godot/core/templates/rid_owner.h
reduz 8b19ffd810 Make Servers truly Thread Safe
-Rendering server now uses a split RID allocate/initialize internally, this allows generating RIDs immediately but initialization to happen later on the proper thread (as rendering APIs generally requiere to call on the right thread).
-RenderingServerWrapMT is no more, multithreading is done in RenderingServerDefault.
-Some functions like texture or mesh creation, when renderer supports it, can register and return immediately (so no waiting for server API to flush, and saving staging and command buffer memory).
-3D physics server changed to be made multithread friendly.
-Added PhysicsServer3DWrapMT to use 3D physics server from multiple threads.
-Disablet Bullet (too much effort to make multithread friendly, this needs to be fixed eventually).
2021-02-10 13:21:46 -03:00

491 lines
13 KiB
C++

/*************************************************************************/
/* rid_owner.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RID_OWNER_H
#define RID_OWNER_H
#include "core/os/memory.h"
#include "core/os/spin_lock.h"
#include "core/string/print_string.h"
#include "core/templates/list.h"
#include "core/templates/oa_hash_map.h"
#include "core/templates/rid.h"
#include "core/templates/safe_refcount.h"
#include "core/templates/set.h"
#include <stdio.h>
#include <typeinfo>
class RID_AllocBase {
static volatile uint64_t base_id;
protected:
static RID _make_from_id(uint64_t p_id) {
RID rid;
rid._id = p_id;
return rid;
}
static uint64_t _gen_id() {
return atomic_increment(&base_id);
}
static RID _gen_rid() {
return _make_from_id(_gen_id());
}
public:
virtual ~RID_AllocBase() {}
};
template <class T, bool THREAD_SAFE = false>
class RID_Alloc : public RID_AllocBase {
T **chunks = nullptr;
uint32_t **free_list_chunks = nullptr;
uint32_t **validator_chunks = nullptr;
uint32_t elements_in_chunk;
uint32_t max_alloc = 0;
uint32_t alloc_count = 0;
const char *description = nullptr;
SpinLock spin_lock;
_FORCE_INLINE_ RID _allocate_rid(const T *p_initializer) {
if (THREAD_SAFE) {
spin_lock.lock();
}
if (alloc_count == max_alloc) {
//allocate a new chunk
uint32_t chunk_count = alloc_count == 0 ? 0 : (max_alloc / elements_in_chunk);
//grow chunks
chunks = (T **)memrealloc(chunks, sizeof(T *) * (chunk_count + 1));
chunks[chunk_count] = (T *)memalloc(sizeof(T) * elements_in_chunk); //but don't initialize
//grow validators
validator_chunks = (uint32_t **)memrealloc(validator_chunks, sizeof(uint32_t *) * (chunk_count + 1));
validator_chunks[chunk_count] = (uint32_t *)memalloc(sizeof(uint32_t) * elements_in_chunk);
//grow free lists
free_list_chunks = (uint32_t **)memrealloc(free_list_chunks, sizeof(uint32_t *) * (chunk_count + 1));
free_list_chunks[chunk_count] = (uint32_t *)memalloc(sizeof(uint32_t) * elements_in_chunk);
//initialize
for (uint32_t i = 0; i < elements_in_chunk; i++) {
//dont initialize chunk
validator_chunks[chunk_count][i] = 0xFFFFFFFF;
free_list_chunks[chunk_count][i] = alloc_count + i;
}
max_alloc += elements_in_chunk;
}
uint32_t free_index = free_list_chunks[alloc_count / elements_in_chunk][alloc_count % elements_in_chunk];
uint32_t free_chunk = free_index / elements_in_chunk;
uint32_t free_element = free_index % elements_in_chunk;
if (p_initializer) {
T *ptr = &chunks[free_chunk][free_element];
memnew_placement(ptr, T(*p_initializer));
}
uint32_t validator = (uint32_t)(_gen_id() & 0x7FFFFFFF);
uint64_t id = validator;
id <<= 32;
id |= free_index;
validator_chunks[free_chunk][free_element] = validator;
if (!p_initializer) {
validator_chunks[free_chunk][free_element] |= 0x80000000; //mark uninitialized bit
}
alloc_count++;
if (THREAD_SAFE) {
spin_lock.unlock();
}
return _make_from_id(id);
}
public:
RID make_rid(const T &p_value) {
return _allocate_rid(&p_value);
}
//allocate but don't initialize, use initialize_rid afterwards
RID allocate_rid() {
return _allocate_rid(nullptr);
