continue;
}
//just do kinematic solving
real_t low = 0.0;
real_t hi = 1.0;
real_t fraction_coeff = 0.5;
for (int j = 0; j < 8; j++) { //steps should be customizable..
real_t fraction = low + (hi - low) * fraction_coeff;
mshape.motion = xform_inv.basis.xform(p_motion * fraction);
Vector3 lA, lB;
Vector3 sep = motion_normal; //important optimization for this to work fast enough
bool collided = !CollisionSolver3DSW::solve_distance(&mshape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, lA, lB, aabb, &sep);
if (collided) {
hi = fraction;
if ((j == 0) || (low > 0.0)) { // Did it not collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When colliding again, converge faster towards low fraction
// for more accurate results with long motions that collide near the start.
fraction_coeff = 0.25;
}
} else {
point_A = lA;
point_B = lB;
low = fraction;
if ((j == 0) || (hi < 1.0)) { // Did it collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When not colliding again, converge faster towards high fraction
// for more accurate results with long motions that collide near the end.
fraction_coeff = 0.75;
}
}
}
if (low < best_safe) {
best_first = true; //force reset
best_safe = low;
best_unsafe = hi;
}
if (r_info && (best_first || (point_A.distance_squared_to(point_B) < closest_A.distance_squared_to(closest_B) && low <= best_safe))) {
closest_A = point_A;
closest_B = point_B;
r_info->collider_id = col_obj->get_instance_id();
r_info->rid = col_obj->get_self();
r_info->shape = shape_idx;
r_info->point = closest_B;
r_info->normal = (closest_A - closest_B).normalized();
best_first = false;
if (col_obj->get_type() == CollisionObject3DSW::TYPE_BODY) {
const Body3DSW *body = static_cast<const Body3DSW *>(col_obj);
Vector3 rel_vec = closest_B - (body->get_transform().origin + body->get_center_of_mass());
r_info->linear_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec);
}
}
}
p_closest_safe = best_safe;
p_closest_unsafe = best_unsafe;
return true;
}
bool PhysicsDirectSpaceState3DSW::collide_shape(RID p_shape, const Transform3D &p_shape_xform, real_t p_margin, Vector3 *r_results, int p_result_max, int &r_result_count, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
return false;
}
Shape3DSW *shape = PhysicsServer3DSW::singletonsw->shape_owner.get_or_null(p_shape);
ERR_FAIL_COND_V(!shape, 0);
AABB aabb = p_shape_xform.xform(shape->get_aabb());
aabb = aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, Space3DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
bool collided = false;
r_result_count = 0;
PhysicsServer3DSW::CollCbkData cbk;
cbk.max = p_result_max;
cbk.amount = 0;
cbk.ptr = r_results;
CollisionSolver3DSW::CallbackResult cbkres = PhysicsServer3DSW::_shape_col_cbk;
PhysicsServer3DSW::CollCbkData *cbkptr = &cbk;
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
const CollisionObject3DSW *col_obj = space->intersection_query_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
int shape_idx = space->intersection_query_subindex_results[i];
if (CollisionSolver3DSW::solve_static(shape, p_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), cbkres, cbkptr, nullptr, p_margin)) {
collided = true;
}
}
r_result_count = cbk.amount;
return collided;
}
struct _RestResultData {
const CollisionObject3DSW *object = nullptr;
int local_shape = 0;
int shape = 0;
Vector3 contact;
Vector3 normal;
real_t len = 0.0;
};
struct _RestCallbackData {
const CollisionObject3DSW *object = nullptr;
int local_shape = 0;
int shape = 0;
real_t min_allowed_depth = 0.0;
_RestResultData best_result;
int max_results = 0;
int result_count = 0;
_RestResultData *other_results = nullptr;
};
static void _rest_cbk_result(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, void *p_userdata) {
_RestCallbackData *rd = (_RestCallbackData *)p_userdata;
Vector3 contact_rel = p_point_B - p_point_A;
real_t len = contact_rel.length();
if (len < rd->min_allowed_depth) {
return;
}
bool is_best_result = (len > rd->best_result.len);
if (rd->other_results && rd->result_count > 0) {
// Consider as new result by default.
