godot/thirdparty/bullet/Bullet3Dynamics/b3CpuRigidBodyPipeline.cpp
2019-01-07 12:30:35 +01:00

448 lines
14 KiB
C++

#include "b3CpuRigidBodyPipeline.h"
#include "Bullet3Dynamics/shared/b3IntegrateTransforms.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h"
#include "Bullet3Collision/BroadPhaseCollision/b3DynamicBvhBroadphase.h"
#include "Bullet3Collision/NarrowPhaseCollision/b3Config.h"
#include "Bullet3Collision/NarrowPhaseCollision/b3CpuNarrowPhase.h"
#include "Bullet3Collision/BroadPhaseCollision/shared/b3Aabb.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Collidable.h"
#include "Bullet3Common/b3Vector3.h"
#include "Bullet3Dynamics/shared/b3ContactConstraint4.h"
#include "Bullet3Dynamics/shared/b3Inertia.h"
struct b3CpuRigidBodyPipelineInternalData
{
b3AlignedObjectArray<b3RigidBodyData> m_rigidBodies;
b3AlignedObjectArray<b3Inertia> m_inertias;
b3AlignedObjectArray<b3Aabb> m_aabbWorldSpace;
b3DynamicBvhBroadphase* m_bp;
b3CpuNarrowPhase* m_np;
b3Config m_config;
};
b3CpuRigidBodyPipeline::b3CpuRigidBodyPipeline(class b3CpuNarrowPhase* narrowphase, struct b3DynamicBvhBroadphase* broadphaseDbvt, const b3Config& config)
{
m_data = new b3CpuRigidBodyPipelineInternalData;
m_data->m_np = narrowphase;
m_data->m_bp = broadphaseDbvt;
m_data->m_config = config;
}
b3CpuRigidBodyPipeline::~b3CpuRigidBodyPipeline()
{
delete m_data;
}
void b3CpuRigidBodyPipeline::updateAabbWorldSpace()
{
for (int i = 0; i < this->getNumBodies(); i++)
{
b3RigidBodyData* body = &m_data->m_rigidBodies[i];
b3Float4 position = body->m_pos;
b3Quat orientation = body->m_quat;
int collidableIndex = body->m_collidableIdx;
b3Collidable& collidable = m_data->m_np->getCollidableCpu(collidableIndex);
int shapeIndex = collidable.m_shapeIndex;
if (shapeIndex >= 0)
{
b3Aabb localAabb = m_data->m_np->getLocalSpaceAabb(shapeIndex);
b3Aabb& worldAabb = m_data->m_aabbWorldSpace[i];
float margin = 0.f;
b3TransformAabb2(localAabb.m_minVec, localAabb.m_maxVec, margin, position, orientation, &worldAabb.m_minVec, &worldAabb.m_maxVec);
m_data->m_bp->setAabb(i, worldAabb.m_minVec, worldAabb.m_maxVec, 0);
}
}
}
void b3CpuRigidBodyPipeline::computeOverlappingPairs()
{
int numPairs = m_data->m_bp->getOverlappingPairCache()->getNumOverlappingPairs();
m_data->m_bp->calculateOverlappingPairs();
numPairs = m_data->m_bp->getOverlappingPairCache()->getNumOverlappingPairs();
printf("numPairs=%d\n", numPairs);
}
void b3CpuRigidBodyPipeline::computeContactPoints()
{
b3AlignedObjectArray<b3Int4>& pairs = m_data->m_bp->getOverlappingPairCache()->getOverlappingPairArray();
m_data->m_np->computeContacts(pairs, m_data->m_aabbWorldSpace, m_data->m_rigidBodies);
}
void b3CpuRigidBodyPipeline::stepSimulation(float deltaTime)
{
//update world space aabb's
updateAabbWorldSpace();
//compute overlapping pairs
computeOverlappingPairs();
//compute contacts
computeContactPoints();
//solve contacts
//update transforms
integrate(deltaTime);
}
static inline float b3CalcRelVel(const b3Vector3& l0, const b3Vector3& l1, const b3Vector3& a0, const b3Vector3& a1,
const b3Vector3& linVel0, const b3Vector3& angVel0, const b3Vector3& linVel1, const b3Vector3& angVel1)
{
return b3Dot(l0, linVel0) + b3Dot(a0, angVel0) + b3Dot(l1, linVel1) + b3Dot(a1, angVel1);
}
static inline void b3SetLinearAndAngular(const b3Vector3& n, const b3Vector3& r0, const b3Vector3& r1,
b3Vector3& linear, b3Vector3& angular0, b3Vector3& angular1)
{
linear = -n;
angular0 = -b3Cross(r0, n);
angular1 = b3Cross(r1, n);
}
static inline void b3SolveContact(b3ContactConstraint4& cs,
