godot/servers/visual/visual_server_raster.cpp
Pedro J. Estébanez b4119f4fe9 Implement time scaling for the rasterizer
which affects 3D particles and the TIME uniform
2017-03-20 19:58:22 +01:00

7167 lines
209 KiB
C++

/*************************************************************************/
/* visual_server_raster.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "visual_server_raster.h"
#include "default_mouse_cursor.xpm"
#include "globals.h"
#include "io/marshalls.h"
#include "os/os.h"
#include "sort.h"
// careful, these may run in different threads than the visual server
BalloonAllocator<> *VisualServerRaster::OctreeAllocator::allocator = NULL;
#define VS_CHANGED \
changes++;
// print_line(__FUNCTION__);
RID VisualServerRaster::texture_create() {
return rasterizer->texture_create();
}
void VisualServerRaster::texture_allocate(RID p_texture, int p_width, int p_height, Image::Format p_format, uint32_t p_flags) {
rasterizer->texture_allocate(p_texture, p_width, p_height, p_format, p_flags);
}
void VisualServerRaster::texture_set_flags(RID p_texture, uint32_t p_flags) {
VS_CHANGED;
rasterizer->texture_set_flags(p_texture, p_flags);
}
void VisualServerRaster::texture_set_data(RID p_texture, const Image &p_image, CubeMapSide p_cube_side) {
VS_CHANGED;
rasterizer->texture_set_data(p_texture, p_image, p_cube_side);
}
Image VisualServerRaster::texture_get_data(RID p_texture, CubeMapSide p_cube_side) const {
return rasterizer->texture_get_data(p_texture, p_cube_side);
}
uint32_t VisualServerRaster::texture_get_flags(RID p_texture) const {
return rasterizer->texture_get_flags(p_texture);
}
Image::Format VisualServerRaster::texture_get_format(RID p_texture) const {
return rasterizer->texture_get_format(p_texture);
}
uint32_t VisualServerRaster::texture_get_width(RID p_texture) const {
return rasterizer->texture_get_width(p_texture);
}
uint32_t VisualServerRaster::texture_get_height(RID p_texture) const {
return rasterizer->texture_get_height(p_texture);
}
void VisualServerRaster::texture_set_size_override(RID p_texture, int p_width, int p_height) {
rasterizer->texture_set_size_override(p_texture, p_width, p_height);
}
bool VisualServerRaster::texture_can_stream(RID p_texture) const {
return false;
}
void VisualServerRaster::texture_set_reload_hook(RID p_texture, ObjectID p_owner, const StringName &p_function) const {
rasterizer->texture_set_reload_hook(p_texture, p_owner, p_function);
}
void VisualServerRaster::texture_set_path(RID p_texture, const String &p_path) {
rasterizer->texture_set_path(p_texture, p_path);
}
String VisualServerRaster::texture_get_path(RID p_texture) const {
return rasterizer->texture_get_path(p_texture);
}
void VisualServerRaster::texture_debug_usage(List<TextureInfo> *r_info) {
rasterizer->texture_debug_usage(r_info);
}
void VisualServerRaster::texture_set_shrink_all_x2_on_set_data(bool p_enable) {
rasterizer->texture_set_shrink_all_x2_on_set_data(p_enable);
}
/* SHADER API */
RID VisualServerRaster::shader_create(ShaderMode p_mode) {
return rasterizer->shader_create(p_mode);
}
void VisualServerRaster::shader_set_mode(RID p_shader, ShaderMode p_mode) {
VS_CHANGED;
rasterizer->shader_set_mode(p_shader, p_mode);
}
VisualServer::ShaderMode VisualServerRaster::shader_get_mode(RID p_shader) const {
return rasterizer->shader_get_mode(p_shader);
}
void VisualServerRaster::shader_set_code(RID p_shader, const String &p_vertex, const String &p_fragment, const String &p_light, int p_vertex_ofs, int p_fragment_ofs, int p_light_ofs) {
VS_CHANGED;
rasterizer->shader_set_code(p_shader, p_vertex, p_fragment, p_light, p_vertex_ofs, p_fragment_ofs, p_light_ofs);
}