int prev_result_count = rd->result_count++;
int result_index = 0;
real_t tested_len = is_best_result ? rd->best_result.len : len;
for (; result_index < prev_result_count - 1; ++result_index) {
if (tested_len > rd->other_results[result_index].len) {
// Re-using a previous result.
rd->result_count--;
break;
}
}
if (result_index < rd->max_results - 1) {
_RestResultData &result = rd->other_results[result_index];
if (is_best_result) {
// Keep the previous best result as separate result.
result = rd->best_result;
} else {
// Keep this result as separate result.
result.len = len;
result.contact = p_point_B;
result.normal = contact_rel / len;
result.object = rd->object;
result.shape = rd->shape;
result.local_shape = rd->local_shape;
}
} else {
// Discarding this result.
rd->result_count--;
}
} else if (is_best_result) {
rd->result_count = 1;
}
if (!is_best_result) {
return;
}
rd->best_result.len = len;
rd->best_result.contact = p_point_B;
rd->best_result.normal = contact_rel / len;
rd->best_result.object = rd->object;
rd->best_result.shape = rd->shape;
rd->best_result.local_shape = rd->local_shape;
}
bool PhysicsDirectSpaceState3DSW::rest_info(RID p_shape, const Transform3D &p_shape_xform, real_t p_margin, ShapeRestInfo *r_info, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
Shape3DSW *shape = PhysicsServer3DSW::singletonsw->shape_owner.get_or_null(p_shape);
ERR_FAIL_COND_V(!shape, 0);
real_t min_contact_depth = p_margin * TEST_MOTION_MIN_CONTACT_DEPTH_FACTOR;
AABB aabb = p_shape_xform.xform(shape->get_aabb());
aabb = aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, Space3DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
_RestCallbackData rcd;
rcd.min_allowed_depth = min_contact_depth;
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
const CollisionObject3DSW *col_obj = space->intersection_query_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
int shape_idx = space->intersection_query_subindex_results[i];
rcd.object = col_obj;
rcd.shape = shape_idx;
bool sc = CollisionSolver3DSW::solve_static(shape, p_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), _rest_cbk_result, &rcd, nullptr, p_margin);
if (!sc) {
continue;
}
}
if (rcd.best_result.len == 0 || !rcd.best_result.object) {
return false;
}
r_info->collider_id = rcd.best_result.object->get_instance_id();
r_info->shape = rcd.best_result.shape;
r_info->normal = rcd.best_result.normal;
r_info->point = rcd.best_result.contact;
r_info->rid = rcd.best_result.object->get_self();
if (rcd.best_result.object->get_type() == CollisionObject3DSW::TYPE_BODY) {
const Body3DSW *body = static_cast<const Body3DSW *>(rcd.best_result.object);
Vector3 rel_vec = rcd.best_result.contact - (body->get_transform().origin + body->get_center_of_mass());
r_info->linear_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec);
} else {
r_info->linear_velocity = Vector3();
}
return true;
}
Vector3 PhysicsDirectSpaceState3DSW::get_closest_point_to_object_volume(RID p_object, const Vector3 p_point) const {
CollisionObject3DSW *obj = PhysicsServer3DSW::singletonsw->area_owner.get_or_null(p_object);
if (!obj) {
obj = PhysicsServer3DSW::singletonsw->body_owner.get_or_null(p_object);
}
ERR_FAIL_COND_V(!obj, Vector3());
ERR_FAIL_COND_V(obj->get_space() != space, Vector3());
real_t min_distance = 1e20;
Vector3 min_point;
bool shapes_found = false;
for (int i = 0; i < obj->get_shape_count(); i++) {
if (obj->is_shape_disabled(i)) {
continue;
}
Transform3D shape_xform = obj->get_transform() * obj->get_shape_transform(i);
Shape3DSW *shape = obj->get_shape(i);
Vector3 point = shape->get_closest_point_to(shape_xform.affine_inverse().xform(p_point));
point = shape_xform.xform(point);
real_t dist = point.distance_to(p_point);
if (dist < min_distance) {
min_distance = dist;
min_point = point;
}
shapes_found = true;
}
if (!shapes_found) {
return obj->get_transform().origin; //no shapes found, use distance to origin.
