godot/drivers/gles2/shaders/scene.glsl
2018-08-23 17:08:16 +02:00

888 lines
20 KiB
GLSL

[vertex]
#ifdef USE_GLES_OVER_GL
#define mediump
#define highp
#else
precision mediump float;
precision mediump int;
#endif
#include "stdlib.glsl"
//
// attributes
//
attribute highp vec4 vertex_attrib; // attrib:0
attribute vec3 normal_attrib; // attrib:1
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
attribute vec4 tangent_attrib; // attrib:2
#endif
#ifdef ENABLE_COLOR_INTERP
attribute vec4 color_attrib; // attrib:3
#endif
#ifdef ENABLE_UV_INTERP
attribute vec2 uv_attrib; // attrib:4
#endif
#ifdef ENABLE_UV2_INTERP
attribute vec2 uv2_attrib; // attrib:5
#endif
#ifdef USE_SKELETON
#ifdef USE_SKELETON_SOFTWARE
attribute highp vec4 bone_transform_row_0; // attrib:9
attribute highp vec4 bone_transform_row_1; // attrib:10
attribute highp vec4 bone_transform_row_2; // attrib:11
#else
attribute vec4 bone_ids; // attrib:6
attribute highp vec4 bone_weights; // attrib:7
uniform highp sampler2D bone_transforms; // texunit:-1
uniform ivec2 skeleton_texture_size;
#endif
#endif
#ifdef USE_INSTANCING
attribute highp vec4 instance_xform_row_0; // attrib:12
attribute highp vec4 instance_xform_row_1; // attrib:13
attribute highp vec4 instance_xform_row_2; // attrib:14
attribute highp vec4 instance_color; // attrib:15
attribute highp vec4 instance_custom_data; // attrib:8
#endif
//
// uniforms
//
uniform mat4 camera_matrix;
uniform mat4 camera_inverse_matrix;
uniform mat4 projection_matrix;
uniform mat4 projection_inverse_matrix;
uniform mat4 world_transform;
uniform highp float time;
uniform float normal_mult;
#ifdef RENDER_DEPTH
uniform float light_bias;
uniform float light_normal_bias;
#endif
//
// varyings
//
varying highp vec3 vertex_interp;
varying vec3 normal_interp;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
varying vec3 tangent_interp;
varying vec3 binormal_interp;
#endif
#ifdef ENABLE_COLOR_INTERP
varying vec4 color_interp;
#endif
#ifdef ENABLE_UV_INTERP
varying vec2 uv_interp;
#endif
#ifdef ENABLE_UV2_INTERP
varying vec2 uv2_interp;
#endif
VERTEX_SHADER_GLOBALS
void main() {
highp vec4 vertex = vertex_attrib;
mat4 world_matrix = world_transform;
#ifdef USE_INSTANCING
{
highp mat4 m = mat4(instance_xform_row_0,
instance_xform_row_1,
instance_xform_row_2,
vec4(0.0, 0.0, 0.0, 1.0));
world_matrix = world_matrix * transpose(m);
}
#endif
vec3 normal = normal_attrib * normal_mult;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
vec3 tangent = tangent_attrib.xyz;
tangent *= normal_mult;
float binormalf = tangent_attrib.a;
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
#ifdef ENABLE_COLOR_INTERP
color_interp = color_attrib;
#ifdef USE_INSTANCING
color_interp *= instance_color;
#endif
#endif
#ifdef ENABLE_UV_INTERP
uv_interp = uv_attrib;
#endif
#ifdef ENABLE_UV2_INTERP
uv2_interp = uv2_attrib;
#endif
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = world_matrix * vertex;
normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent = normalize((world_matrix * vec4(tangent, 0.0)),xyz);
binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
#ifdef USE_SKELETON
highp mat4 bone_transform = mat4(1.0);
#ifdef USE_SKELETON_SOFTWARE
// passing the transform as attributes
bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0);
bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0);
bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0);
bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0);
#else
// look up transform from the "pose texture"
{
for (int i = 0; i < 4; i++) {
ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0);
highp mat4 b = mat4(texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
vec4(0.0, 0.0, 0.0, 1.0));