String VisualServerRaster::shader_get_vertex_code(RID p_shader) const {
return rasterizer->shader_get_vertex_code(p_shader);
}
String VisualServerRaster::shader_get_fragment_code(RID p_shader) const {
return rasterizer->shader_get_fragment_code(p_shader);
}
String VisualServerRaster::shader_get_light_code(RID p_shader) const {
return rasterizer->shader_get_light_code(p_shader);
}
void VisualServerRaster::shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const {
return rasterizer->shader_get_param_list(p_shader, p_param_list);
}
void VisualServerRaster::shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture) {
rasterizer->shader_set_default_texture_param(p_shader, p_name, p_texture);
}
RID VisualServerRaster::shader_get_default_texture_param(RID p_shader, const StringName &p_name) const {
return rasterizer->shader_get_default_texture_param(p_shader, p_name);
}
/* Material */
RID VisualServerRaster::material_create() {
return rasterizer->material_create();
}
void VisualServerRaster::material_set_shader(RID p_material, RID p_shader) {
VS_CHANGED;
rasterizer->material_set_shader(p_material, p_shader);
}
RID VisualServerRaster::material_get_shader(RID p_material) const {
return rasterizer->material_get_shader(p_material);
}
void VisualServerRaster::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) {
VS_CHANGED;
rasterizer->material_set_param(p_material, p_param, p_value);
}
Variant VisualServerRaster::material_get_param(RID p_material, const StringName &p_param) const {
return rasterizer->material_get_param(p_material, p_param);
}
void VisualServerRaster::material_set_flag(RID p_material, MaterialFlag p_flag, bool p_enabled) {
VS_CHANGED;
rasterizer->material_set_flag(p_material, p_flag, p_enabled);
}
void VisualServerRaster::material_set_depth_draw_mode(RID p_material, MaterialDepthDrawMode p_mode) {
VS_CHANGED;
rasterizer->material_set_depth_draw_mode(p_material, p_mode);
}
VS::MaterialDepthDrawMode VisualServerRaster::material_get_depth_draw_mode(RID p_material) const {
return rasterizer->material_get_depth_draw_mode(p_material);
}
bool VisualServerRaster::material_get_flag(RID p_material, MaterialFlag p_flag) const {
return rasterizer->material_get_flag(p_material, p_flag);
}
void VisualServerRaster::material_set_blend_mode(RID p_material, MaterialBlendMode p_mode) {
VS_CHANGED;
rasterizer->material_set_blend_mode(p_material, p_mode);
}
VS::MaterialBlendMode VisualServerRaster::material_get_blend_mode(RID p_material) const {
return rasterizer->material_get_blend_mode(p_material);
}
void VisualServerRaster::material_set_line_width(RID p_material, float p_line_width) {
VS_CHANGED;
rasterizer->material_set_line_width(p_material, p_line_width);
}
float VisualServerRaster::material_get_line_width(RID p_material) const {
return rasterizer->material_get_line_width(p_material);
}
/* FIXED MATERIAL */
RID VisualServerRaster::fixed_material_create() {
return rasterizer->fixed_material_create();
}
void VisualServerRaster::fixed_material_set_flag(RID p_material, FixedMaterialFlags p_flag, bool p_enabled) {
rasterizer->fixed_material_set_flag(p_material, p_flag, p_enabled);
}
bool VisualServerRaster::fixed_material_get_flag(RID p_material, FixedMaterialFlags p_flag) const {
return rasterizer->fixed_material_get_flag(p_material, p_flag);
}
void VisualServerRaster::fixed_material_set_param(RID p_material, FixedMaterialParam p_parameter, const Variant &p_value) {
VS_CHANGED;
rasterizer->fixed_material_set_parameter(p_material, p_parameter, p_value);
}
Variant VisualServerRaster::fixed_material_get_param(RID p_material, FixedMaterialParam p_parameter) const {
return rasterizer->fixed_material_get_parameter(p_material, p_parameter);