} else {
return min_point;
}
}
PhysicsDirectSpaceState3DSW::PhysicsDirectSpaceState3DSW() {
space = nullptr;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
int Space3DSW::_cull_aabb_for_body(Body3DSW *p_body, const AABB &p_aabb) {
int amount = broadphase->cull_aabb(p_aabb, intersection_query_results, INTERSECTION_QUERY_MAX, intersection_query_subindex_results);
for (int i = 0; i < amount; i++) {
bool keep = true;
if (intersection_query_results[i] == p_body) {
keep = false;
} else if (intersection_query_results[i]->get_type() == CollisionObject3DSW::TYPE_AREA) {
keep = false;
} else if (intersection_query_results[i]->get_type() == CollisionObject3DSW::TYPE_SOFT_BODY) {
keep = false;
} else if (!p_body->collides_with(static_cast<Body3DSW *>(intersection_query_results[i]))) {
keep = false;
} else if (static_cast<Body3DSW *>(intersection_query_results[i])->has_exception(p_body->get_self()) || p_body->has_exception(intersection_query_results[i]->get_self())) {
keep = false;
}
if (!keep) {
if (i < amount - 1) {
SWAP(intersection_query_results[i], intersection_query_results[amount - 1]);
SWAP(intersection_query_subindex_results[i], intersection_query_subindex_results[amount - 1]);
}
amount--;
i--;
}
}
return amount;
}
bool Space3DSW::test_body_motion(Body3DSW *p_body, const Transform3D &p_from, const Vector3 &p_motion, real_t p_margin, PhysicsServer3D::MotionResult *r_result, int p_max_collisions, bool p_collide_separation_ray, const Set<RID> &p_exclude) {
//give me back regular physics engine logic
//this is madness
//and most people using this function will think
//what it does is simpler than using physics
//this took about a week to get right..
//but is it right? who knows at this point..
ERR_FAIL_INDEX_V(p_max_collisions, PhysicsServer3D::MotionResult::MAX_COLLISIONS, false);
if (r_result) {
*r_result = PhysicsServer3D::MotionResult();
}
AABB body_aabb;
bool shapes_found = false;
for (int i = 0; i < p_body->get_shape_count(); i++) {
if (p_body->is_shape_disabled(i)) {
continue;
}
if (!shapes_found) {
body_aabb = p_body->get_shape_aabb(i);
shapes_found = true;
} else {
body_aabb = body_aabb.merge(p_body->get_shape_aabb(i));
}
}
if (!shapes_found) {
if (r_result) {
r_result->travel = p_motion;
}
return false;
}
// Undo the currently transform the physics server is aware of and apply the provided one
body_aabb = p_from.xform(p_body->get_inv_transform().xform(body_aabb));
body_aabb = body_aabb.grow(p_margin);
real_t min_contact_depth = p_margin * TEST_MOTION_MIN_CONTACT_DEPTH_FACTOR;
real_t motion_length = p_motion.length();
Vector3 motion_normal = p_motion / motion_length;
Transform3D body_transform = p_from;
bool recovered = false;
{
//STEP 1, FREE BODY IF STUCK
const int max_results = 32;
int recover_attempts = 4;
Vector3 sr[max_results * 2];
do {
PhysicsServer3DSW::CollCbkData cbk;
cbk.max = max_results;
cbk.amount = 0;
cbk.ptr = sr;
PhysicsServer3DSW::CollCbkData *cbkptr = &cbk;
CollisionSolver3DSW::CallbackResult cbkres = PhysicsServer3DSW::_shape_col_cbk;
bool collided = false;
int amount = _cull_aabb_for_body(p_body, body_aabb);
for (int j = 0; j < p_body->get_shape_count(); j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
Transform3D body_shape_xform = body_transform * p_body->get_shape_transform(j);
Shape3DSW *body_shape = p_body->get_shape(j);
for (int i = 0; i < amount; i++) {
const CollisionObject3DSW *col_obj = intersection_query_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
int shape_idx = intersection_query_subindex_results[i];
if (CollisionSolver3DSW::solve_static(body_shape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), cbkres, cbkptr, nullptr, p_margin)) {
collided = cbk.amount > 0;
}
}
}
if (!collided) {
break;
}
recovered = true;
Vector3 recover_motion;
for (int i = 0; i < cbk.amount; i++) {
Vector3 a = sr[i * 2 + 0];
Vector3 b = sr[i * 2 + 1];
// Compute plane on b towards a.