bone_transform += transpose(b) * bone_weights[i];
}
}
#endif
world_matrix = bone_transform * world_matrix;
#endif
#ifdef USE_INSTANCING
vec4 instance_custom = instance_custom_data;
#else
vec4 instance_custom = vec4(0.0);
#endif
mat4 modelview = camera_matrix * world_matrix;
#define world_transform world_matrix
{
VERTEX_SHADER_CODE
}
vec4 outvec = vertex;
// use local coordinates
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
vertex = modelview * vertex;
normal = normalize((modelview * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
#endif
#endif
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = camera_matrix * vertex;
normal = normalize((camera_matrix * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent = normalize((camera_matrix * vec4(tangent, 0.0)).xyz);
binormal = normalize((camera_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
vertex_interp = vertex.xyz;
normal_interp = normal;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
#ifdef RENDER_DEPTH
float z_ofs = light_bias;
z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias;
vertex_interp.z -= z_ofs;
#endif
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
}
[fragment]
#extension GL_ARB_shader_texture_lod : enable
#ifndef GL_ARB_shader_texture_lod
#define texture2DLod(img, coord, lod) texture2D(img, coord)
#define textureCubeLod(img, coord, lod) textureCube(img, coord)
#endif
#ifdef USE_GLES_OVER_GL
#define mediump
#define highp
#else
precision mediump float;
precision mediump int;
#endif
#include "stdlib.glsl"
#define M_PI 3.14159265359
//
// uniforms
//
uniform mat4 camera_matrix;
uniform mat4 camera_inverse_matrix;
uniform mat4 projection_matrix;
uniform mat4 projection_inverse_matrix;
uniform mat4 world_transform;
uniform highp float time;
#ifdef SCREEN_UV_USED
uniform vec2 screen_pixel_size;
#endif
uniform highp sampler2D depth_buffer; //texunit:-5
#if defined(SCREEN_TEXTURE_USED)
uniform highp sampler2D screen_texture; //texunit:-6
#endif
#ifdef USE_RADIANCE_MAP
#define RADIANCE_MAX_LOD 6.0
uniform samplerCube radiance_map; // texunit:-2
uniform mat4 radiance_inverse_xform;
#endif
uniform float bg_energy;
uniform float ambient_sky_contribution;
uniform vec4 ambient_color;
uniform float ambient_energy;
#ifdef LIGHT_PASS
#define LIGHT_TYPE_DIRECTIONAL 0
#define LIGHT_TYPE_OMNI 1
#define LIGHT_TYPE_SPOT 2
// general for all lights
uniform int light_type;
uniform float light_energy;
uniform vec4 light_color;
uniform float light_specular;
// directional
uniform vec3 light_direction;
// omni
uniform vec3 light_position;
uniform float light_range;
uniform vec4 light_attenuation;
// spot
uniform float light_spot_attenuation;
uniform float light_spot_range;
uniform float light_spot_angle;
// shadows
uniform highp sampler2D light_shadow_atlas; //texunit:-4
uniform float light_has_shadow;
uniform mat4 light_shadow_matrix;
uniform vec4 light_clamp;
// directional shadow
uniform highp sampler2D light_directional_shadow; // texunit:-4
uniform vec4 light_split_offsets;
uniform mat4 light_shadow_matrix1;
uniform mat4 light_shadow_matrix2;
uniform mat4 light_shadow_matrix3;
uniform mat4 light_shadow_matrix4;
#endif
//
// varyings
//
varying highp vec3 vertex_interp;
varying vec3 normal_interp;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
varying vec3 tangent_interp;
varying vec3 binormal_interp;
#endif
#ifdef ENABLE_COLOR_INTERP
varying vec4 color_interp;
#endif
#ifdef ENABLE_UV_INTERP
varying vec2 uv_interp;
#endif
#ifdef ENABLE_UV2_INTERP
varying vec2 uv2_interp;
#endif
varying vec3 view_interp;
vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) {
float dielectric = (0.034 * 2.0) * specular;
// energy conservation
return mix(vec3(dielectric), albedo, metallic); // TODO: reference?