}
void VisualServerRaster::fixed_material_set_texture(RID p_material, FixedMaterialParam p_parameter, RID p_texture) {
VS_CHANGED;
rasterizer->fixed_material_set_texture(p_material, p_parameter, p_texture);
}
RID VisualServerRaster::fixed_material_get_texture(RID p_material, FixedMaterialParam p_parameter) const {
return rasterizer->fixed_material_get_texture(p_material, p_parameter);
}
void VisualServerRaster::fixed_material_set_texcoord_mode(RID p_material, FixedMaterialParam p_parameter, FixedMaterialTexCoordMode p_mode) {
VS_CHANGED;
rasterizer->fixed_material_set_texcoord_mode(p_material, p_parameter, p_mode);
}
VS::FixedMaterialTexCoordMode VisualServerRaster::fixed_material_get_texcoord_mode(RID p_material, FixedMaterialParam p_parameter) const {
return rasterizer->fixed_material_get_texcoord_mode(p_material, p_parameter);
}
void VisualServerRaster::fixed_material_set_point_size(RID p_material, float p_size) {
VS_CHANGED
rasterizer->fixed_material_set_point_size(p_material, p_size);
}
float VisualServerRaster::fixed_material_get_point_size(RID p_material) const {
return rasterizer->fixed_material_get_point_size(p_material);
}
void VisualServerRaster::fixed_material_set_uv_transform(RID p_material, const Transform &p_transform) {
VS_CHANGED;
rasterizer->fixed_material_set_uv_transform(p_material, p_transform);
}
Transform VisualServerRaster::fixed_material_get_uv_transform(RID p_material) const {
return rasterizer->fixed_material_get_uv_transform(p_material);
}
void VisualServerRaster::fixed_material_set_light_shader(RID p_material, FixedMaterialLightShader p_shader) {
VS_CHANGED;
rasterizer->fixed_material_set_light_shader(p_material, p_shader);
}
VisualServerRaster::FixedMaterialLightShader VisualServerRaster::fixed_material_get_light_shader(RID p_material) const {
return rasterizer->fixed_material_get_light_shader(p_material);
}
/* MESH API */
RID VisualServerRaster::mesh_create() {
return rasterizer->mesh_create();
}
void VisualServerRaster::mesh_set_morph_target_count(RID p_mesh, int p_amount) {
rasterizer->mesh_set_morph_target_count(p_mesh, p_amount);
int amount = rasterizer->mesh_get_morph_target_count(p_mesh);
Map<RID, Set<RID> >::Element *E = instance_dependency_map.find(p_mesh);
if (!E)
return;
Set<RID>::Element *I = E->get().front();
while (I) {
Instance *ins = instance_owner.get(I->get());
ins->data.morph_values.resize(amount);
I = I->next();
}
}
int VisualServerRaster::mesh_get_morph_target_count(RID p_mesh) const {
return rasterizer->mesh_get_morph_target_count(p_mesh);
}
void VisualServerRaster::mesh_set_morph_target_mode(RID p_mesh, MorphTargetMode p_mode) {
rasterizer->mesh_set_morph_target_mode(p_mesh, p_mode);
}
VisualServer::MorphTargetMode VisualServerRaster::mesh_get_morph_target_mode(RID p_mesh) const {
return rasterizer->mesh_get_morph_target_mode(p_mesh);
}
void VisualServerRaster::mesh_add_custom_surface(RID p_mesh, const Variant &p_dat) {
}
void VisualServerRaster::mesh_add_surface(RID p_mesh, PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, bool p_alpha_sort) {
VS_CHANGED;
_dependency_queue_update(p_mesh, true, true);
rasterizer->mesh_add_surface(p_mesh, p_primitive, p_arrays, p_blend_shapes, p_alpha_sort);
}
Array VisualServerRaster::mesh_get_surface_arrays(RID p_mesh, int p_surface) const {
return rasterizer->mesh_get_surface_arrays(p_mesh, p_surface);
}
Array VisualServerRaster::mesh_get_surface_morph_arrays(RID p_mesh, int p_surface) const {
return rasterizer->mesh_get_surface_morph_arrays(p_mesh, p_surface);
}
void VisualServerRaster::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material, bool p_owned) {
VS_CHANGED;