Vector3 n = (a - b).normalized();
real_t d = n.dot(b);
// Compute depth on recovered motion.
real_t depth = n.dot(a + recover_motion) - d;
if (depth > min_contact_depth + CMP_EPSILON) {
// Only recover if there is penetration.
recover_motion -= n * (depth - min_contact_depth) * 0.4;
}
}
if (recover_motion == Vector3()) {
collided = false;
break;
}
body_transform.origin += recover_motion;
body_aabb.position += recover_motion;
recover_attempts--;
} while (recover_attempts);
}
real_t safe = 1.0;
real_t unsafe = 1.0;
int best_shape = -1;
{
// STEP 2 ATTEMPT MOTION
AABB motion_aabb = body_aabb;
motion_aabb.position += p_motion;
motion_aabb = motion_aabb.merge(body_aabb);
int amount = _cull_aabb_for_body(p_body, motion_aabb);
for (int j = 0; j < p_body->get_shape_count(); j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
Shape3DSW *body_shape = p_body->get_shape(j);
// Colliding separation rays allows to properly snap to the ground,
// otherwise it's not needed in regular motion.
if (!p_collide_separation_ray && (body_shape->get_type() == PhysicsServer3D::SHAPE_SEPARATION_RAY)) {
// When slide on slope is on, separation ray shape acts like a regular shape.
if (!static_cast<SeparationRayShape3DSW *>(body_shape)->get_slide_on_slope()) {
continue;
}
}
Transform3D body_shape_xform = body_transform * p_body->get_shape_transform(j);
Transform3D body_shape_xform_inv = body_shape_xform.affine_inverse();
MotionShape3DSW mshape;
mshape.shape = body_shape;
mshape.motion = body_shape_xform_inv.basis.xform(p_motion);
bool stuck = false;
real_t best_safe = 1;
real_t best_unsafe = 1;
for (int i = 0; i < amount; i++) {
const CollisionObject3DSW *col_obj = intersection_query_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
int shape_idx = intersection_query_subindex_results[i];
//test initial overlap, does it collide if going all the way?
Vector3 point_A, point_B;
Vector3 sep_axis = motion_normal;
Transform3D col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
if (CollisionSolver3DSW::solve_distance(&mshape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, motion_aabb, &sep_axis)) {
continue;
}
sep_axis = motion_normal;
if (!CollisionSolver3DSW::solve_distance(body_shape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, motion_aabb, &sep_axis)) {
stuck = true;
break;
}
//just do kinematic solving
real_t low = 0.0;
real_t hi = 1.0;
real_t fraction_coeff = 0.5;
for (int k = 0; k < 8; k++) { //steps should be customizable..
real_t fraction = low + (hi - low) * fraction_coeff;
mshape.motion = body_shape_xform_inv.basis.xform(p_motion * fraction);
Vector3 lA, lB;
Vector3 sep = motion_normal; //important optimization for this to work fast enough
bool collided = !CollisionSolver3DSW::solve_distance(&mshape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, lA, lB, motion_aabb, &sep);
if (collided) {
hi = fraction;
if ((k == 0) || (low > 0.0)) { // Did it not collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When colliding again, converge faster towards low fraction
// for more accurate results with long motions that collide near the start.
fraction_coeff = 0.25;
}
} else {
point_A = lA;
point_B = lB;
low = fraction;
if ((k == 0) || (hi < 1.0)) { // Did it collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When not colliding again, converge faster towards high fraction
// for more accurate results with long motions that collide near the end.