}
FRAGMENT_SHADER_GLOBALS
#ifdef LIGHT_PASS
void light_compute(vec3 N,
vec3 L,
vec3 V,
vec3 B,
vec3 T,
vec3 light_color,
vec3 attenuation,
vec3 diffuse_color,
vec3 transmission,
float specular_blob_intensity,
float roughness,
float metallic,
float rim,
float rim_tint,
float clearcoat,
float clearcoat_gloss,
float anisotropy,
inout vec3 diffuse_light,
inout vec3 specular_light) {
float NdotL = dot(N, L);
float cNdotL = max(NdotL, 0.0);
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
{
// calculate diffuse reflection
// TODO hardcode Oren Nayar for now
float diffuse_brdf_NL;
diffuse_brdf_NL = max(0.0,(NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
// diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
}
{
// calculate specular reflection
vec3 R = normalize(-reflect(L,N));
float cRdotV = max(dot(R, V), 0.0);
float blob_intensity = pow(cRdotV, (1.0 - roughness) * 256.0);
specular_light += light_color * attenuation * blob_intensity * specular_blob_intensity;
}
}
// shadows
float sample_shadow(highp sampler2D shadow,
vec2 shadow_pixel_size,
vec2 pos,
float depth,
vec4 clamp_rect)
{
// vec4 depth_value = texture2D(shadow, pos);
// return depth_value.z;
return texture2DProj(shadow, vec4(pos, depth, 1.0)).r;
// return (depth_value.x + depth_value.y + depth_value.z + depth_value.w) / 4.0;
}
#endif
void main()
{
highp vec3 vertex = vertex_interp;
vec3 albedo = vec3(1.0);
vec3 transmission = vec3(0.0);
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
float clearcoat_gloss = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
float alpha = 1.0;
float side = 1.0;
#if defined(ENABLE_AO)
float ao = 1.0;
float ao_light_affect = 0.0;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
vec3 binormal = normalize(binormal_interp) * side;
vec3 tangent = normalize(tangent_interp) * side;
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
vec3 normal = normalize(normal_interp) * side;
#if defined(ENABLE_NORMALMAP)
vec3 normalmap = vec3(0.5);
#endif
float normaldepth = 1.0;
#ifdef ALPHA_SCISSOR_USED
float alpha_scissor = 0.5;
#endif
#ifdef SCREEN_UV_USED
vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
#endif
{
FRAGMENT_SHADER_CODE
}
#if defined(ENABLE_NORMALMAP)
normalmap.xy = normalmap.xy * 2.0 - 1.0;
normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy)));
// normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side;
normal = normalmap;
#endif
normal = normalize(normal);
vec3 N = normal;
vec3 specular_light = vec3(0.0, 0.0, 0.0);
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
vec3 env_reflection_light = vec3(0.0, 0.0, 0.0);
vec3 eye_position = -normalize(vertex_interp);
#ifdef ALPHA_SCISSOR_USED
if (alpha < alpha_scissor) {
discard;
}
#endif
//
// Lighting
//
#ifdef LIGHT_PASS
if (light_type == LIGHT_TYPE_OMNI) {
vec3 light_vec = light_position - vertex;
float light_length = length(light_vec);
float normalized_distance = light_length / light_range;
float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation.w);
vec3 attenuation = vec3(omni_attenuation);
if (light_has_shadow > 0.5) {
highp vec3 splane = (light_shadow_matrix * vec4(vertex, 1.0)).xyz;
float shadow_len = length(splane);
splane = normalize(splane);
vec4 clamp_rect = light_clamp;
if (splane.z >= 0.0) {
splane.z += 1.0;
clamp_rect.y += clamp_rect.w;
} else {
splane.z = 1.0 - splane.z;
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.z = shadow_len / light_range;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), splane.xy, splane.z, clamp_rect);
if (shadow > splane.z) {
} else {
attenuation = vec3(0.0);
}
}
light_compute(normal,
normalize(light_vec),
eye_position,
binormal,
tangent,
light_color.xyz * light_energy,
attenuation,
albedo,
transmission,
specular * light_specular,
roughness,
metallic,
rim,
rim_tint,
clearcoat,
clearcoat_gloss,
anisotropy,
diffuse_light,
specular_light);
} else if (light_type == LIGHT_TYPE_DIRECTIONAL) {
vec3 light_vec = -light_direction;
vec3 attenuation = vec3(1.0, 1.0, 1.0);
float depth_z = -vertex.z;
if (light_has_shadow > 0.5) {
#ifdef LIGHT_USE_PSSM4
if (depth_z < light_split_offsets.w) {
#elif defined(LIGHT_USE_PSSM2)
if (depth_z < light_split_offsets.y) {
#else
if (depth_z < light_split_offsets.x) {
#endif
vec3 pssm_coord;
float pssm_fade = 0.0;
#ifdef LIGHT_USE_PSSM_BLEND
float pssm_blend;
vec3 pssm_coord2;
bool use_blend = true;
#endif
#ifdef LIGHT_USE_PSSM4