const b3Vector3& posA, b3Vector3& linVelA, b3Vector3& angVelA, float invMassA, const b3Matrix3x3& invInertiaA,
const b3Vector3& posB, b3Vector3& linVelB, b3Vector3& angVelB, float invMassB, const b3Matrix3x3& invInertiaB,
float maxRambdaDt[4], float minRambdaDt[4])
{
b3Vector3 dLinVelA;
dLinVelA.setZero();
b3Vector3 dAngVelA;
dAngVelA.setZero();
b3Vector3 dLinVelB;
dLinVelB.setZero();
b3Vector3 dAngVelB;
dAngVelB.setZero();
for (int ic = 0; ic < 4; ic++)
{
// dont necessary because this makes change to 0
if (cs.m_jacCoeffInv[ic] == 0.f) continue;
{
b3Vector3 angular0, angular1, linear;
b3Vector3 r0 = cs.m_worldPos[ic] - (b3Vector3&)posA;
b3Vector3 r1 = cs.m_worldPos[ic] - (b3Vector3&)posB;
b3SetLinearAndAngular((const b3Vector3&)-cs.m_linear, (const b3Vector3&)r0, (const b3Vector3&)r1, linear, angular0, angular1);
float rambdaDt = b3CalcRelVel((const b3Vector3&)cs.m_linear, (const b3Vector3&)-cs.m_linear, angular0, angular1,
linVelA, angVelA, linVelB, angVelB) +
cs.m_b[ic];
rambdaDt *= cs.m_jacCoeffInv[ic];
{
float prevSum = cs.m_appliedRambdaDt[ic];
float updated = prevSum;
updated += rambdaDt;
updated = b3Max(updated, minRambdaDt[ic]);
updated = b3Min(updated, maxRambdaDt[ic]);
rambdaDt = updated - prevSum;
cs.m_appliedRambdaDt[ic] = updated;
}
b3Vector3 linImp0 = invMassA * linear * rambdaDt;
b3Vector3 linImp1 = invMassB * (-linear) * rambdaDt;
b3Vector3 angImp0 = (invInertiaA * angular0) * rambdaDt;
b3Vector3 angImp1 = (invInertiaB * angular1) * rambdaDt;
#ifdef _WIN32
b3Assert(_finite(linImp0.getX()));
b3Assert(_finite(linImp1.getX()));
#endif
{
linVelA += linImp0;
angVelA += angImp0;
linVelB += linImp1;
angVelB += angImp1;
}
}
}
}
static inline void b3SolveFriction(b3ContactConstraint4& cs,
const b3Vector3& posA, b3Vector3& linVelA, b3Vector3& angVelA, float invMassA, const b3Matrix3x3& invInertiaA,
const b3Vector3& posB, b3Vector3& linVelB, b3Vector3& angVelB, float invMassB, const b3Matrix3x3& invInertiaB,
float maxRambdaDt[4], float minRambdaDt[4])
{
if (cs.m_fJacCoeffInv[0] == 0 && cs.m_fJacCoeffInv[0] == 0) return;
const b3Vector3& center = (const b3Vector3&)cs.m_center;
b3Vector3 n = -(const b3Vector3&)cs.m_linear;
b3Vector3 tangent[2];
b3PlaneSpace1(n, tangent[0], tangent[1]);
b3Vector3 angular0, angular1, linear;
b3Vector3 r0 = center - posA;
b3Vector3 r1 = center - posB;
for (int i = 0; i < 2; i++)
{
b3SetLinearAndAngular(tangent[i], r0, r1, linear, angular0, angular1);
float rambdaDt = b3CalcRelVel(linear, -linear, angular0, angular1,
linVelA, angVelA, linVelB, angVelB);
rambdaDt *= cs.m_fJacCoeffInv[i];
{
float prevSum = cs.m_fAppliedRambdaDt[i];
float updated = prevSum;
updated += rambdaDt;
updated = b3Max(updated, minRambdaDt[i]);
updated = b3Min(updated, maxRambdaDt[i]);
rambdaDt = updated - prevSum;
cs.m_fAppliedRambdaDt[i] = updated;
}
b3Vector3 linImp0 = invMassA * linear * rambdaDt;
b3Vector3 linImp1 = invMassB * (-linear) * rambdaDt;
b3Vector3 angImp0 = (invInertiaA * angular0) * rambdaDt;
b3Vector3 angImp1 = (invInertiaB * angular1) * rambdaDt;
#ifdef _WIN32
b3Assert(_finite(linImp0.getX()));
b3Assert(_finite(linImp1.getX()));
#endif
linVelA += linImp0;
angVelA += angImp0;
linVelB += linImp1;
angVelB += angImp1;
}
{ // angular damping for point constraint
b3Vector3 ab = (posB - posA).normalized();
b3Vector3 ac = (center - posA).normalized();
if (b3Dot(ab, ac) > 0.95f || (invMassA == 0.f || invMassB == 0.f))
{
float angNA = b3Dot(n, angVelA);
float angNB = b3Dot(n, angVelB);
angVelA -= (angNA * 0.1f) * n;
angVelB -= (angNB * 0.1f) * n;
}
}
}
struct b3SolveTask // : public ThreadPool::Task
{
b3SolveTask(b3AlignedObjectArray<b3RigidBodyData>& bodies,