fraction_coeff = 0.75;
}
}
}
if (low < best_safe) {
best_safe = low;
best_unsafe = hi;
}
}
if (stuck) {
safe = 0;
unsafe = 0;
best_shape = j; //sadly it's the best
break;
}
if (best_safe == 1.0) {
continue;
}
if (best_safe < safe) {
safe = best_safe;
unsafe = best_unsafe;
best_shape = j;
}
}
}
bool collided = false;
if (recovered || (safe < 1)) {
if (safe >= 1) {
best_shape = -1; //no best shape with cast, reset to -1
}
//it collided, let's get the rest info in unsafe advance
Transform3D ugt = body_transform;
ugt.origin += p_motion * unsafe;
_RestResultData results[PhysicsServer3D::MotionResult::MAX_COLLISIONS];
_RestCallbackData rcd;
if (p_max_collisions > 1) {
rcd.max_results = p_max_collisions;
rcd.other_results = results;
}
// Allowed depth can't be lower than motion length, in order to handle contacts at low speed.
rcd.min_allowed_depth = MIN(motion_length, min_contact_depth);
int from_shape = best_shape != -1 ? best_shape : 0;
int to_shape = best_shape != -1 ? best_shape + 1 : p_body->get_shape_count();
for (int j = from_shape; j < to_shape; j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
Transform3D body_shape_xform = ugt * p_body->get_shape_transform(j);
Shape3DSW *body_shape = p_body->get_shape(j);
body_aabb.position += p_motion * unsafe;
int amount = _cull_aabb_for_body(p_body, body_aabb);
for (int i = 0; i < amount; i++) {
const CollisionObject3DSW *col_obj = intersection_query_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
int shape_idx = intersection_query_subindex_results[i];
rcd.object = col_obj;
rcd.shape = shape_idx;
bool sc = CollisionSolver3DSW::solve_static(body_shape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), _rest_cbk_result, &rcd, nullptr, p_margin);
if (!sc) {
continue;
}
}
}
if (rcd.result_count > 0) {
if (r_result) {
for (int collision_index = 0; collision_index < rcd.result_count; ++collision_index) {
const _RestResultData &result = (collision_index > 0) ? rcd.other_results[collision_index - 1] : rcd.best_result;
PhysicsServer3D::MotionCollision &collision = r_result->collisions[collision_index];
collision.collider = result.object->get_self();
collision.collider_id = result.object->get_instance_id();
collision.collider_shape = result.shape;
collision.local_shape = result.local_shape;
collision.normal = result.normal;
collision.position = result.contact;
collision.depth = result.len;
const Body3DSW *body = static_cast<const Body3DSW *>(result.object);
Vector3 rel_vec = result.contact - (body->get_transform().origin + body->get_center_of_mass());
collision.collider_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec);
}
r_result->travel = safe * p_motion;
r_result->remainder = p_motion - safe * p_motion;
r_result->travel += (body_transform.get_origin() - p_from.get_origin());
r_result->safe_fraction = safe;
r_result->unsafe_fraction = unsafe;
r_result->collision_count = rcd.result_count;
}
collided = true;
}
}
if (!collided && r_result) {
r_result->travel = p_motion;
r_result->remainder = Vector3();
r_result->travel += (body_transform.get_origin() - p_from.get_origin());
r_result->safe_fraction = 1.0;
r_result->unsafe_fraction = 1.0;
}
return collided;
}
void *Space3DSW::_broadphase_pair(CollisionObject3DSW *A, int p_subindex_A, CollisionObject3DSW *B, int p_subindex_B, void *p_self) {
if (!A->interacts_with(B)) {
return nullptr;
}
CollisionObject3DSW::Type type_A = A->get_type();
CollisionObject3DSW::Type type_B = B->get_type();
if (type_A > type_B) {
SWAP(A, B);
SWAP(p_subindex_A, p_subindex_B);
SWAP(type_A, type_B);
}
Space3DSW *self = (Space3DSW *)p_self;
self->collision_pairs++;