rasterizer->mesh_surface_set_material(p_mesh, p_surface, p_material, p_owned);
}
RID VisualServerRaster::mesh_surface_get_material(RID p_mesh, int p_surface) const {
return rasterizer->mesh_surface_get_material(p_mesh, p_surface);
}
int VisualServerRaster::mesh_surface_get_array_len(RID p_mesh, int p_surface) const {
return rasterizer->mesh_surface_get_array_len(p_mesh, p_surface);
}
int VisualServerRaster::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const {
return rasterizer->mesh_surface_get_array_index_len(p_mesh, p_surface);
}
uint32_t VisualServerRaster::mesh_surface_get_format(RID p_mesh, int p_surface) const {
return rasterizer->mesh_surface_get_format(p_mesh, p_surface);
}
VisualServer::PrimitiveType VisualServerRaster::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const {
return rasterizer->mesh_surface_get_primitive_type(p_mesh, p_surface);
}
void VisualServerRaster::mesh_remove_surface(RID p_mesh, int p_surface) {
rasterizer->mesh_remove_surface(p_mesh, p_surface);
_dependency_queue_update(p_mesh, true, true);
}
int VisualServerRaster::mesh_get_surface_count(RID p_mesh) const {
return rasterizer->mesh_get_surface_count(p_mesh);
}
void VisualServerRaster::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
VS_CHANGED;
_dependency_queue_update(p_mesh, true);
rasterizer->mesh_set_custom_aabb(p_mesh, p_aabb);
}
AABB VisualServerRaster::mesh_get_custom_aabb(RID p_mesh) const {
return rasterizer->mesh_get_custom_aabb(p_mesh);
}
void VisualServerRaster::mesh_clear(RID p_mesh) {
ERR_FAIL_COND(!rasterizer->is_mesh(p_mesh));
while (rasterizer->mesh_get_surface_count(p_mesh)) {
rasterizer->mesh_remove_surface(p_mesh, 0);
}
_dependency_queue_update(p_mesh, true, true);
}
/* MULTIMESH */
RID VisualServerRaster::multimesh_create() {
return rasterizer->multimesh_create();
}
void VisualServerRaster::multimesh_set_instance_count(RID p_multimesh, int p_count) {
VS_CHANGED;
rasterizer->multimesh_set_instance_count(p_multimesh, p_count);
}
int VisualServerRaster::multimesh_get_instance_count(RID p_multimesh) const {
return rasterizer->multimesh_get_instance_count(p_multimesh);
}
void VisualServerRaster::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
VS_CHANGED;
rasterizer->multimesh_set_mesh(p_multimesh, p_mesh);
}
void VisualServerRaster::multimesh_set_aabb(RID p_multimesh, const AABB &p_aabb) {
VS_CHANGED;
rasterizer->multimesh_set_aabb(p_multimesh, p_aabb);
_dependency_queue_update(p_multimesh, true);
}
void VisualServerRaster::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) {
VS_CHANGED;
rasterizer->multimesh_instance_set_transform(p_multimesh, p_index, p_transform);
}
void VisualServerRaster::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
VS_CHANGED;
rasterizer->multimesh_instance_set_color(p_multimesh, p_index, p_color);
}
RID VisualServerRaster::multimesh_get_mesh(RID p_multimesh) const {
return rasterizer->multimesh_get_mesh(p_multimesh);
}
AABB VisualServerRaster::multimesh_get_aabb(RID p_multimesh, const AABB &p_aabb) const {
return rasterizer->multimesh_get_aabb(p_multimesh);
}
Transform VisualServerRaster::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
return rasterizer->multimesh_instance_get_transform(p_multimesh, p_index);
}
Color VisualServerRaster::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
return rasterizer->multimesh_instance_get_color(p_multimesh, p_index);
}
void VisualServerRaster::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
rasterizer->multimesh_set_visible_instances(p_multimesh, p_visible);
}
int VisualServerRaster::multimesh_get_visible_instances(RID p_multimesh) const {
return rasterizer->multimesh_get_visible_instances(p_multimesh);