}
_FORCE_INLINE_ T *getornull(const RID &p_rid, bool p_initialize = false) {
if (p_rid == RID()) {
return nullptr;
}
if (THREAD_SAFE) {
spin_lock.lock();
}
uint64_t id = p_rid.get_id();
uint32_t idx = uint32_t(id & 0xFFFFFFFF);
if (unlikely(idx >= max_alloc)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
return nullptr;
}
uint32_t idx_chunk = idx / elements_in_chunk;
uint32_t idx_element = idx % elements_in_chunk;
uint32_t validator = uint32_t(id >> 32);
if (unlikely(p_initialize)) {
if (unlikely(!(validator_chunks[idx_chunk][idx_element] & 0x80000000))) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
ERR_FAIL_V_MSG(nullptr, "Initializing already initialized RID");
}
if (unlikely((validator_chunks[idx_chunk][idx_element] & 0x7FFFFFFF) != validator)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
ERR_FAIL_V_MSG(nullptr, "Attempting to initialize the wrong RID");
return nullptr;
}
validator_chunks[idx_chunk][idx_element] &= 0x7FFFFFFF; //initialized
} else if (unlikely(validator_chunks[idx_chunk][idx_element] != validator)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
if (validator_chunks[idx_chunk][idx_element] & 0x80000000) {
ERR_FAIL_V_MSG(nullptr, "Attempting to use an uninitialized RID");
}
return nullptr;
}
T *ptr = &chunks[idx_chunk][idx_element];
if (THREAD_SAFE) {
spin_lock.unlock();
}
return ptr;
}
void initialize_rid(RID p_rid, const T &p_value) {
T *mem = getornull(p_rid, true);
ERR_FAIL_COND(!mem);
memnew_placement(mem, T(p_value));
}
_FORCE_INLINE_ bool owns(const RID &p_rid) {
if (THREAD_SAFE) {
spin_lock.lock();
}
uint64_t id = p_rid.get_id();
uint32_t idx = uint32_t(id & 0xFFFFFFFF);
if (unlikely(idx >= max_alloc)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
return false;
}
uint32_t idx_chunk = idx / elements_in_chunk;
uint32_t idx_element = idx % elements_in_chunk;
uint32_t validator = uint32_t(id >> 32);
bool owned = (validator_chunks[idx_chunk][idx_element] & 0x7FFFFFFF) == validator;
if (THREAD_SAFE) {
spin_lock.unlock();
}
return owned;
}
_FORCE_INLINE_ void free(const RID &p_rid) {
if (THREAD_SAFE) {
spin_lock.lock();
}
uint64_t id = p_rid.get_id();
uint32_t idx = uint32_t(id & 0xFFFFFFFF);
if (unlikely(idx >= max_alloc)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
ERR_FAIL();
}
uint32_t idx_chunk = idx / elements_in_chunk;
uint32_t idx_element = idx % elements_in_chunk;
uint32_t validator = uint32_t(id >> 32);
if (unlikely(validator_chunks[idx_chunk][idx_element] & 0x80000000)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
ERR_FAIL_MSG("Attempted to free an uninitialized or invalid RID");
} else if (unlikely(validator_chunks[idx_chunk][idx_element] != validator)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
ERR_FAIL();
}
chunks[idx_chunk][idx_element].~T();
validator_chunks[idx_chunk][idx_element] = 0xFFFFFFFF; // go invalid
alloc_count--;
free_list_chunks[alloc_count / elements_in_chunk][alloc_count % elements_in_chunk] = idx;
if (THREAD_SAFE) {
spin_lock.unlock();
}
}
_FORCE_INLINE_ uint32_t get_rid_count() const {
return alloc_count;
}
_FORCE_INLINE_ T *get_ptr_by_index(uint32_t p_index) {
ERR_FAIL_UNSIGNED_INDEX_V(p_index, alloc_count, nullptr);
if (THREAD_SAFE) {
spin_lock.lock();
}
uint64_t idx = free_list_chunks[p_index / elements_in_chunk][p_index % elements_in_chunk];
T *ptr = &chunks[idx / elements_in_chunk][idx % elements_in_chunk];
if (THREAD_SAFE) {
spin_lock.unlock();
}
return ptr;
}
_FORCE_INLINE_ RID get_rid_by_index(uint32_t p_index) {
ERR_FAIL_INDEX_V(p_index, alloc_count, RID());
if (THREAD_SAFE) {
spin_lock.lock();
}
uint64_t idx = free_list_chunks[p_index / elements_in_chunk][p_index % elements_in_chunk];
uint64_t validator = validator_chunks[idx / elements_in_chunk][idx % elements_in_chunk];
RID rid = _make_from_id((validator << 32) | idx);
if (THREAD_SAFE) {
spin_lock.unlock();
}
return rid;
}
void get_owned_list(List<RID> *p_owned) {