if (type_A == CollisionObject3DSW::TYPE_AREA) {
Area3DSW *area = static_cast<Area3DSW *>(A);
if (type_B == CollisionObject3DSW::TYPE_AREA) {
Area3DSW *area_b = static_cast<Area3DSW *>(B);
Area2Pair3DSW *area2_pair = memnew(Area2Pair3DSW(area_b, p_subindex_B, area, p_subindex_A));
return area2_pair;
} else if (type_B == CollisionObject3DSW::TYPE_SOFT_BODY) {
SoftBody3DSW *softbody = static_cast<SoftBody3DSW *>(B);
AreaSoftBodyPair3DSW *soft_area_pair = memnew(AreaSoftBodyPair3DSW(softbody, p_subindex_B, area, p_subindex_A));
return soft_area_pair;
} else {
Body3DSW *body = static_cast<Body3DSW *>(B);
AreaPair3DSW *area_pair = memnew(AreaPair3DSW(body, p_subindex_B, area, p_subindex_A));
return area_pair;
}
} else if (type_A == CollisionObject3DSW::TYPE_BODY) {
if (type_B == CollisionObject3DSW::TYPE_SOFT_BODY) {
BodySoftBodyPair3DSW *soft_pair = memnew(BodySoftBodyPair3DSW((Body3DSW *)A, p_subindex_A, (SoftBody3DSW *)B));
return soft_pair;
} else {
BodyPair3DSW *b = memnew(BodyPair3DSW((Body3DSW *)A, p_subindex_A, (Body3DSW *)B, p_subindex_B));
return b;
}
} else {
// Soft Body/Soft Body, not supported.
}
return nullptr;
}
void Space3DSW::_broadphase_unpair(CollisionObject3DSW *A, int p_subindex_A, CollisionObject3DSW *B, int p_subindex_B, void *p_data, void *p_self) {
if (!p_data) {
return;
}
Space3DSW *self = (Space3DSW *)p_self;
self->collision_pairs--;
Constraint3DSW *c = (Constraint3DSW *)p_data;
memdelete(c);
}
const SelfList<Body3DSW>::List &Space3DSW::get_active_body_list() const {
return active_list;
}
void Space3DSW::body_add_to_active_list(SelfList<Body3DSW> *p_body) {
active_list.add(p_body);
}
void Space3DSW::body_remove_from_active_list(SelfList<Body3DSW> *p_body) {
active_list.remove(p_body);
}
void Space3DSW::body_add_to_mass_properties_update_list(SelfList<Body3DSW> *p_body) {
mass_properties_update_list.add(p_body);
}
void Space3DSW::body_remove_from_mass_properties_update_list(SelfList<Body3DSW> *p_body) {
mass_properties_update_list.remove(p_body);
}
BroadPhase3DSW *Space3DSW::get_broadphase() {
return broadphase;
}
void Space3DSW::add_object(CollisionObject3DSW *p_object) {
ERR_FAIL_COND(objects.has(p_object));
objects.insert(p_object);
}
void Space3DSW::remove_object(CollisionObject3DSW *p_object) {
ERR_FAIL_COND(!objects.has(p_object));
objects.erase(p_object);
}
const Set<CollisionObject3DSW *> &Space3DSW::get_objects() const {
return objects;
}
void Space3DSW::body_add_to_state_query_list(SelfList<Body3DSW> *p_body) {
state_query_list.add(p_body);
}
void Space3DSW::body_remove_from_state_query_list(SelfList<Body3DSW> *p_body) {
state_query_list.remove(p_body);
}
void Space3DSW::area_add_to_monitor_query_list(SelfList<Area3DSW> *p_area) {
monitor_query_list.add(p_area);
}
void Space3DSW::area_remove_from_monitor_query_list(SelfList<Area3DSW> *p_area) {
monitor_query_list.remove(p_area);
}
void Space3DSW::area_add_to_moved_list(SelfList<Area3DSW> *p_area) {
area_moved_list.add(p_area);
}
void Space3DSW::area_remove_from_moved_list(SelfList<Area3DSW> *p_area) {
area_moved_list.remove(p_area);
}
const SelfList<Area3DSW>::List &Space3DSW::get_moved_area_list() const {
return area_moved_list;
}
const SelfList<SoftBody3DSW>::List &Space3DSW::get_active_soft_body_list() const {
return active_soft_body_list;
}
void Space3DSW::soft_body_add_to_active_list(SelfList<SoftBody3DSW> *p_soft_body) {
active_soft_body_list.add(p_soft_body);
}
void Space3DSW::soft_body_remove_from_active_list(SelfList<SoftBody3DSW> *p_soft_body) {
active_soft_body_list.remove(p_soft_body);
}
void Space3DSW::call_queries() {
while (state_query_list.first()) {
Body3DSW *b = state_query_list.first()->self();