}
/* IMMEDIATE API */
RID VisualServerRaster::immediate_create() {
return rasterizer->immediate_create();
}
void VisualServerRaster::immediate_begin(RID p_immediate, PrimitiveType p_primitive, RID p_texture) {
rasterizer->immediate_begin(p_immediate, p_primitive, p_texture);
}
void VisualServerRaster::immediate_vertex(RID p_immediate, const Vector3 &p_vertex) {
rasterizer->immediate_vertex(p_immediate, p_vertex);
}
void VisualServerRaster::immediate_normal(RID p_immediate, const Vector3 &p_normal) {
rasterizer->immediate_normal(p_immediate, p_normal);
}
void VisualServerRaster::immediate_tangent(RID p_immediate, const Plane &p_tangent) {
rasterizer->immediate_tangent(p_immediate, p_tangent);
}
void VisualServerRaster::immediate_color(RID p_immediate, const Color &p_color) {
rasterizer->immediate_color(p_immediate, p_color);
}
void VisualServerRaster::immediate_uv(RID p_immediate, const Vector2 &p_uv) {
rasterizer->immediate_uv(p_immediate, p_uv);
}
void VisualServerRaster::immediate_uv2(RID p_immediate, const Vector2 &p_uv2) {
rasterizer->immediate_uv2(p_immediate, p_uv2);
}
void VisualServerRaster::immediate_end(RID p_immediate) {
VS_CHANGED;
_dependency_queue_update(p_immediate, true);
rasterizer->immediate_end(p_immediate);
}
void VisualServerRaster::immediate_clear(RID p_immediate) {
VS_CHANGED;
_dependency_queue_update(p_immediate, true);
rasterizer->immediate_clear(p_immediate);
}
void VisualServerRaster::immediate_set_material(RID p_immediate, RID p_material) {
rasterizer->immediate_set_material(p_immediate, p_material);
}
RID VisualServerRaster::immediate_get_material(RID p_immediate) const {
return rasterizer->immediate_get_material(p_immediate);
}
/* PARTICLES API */
RID VisualServerRaster::particles_create() {
return rasterizer->particles_create();
}
void VisualServerRaster::particles_set_amount(RID p_particles, int p_amount) {
VS_CHANGED;
rasterizer->particles_set_amount(p_particles, p_amount);
}
int VisualServerRaster::particles_get_amount(RID p_particles) const {
return rasterizer->particles_get_amount(p_particles);
}
void VisualServerRaster::particles_set_emitting(RID p_particles, bool p_emitting) {
VS_CHANGED;
rasterizer->particles_set_emitting(p_particles, p_emitting);
}
bool VisualServerRaster::particles_is_emitting(RID p_particles) const {
return rasterizer->particles_is_emitting(p_particles);
}
void VisualServerRaster::particles_set_visibility_aabb(RID p_particles, const AABB &p_visibility) {
VS_CHANGED;
rasterizer->particles_set_visibility_aabb(p_particles, p_visibility);
}
AABB VisualServerRaster::particles_get_visibility_aabb(RID p_particles) const {
return rasterizer->particles_get_visibility_aabb(p_particles);
}
void VisualServerRaster::particles_set_emission_half_extents(RID p_particles, const Vector3 &p_half_extents) {
VS_CHANGED;
rasterizer->particles_set_emission_half_extents(p_particles, p_half_extents);
}
Vector3 VisualServerRaster::particles_get_emission_half_extents(RID p_particles) const {
return rasterizer->particles_get_emission_half_extents(p_particles);
}
void VisualServerRaster::particles_set_emission_base_velocity(RID p_particles, const Vector3 &p_base_velocity) {
VS_CHANGED;
rasterizer->particles_set_emission_base_velocity(p_particles, p_base_velocity);
}
Vector3 VisualServerRaster::particles_get_emission_base_velocity(RID p_particles) const {
return rasterizer->particles_get_emission_base_velocity(p_particles);
}
void VisualServerRaster::particles_set_emission_points(RID p_particles, const DVector<Vector3> &p_points) {
VS_CHANGED;
rasterizer->particles_set_emission_points(p_particles, p_points);
}
DVector<Vector3> VisualServerRaster::particles_get_emission_points(RID p_particles) const {