if (THREAD_SAFE) {
spin_lock.lock();
}
for (size_t i = 0; i < max_alloc; i++) {
uint64_t validator = validator_chunks[i / elements_in_chunk][i % elements_in_chunk];
if (validator != 0xFFFFFFFF) {
p_owned->push_back(_make_from_id((validator << 32) | i));
}
}
if (THREAD_SAFE) {
spin_lock.unlock();
}
}
void set_description(const char *p_descrption) {
description = p_descrption;
}
RID_Alloc(uint32_t p_target_chunk_byte_size = 4096) {
elements_in_chunk = sizeof(T) > p_target_chunk_byte_size ? 1 : (p_target_chunk_byte_size / sizeof(T));
}
~RID_Alloc() {
if (alloc_count) {
if (description) {
print_error("ERROR: " + itos(alloc_count) + " RID allocations of type '" + description + "' were leaked at exit.");
} else {
#ifdef NO_SAFE_CAST
print_error("ERROR: " + itos(alloc_count) + " RID allocations of type 'unknown' were leaked at exit.");
#else
print_error("ERROR: " + itos(alloc_count) + " RID allocations of type '" + typeid(T).name() + "' were leaked at exit.");
#endif
}
for (size_t i = 0; i < max_alloc; i++) {
uint64_t validator = validator_chunks[i / elements_in_chunk][i % elements_in_chunk];
if (validator != 0xFFFFFFFF) {
chunks[i / elements_in_chunk][i % elements_in_chunk].~T();
}
}
}
uint32_t chunk_count = max_alloc / elements_in_chunk;
for (uint32_t i = 0; i < chunk_count; i++) {
memfree(chunks[i]);
memfree(validator_chunks[i]);
memfree(free_list_chunks[i]);
}
if (chunks) {
memfree(chunks);
memfree(free_list_chunks);
memfree(validator_chunks);
}
}
};
template <class T, bool THREAD_SAFE = false>
class RID_PtrOwner {
RID_Alloc<T *, THREAD_SAFE> alloc;
public:
_FORCE_INLINE_ RID make_rid(T *p_ptr) {
return alloc.make_rid(p_ptr);
}
_FORCE_INLINE_ RID allocate_rid() {
return alloc.allocate_rid();
}
_FORCE_INLINE_ void initialize_rid(RID p_rid, T *p_ptr) {
alloc.initialize_rid(p_rid, p_ptr);
}
_FORCE_INLINE_ T *getornull(const RID &p_rid) {
T **ptr = alloc.getornull(p_rid);
if (unlikely(!ptr)) {
return nullptr;
}
return *ptr;
}
_FORCE_INLINE_ void replace(const RID &p_rid, T *p_new_ptr) {
T **ptr = alloc.getornull(p_rid);
ERR_FAIL_COND(!ptr);
*ptr = p_new_ptr;
}
_FORCE_INLINE_ bool owns(const RID &p_rid) {
return alloc.owns(p_rid);
}
_FORCE_INLINE_ void free(const RID &p_rid) {
alloc.free(p_rid);
}
_FORCE_INLINE_ uint32_t get_rid_count() const {
return alloc.get_rid_count();
}
_FORCE_INLINE_ RID get_rid_by_index(uint32_t p_index) {
return alloc.get_rid_by_index(p_index);
}
_FORCE_INLINE_ T *get_ptr_by_index(uint32_t p_index) {
return *alloc.get_ptr_by_index(p_index);
}
_FORCE_INLINE_ void get_owned_list(List<RID> *p_owned) {
return alloc.get_owned_list(p_owned);
}
void set_description(const char *p_descrption) {
alloc.set_description(p_descrption);
}
RID_PtrOwner(uint32_t p_target_chunk_byte_size = 4096) :
alloc(p_target_chunk_byte_size) {}
};
template <class T, bool THREAD_SAFE = false>
class RID_Owner {
RID_Alloc<T, THREAD_SAFE> alloc;
public:
_FORCE_INLINE_ RID make_rid(const T &p_ptr) {
return alloc.make_rid(p_ptr);
}
_FORCE_INLINE_ RID allocate_rid() {
return alloc.allocate_rid();
}
_FORCE_INLINE_ void initialize_rid(RID p_rid, const T &p_ptr) {
alloc.initialize_rid(p_rid, p_ptr);
}
_FORCE_INLINE_ T *getornull(const RID &p_rid) {
return alloc.getornull(p_rid);
}
_FORCE_INLINE_ bool owns(const RID &p_rid) {
return alloc.owns(p_rid);
}
_FORCE_INLINE_ void free(const RID &p_rid) {
alloc.free(p_rid);
}
_FORCE_INLINE_ uint32_t get_rid_count() const {
return alloc.get_rid_count();
}
_FORCE_INLINE_ RID get_rid_by_index(uint32_t p_index) {
return alloc.get_rid_by_index(p_index);
}
_FORCE_INLINE_ T *get_ptr_by_index(uint32_t p_index) {
return alloc.get_ptr_by_index(p_index);
}
_FORCE_INLINE_ void get_owned_list(List<RID> *p_owned) {
return alloc.get_owned_list(p_owned);
}
void set_description(const char *p_descrption) {
alloc.set_description(p_descrption);
}
RID_Owner(uint32_t p_target_chunk_byte_size = 4096) :
alloc(p_target_chunk_byte_size) {}
};
#endif // RID_OWNER_H