state_query_list.remove(state_query_list.first());
b->call_queries();
}
while (monitor_query_list.first()) {
Area3DSW *a = monitor_query_list.first()->self();
monitor_query_list.remove(monitor_query_list.first());
a->call_queries();
}
}
void Space3DSW::setup() {
contact_debug_count = 0;
while (mass_properties_update_list.first()) {
mass_properties_update_list.first()->self()->update_mass_properties();
mass_properties_update_list.remove(mass_properties_update_list.first());
}
}
void Space3DSW::update() {
broadphase->update();
}
void Space3DSW::set_param(PhysicsServer3D::SpaceParameter p_param, real_t p_value) {
switch (p_param) {
case PhysicsServer3D::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
contact_recycle_radius = p_value;
break;
case PhysicsServer3D::SPACE_PARAM_CONTACT_MAX_SEPARATION:
contact_max_separation = p_value;
break;
case PhysicsServer3D::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
contact_max_allowed_penetration = p_value;
break;
case PhysicsServer3D::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
body_linear_velocity_sleep_threshold = p_value;
break;
case PhysicsServer3D::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
body_angular_velocity_sleep_threshold = p_value;
break;
case PhysicsServer3D::SPACE_PARAM_BODY_TIME_TO_SLEEP:
body_time_to_sleep = p_value;
break;
case PhysicsServer3D::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
body_angular_velocity_damp_ratio = p_value;
break;
case PhysicsServer3D::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
constraint_bias = p_value;
break;
}
}
real_t Space3DSW::get_param(PhysicsServer3D::SpaceParameter p_param) const {
switch (p_param) {
case PhysicsServer3D::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
return contact_recycle_radius;
case PhysicsServer3D::SPACE_PARAM_CONTACT_MAX_SEPARATION:
return contact_max_separation;
case PhysicsServer3D::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
return contact_max_allowed_penetration;
case PhysicsServer3D::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
return body_linear_velocity_sleep_threshold;
case PhysicsServer3D::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
return body_angular_velocity_sleep_threshold;
case PhysicsServer3D::SPACE_PARAM_BODY_TIME_TO_SLEEP:
return body_time_to_sleep;
case PhysicsServer3D::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
return body_angular_velocity_damp_ratio;
case PhysicsServer3D::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
return constraint_bias;
}
return 0;
}
void Space3DSW::lock() {
locked = true;
}
void Space3DSW::unlock() {
locked = false;
}
bool Space3DSW::is_locked() const {
return locked;
}
PhysicsDirectSpaceState3DSW *Space3DSW::get_direct_state() {
return direct_access;
}
Space3DSW::Space3DSW() {
body_linear_velocity_sleep_threshold = GLOBAL_DEF("physics/3d/sleep_threshold_linear", 0.1);
body_angular_velocity_sleep_threshold = GLOBAL_DEF("physics/3d/sleep_threshold_angular", Math::deg2rad(8.0));
body_time_to_sleep = GLOBAL_DEF("physics/3d/time_before_sleep", 0.5);
ProjectSettings::get_singleton()->set_custom_property_info("physics/3d/time_before_sleep", PropertyInfo(Variant::FLOAT, "physics/3d/time_before_sleep", PROPERTY_HINT_RANGE, "0,5,0.01,or_greater"));
body_angular_velocity_damp_ratio = 10;
broadphase = BroadPhase3DSW::create_func();
broadphase->set_pair_callback(_broadphase_pair, this);
broadphase->set_unpair_callback(_broadphase_unpair, this);
direct_access = memnew(PhysicsDirectSpaceState3DSW);
direct_access->space = this;
}
Space3DSW::~Space3DSW() {
memdelete(broadphase);
memdelete(direct_access);
}