b3AlignedObjectArray<b3Inertia>& shapes,
b3AlignedObjectArray<b3ContactConstraint4>& constraints,
int start, int nConstraints,
int maxNumBatches,
b3AlignedObjectArray<int>* wgUsedBodies, int curWgidx)
: m_bodies(bodies), m_shapes(shapes), m_constraints(constraints), m_wgUsedBodies(wgUsedBodies), m_curWgidx(curWgidx), m_start(start), m_nConstraints(nConstraints), m_solveFriction(true), m_maxNumBatches(maxNumBatches)
{
}
unsigned short int getType() { return 0; }
void run(int tIdx)
{
b3AlignedObjectArray<int> usedBodies;
//printf("run..............\n");
for (int bb = 0; bb < m_maxNumBatches; bb++)
{
usedBodies.resize(0);
for (int ic = m_nConstraints - 1; ic >= 0; ic--)
//for(int ic=0; ic<m_nConstraints; ic++)
{
int i = m_start + ic;
if (m_constraints[i].m_batchIdx != bb)
continue;
float frictionCoeff = b3GetFrictionCoeff(&m_constraints[i]);
int aIdx = (int)m_constraints[i].m_bodyA;
int bIdx = (int)m_constraints[i].m_bodyB;
//int localBatch = m_constraints[i].m_batchIdx;
b3RigidBodyData& bodyA = m_bodies[aIdx];
b3RigidBodyData& bodyB = m_bodies[bIdx];
#if 0
if ((bodyA.m_invMass) && (bodyB.m_invMass))
{
// printf("aIdx=%d, bIdx=%d\n", aIdx,bIdx);
}
if (bIdx==10)
{
//printf("ic(b)=%d, localBatch=%d\n",ic,localBatch);
}
#endif
if (aIdx == 10)
{
//printf("ic(a)=%d, localBatch=%d\n",ic,localBatch);
}
if (usedBodies.size() < (aIdx + 1))
{
usedBodies.resize(aIdx + 1, 0);
}
if (usedBodies.size() < (bIdx + 1))
{
usedBodies.resize(bIdx + 1, 0);
}
if (bodyA.m_invMass)
{
b3Assert(usedBodies[aIdx] == 0);
usedBodies[aIdx]++;
}
if (bodyB.m_invMass)
{
b3Assert(usedBodies[bIdx] == 0);
usedBodies[bIdx]++;
}
if (!m_solveFriction)
{
float maxRambdaDt[4] = {FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX};
float minRambdaDt[4] = {0.f, 0.f, 0.f, 0.f};
b3SolveContact(m_constraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass, (const b3Matrix3x3&)m_shapes[aIdx].m_invInertiaWorld,
(b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass, (const b3Matrix3x3&)m_shapes[bIdx].m_invInertiaWorld,
maxRambdaDt, minRambdaDt);
}
else
{
float maxRambdaDt[4] = {FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX};
float minRambdaDt[4] = {0.f, 0.f, 0.f, 0.f};
float sum = 0;
for (int j = 0; j < 4; j++)
{
sum += m_constraints[i].m_appliedRambdaDt[j];
}
frictionCoeff = 0.7f;
for (int j = 0; j < 4; j++)
{
maxRambdaDt[j] = frictionCoeff * sum;
minRambdaDt[j] = -maxRambdaDt[j];
}
b3SolveFriction(m_constraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass, (const b3Matrix3x3&)m_shapes[aIdx].m_invInertiaWorld,
(b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass, (const b3Matrix3x3&)m_shapes[bIdx].m_invInertiaWorld,
maxRambdaDt, minRambdaDt);
}
}
if (m_wgUsedBodies)
{
if (m_wgUsedBodies[m_curWgidx].size() < usedBodies.size())
{
m_wgUsedBodies[m_curWgidx].resize(usedBodies.size());
}
for (int i = 0; i < usedBodies.size(); i++)
{
if (usedBodies[i])
{
//printf("cell %d uses body %d\n", m_curWgidx,i);
m_wgUsedBodies[m_curWgidx][i] = 1;
}
}
}
}
}
b3AlignedObjectArray<b3RigidBodyData>& m_bodies;
b3AlignedObjectArray<b3Inertia>& m_shapes;
b3AlignedObjectArray<b3ContactConstraint4>& m_constraints;
b3AlignedObjectArray<int>* m_wgUsedBodies;
int m_curWgidx;
int m_start;
int m_nConstraints;
bool m_solveFriction;
int m_maxNumBatches;
};
void b3CpuRigidBodyPipeline::solveContactConstraints()
{
int m_nIterations = 4;
b3AlignedObjectArray<b3ContactConstraint4> contactConstraints;
// const b3AlignedObjectArray<b3Contact4Data>& contacts = m_data->m_np->getContacts();
int n = contactConstraints.size();
//convert contacts...