if (depth_z < light_split_offsets.y) {
if (depth_z < light_split_offsets.x) {
highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
#ifdef LIGHT_USE_PSSM_BLEND
splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
pssm_coord2 = splane.xyz / splane.w;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
#ifdef LIGHT_USE_PSSM_BLEND
splane = (light_shadow_matrix3 * vec4(vertex, 1.0));
pssm_coord2 = splane.xyz / splane.w;
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#endif
}
} else {
if (depth_z < light_split_offsets.z) {
highp vec4 splane = (light_shadow_matrix3 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane = (light_shadow_matrix4 * vec4(vertex, 1.0));
pssm_coord2 = splane.xyz / splane.w;
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
#endif
} else {
highp vec4 splane = (light_shadow_matrix4 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
}
#endif // LIGHT_USE_PSSM4
#ifdef LIGHT_USE_PSSM2
if (depth_z < light_split_offsets.x) {
highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
#ifdef LIGHT_USE_PSSM_BLEND
splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
pssm_coord2 = splane.xyz / splane.w;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#ifdef LIGHT_USE_PSSM_BLEND
use_blend = false;
#endif
}
#endif // LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
{
highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
pssm_coord = splane.xyz / splane.w;
}
#endif
float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord.xy, pssm_coord.z, light_clamp);
#ifdef LIGHT_USE_PSSM_BLEND
if (use_blend) {
shadow = mix(shadow, sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend);
}
#endif
attenuation *= shadow;
}
}
light_compute(normal,
normalize(light_vec),
eye_position,
binormal,
tangent,
light_color.xyz * light_energy,
attenuation,
albedo,
transmission,
specular * light_specular,
roughness,
metallic,
rim,
rim_tint,
clearcoat,
clearcoat_gloss,
anisotropy,
diffuse_light,
specular_light);
} else if (light_type == LIGHT_TYPE_SPOT) {
vec3 light_att = vec3(1.0);
if (light_has_shadow > 0.5) {
highp vec4 splane = (light_shadow_matrix * vec4(vertex, 1.0));
splane.xyz /= splane.w;
float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), splane.xy, splane.z, light_clamp);
if (shadow > splane.z) {
} else {
light_att = vec3(0.0);
}
}
vec3 light_rel_vec = light_position - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length / light_range;
float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation.w);
vec3 spot_dir = light_direction;
float spot_cutoff = light_spot_angle;
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
light_att *= vec3(spot_attenuation);
light_compute(normal,
normalize(light_rel_vec),
eye_position,
binormal,
tangent,
light_color.xyz * light_energy,
light_att,
albedo,
transmission,
specular * light_specular,
roughness,
metallic,
rim,
rim_tint,
clearcoat,
clearcoat_gloss,
anisotropy,
diffuse_light,
specular_light);
}
gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha);
#else
#ifdef RENDER_DEPTH
#else
#ifdef USE_RADIANCE_MAP
vec3 ref_vec = reflect(-eye_position, N);
ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
ref_vec.z *= -1.0;
env_reflection_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy;
{
vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).xyz * bg_energy;
ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
}
ambient_light *= ambient_energy;
specular_light += env_reflection_light;
ambient_light *= albedo;
#if defined(ENABLE_AO)
ambient_light *= ao;
ao_light_affect = mix(1.0, ao, ao_light_affect);
specular_light *= ao_light_affect;
diffuse_light *= ao_light_affect;
#endif
diffuse_light *= 1.0 - metallic;
ambient_light *= 1.0 - metallic;
// environment BRDF approximation
// TODO shadeless
{
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4( 1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float ndotv = clamp(dot(normal,eye_position),0.0,1.0);
float a004 = min( r.x * r.x, exp2( -9.28 * ndotv ) ) * r.x + r.y;
vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;
vec3 specular_color = metallic_to_specular_color(metallic, specular, albedo);
specular_light *= AB.x * specular_color + AB.y;
}
gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha);
// gl_FragColor = vec4(normal, 1.0);
#else
gl_FragColor = vec4(albedo, alpha);
#endif
#endif // RENDER_DEPTH
#endif // lighting
}