int maxNumBatches = 250;
for (int iter = 0; iter < m_nIterations; iter++)
{
b3SolveTask task(m_data->m_rigidBodies, m_data->m_inertias, contactConstraints, 0, n, maxNumBatches, 0, 0);
task.m_solveFriction = false;
task.run(0);
}
for (int iter = 0; iter < m_nIterations; iter++)
{
b3SolveTask task(m_data->m_rigidBodies, m_data->m_inertias, contactConstraints, 0, n, maxNumBatches, 0, 0);
task.m_solveFriction = true;
task.run(0);
}
}
void b3CpuRigidBodyPipeline::integrate(float deltaTime)
{
float angDamping = 0.f;
b3Vector3 gravityAcceleration = b3MakeVector3(0, -9, 0);
//integrate transforms (external forces/gravity should be moved into constraint solver)
for (int i = 0; i < m_data->m_rigidBodies.size(); i++)
{
b3IntegrateTransform(&m_data->m_rigidBodies[i], deltaTime, angDamping, gravityAcceleration);
}
}
int b3CpuRigidBodyPipeline::registerPhysicsInstance(float mass, const float* position, const float* orientation, int collidableIndex, int userData)
{
b3RigidBodyData body;
int bodyIndex = m_data->m_rigidBodies.size();
body.m_invMass = mass ? 1.f / mass : 0.f;
body.m_angVel.setValue(0, 0, 0);
body.m_collidableIdx = collidableIndex;
body.m_frictionCoeff = 0.3f;
body.m_linVel.setValue(0, 0, 0);
body.m_pos.setValue(position[0], position[1], position[2]);
body.m_quat.setValue(orientation[0], orientation[1], orientation[2], orientation[3]);
body.m_restituitionCoeff = 0.f;
m_data->m_rigidBodies.push_back(body);
if (collidableIndex >= 0)
{
b3Aabb& worldAabb = m_data->m_aabbWorldSpace.expand();
b3Aabb localAabb = m_data->m_np->getLocalSpaceAabb(collidableIndex);
b3Vector3 localAabbMin = b3MakeVector3(localAabb.m_min[0], localAabb.m_min[1], localAabb.m_min[2]);
b3Vector3 localAabbMax = b3MakeVector3(localAabb.m_max[0], localAabb.m_max[1], localAabb.m_max[2]);
b3Scalar margin = 0.01f;
b3Transform t;
t.setIdentity();
t.setOrigin(b3MakeVector3(position[0], position[1], position[2]));
t.setRotation(b3Quaternion(orientation[0], orientation[1], orientation[2], orientation[3]));
b3TransformAabb(localAabbMin, localAabbMax, margin, t, worldAabb.m_minVec, worldAabb.m_maxVec);
m_data->m_bp->createProxy(worldAabb.m_minVec, worldAabb.m_maxVec, bodyIndex, 0, 1, 1);
// b3Vector3 aabbMin,aabbMax;
// m_data->m_bp->getAabb(bodyIndex,aabbMin,aabbMax);
}
else
{
b3Error("registerPhysicsInstance using invalid collidableIndex\n");
}
return bodyIndex;
}
const struct b3RigidBodyData* b3CpuRigidBodyPipeline::getBodyBuffer() const
{
return m_data->m_rigidBodies.size() ? &m_data->m_rigidBodies[0] : 0;
}
int b3CpuRigidBodyPipeline::getNumBodies() const
{
return m_data->m_rigidBodies.size();
}