return rasterizer->particles_get_emission_points(p_particles);
}
void VisualServerRaster::particles_set_gravity_normal(RID p_particles, const Vector3 &p_normal) {
VS_CHANGED;
rasterizer->particles_set_gravity_normal(p_particles, p_normal);
}
Vector3 VisualServerRaster::particles_get_gravity_normal(RID p_particles) const {
return rasterizer->particles_get_gravity_normal(p_particles);
}
void VisualServerRaster::particles_set_variable(RID p_particles, ParticleVariable p_variable, float p_value) {
VS_CHANGED;
rasterizer->particles_set_variable(p_particles, p_variable, p_value);
}
float VisualServerRaster::particles_get_variable(RID p_particles, ParticleVariable p_variable) const {
return rasterizer->particles_get_variable(p_particles, p_variable);
}
void VisualServerRaster::particles_set_randomness(RID p_particles, ParticleVariable p_variable, float p_randomness) {
VS_CHANGED;
rasterizer->particles_set_randomness(p_particles, p_variable, p_randomness);
}
float VisualServerRaster::particles_get_randomness(RID p_particles, ParticleVariable p_variable) const {
return rasterizer->particles_get_randomness(p_particles, p_variable);
}
void VisualServerRaster::particles_set_color_phases(RID p_particles, int p_phases) {
VS_CHANGED;
rasterizer->particles_set_color_phases(p_particles, p_phases);
}
int VisualServerRaster::particles_get_color_phases(RID p_particles) const {
return rasterizer->particles_get_color_phases(p_particles);
}
void VisualServerRaster::particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos) {
VS_CHANGED;
rasterizer->particles_set_color_phase_pos(p_particles, p_phase, p_pos);
}
float VisualServerRaster::particles_get_color_phase_pos(RID p_particles, int p_phase) const {
return rasterizer->particles_get_color_phase_pos(p_particles, p_phase);
}
void VisualServerRaster::particles_set_attractors(RID p_particles, int p_attractors) {
VS_CHANGED;
rasterizer->particles_set_attractors(p_particles, p_attractors);
}
int VisualServerRaster::particles_get_attractors(RID p_particles) const {
return rasterizer->particles_get_attractors(p_particles);
}
void VisualServerRaster::particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3 &p_pos) {
VS_CHANGED;
rasterizer->particles_set_attractor_pos(p_particles, p_attractor, p_pos);
}
Vector3 VisualServerRaster::particles_get_attractor_pos(RID p_particles, int p_attractor) const {
return rasterizer->particles_get_attractor_pos(p_particles, p_attractor);
}
void VisualServerRaster::particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force) {
VS_CHANGED;
rasterizer->particles_set_attractor_strength(p_particles, p_attractor, p_force);
}
float VisualServerRaster::particles_get_attractor_strength(RID p_particles, int p_attractor) const {
return rasterizer->particles_get_attractor_strength(p_particles, p_attractor);
}
void VisualServerRaster::particles_set_color_phase_color(RID p_particles, int p_phase, const Color &p_color) {
VS_CHANGED;
rasterizer->particles_set_color_phase_color(p_particles, p_phase, p_color);
}
Color VisualServerRaster::particles_get_color_phase_color(RID p_particles, int p_phase) const {
return rasterizer->particles_get_color_phase_color(p_particles, p_phase);
}
void VisualServerRaster::particles_set_material(RID p_particles, RID p_material, bool p_owned) {
VS_CHANGED;
rasterizer->particles_set_material(p_particles, p_material, p_owned);
}
RID VisualServerRaster::particles_get_material(RID p_particles) const {
return rasterizer->particles_get_material(p_particles);
}
void VisualServerRaster::particles_set_height_from_velocity(RID p_particles, bool p_enable) {
VS_CHANGED;
rasterizer->particles_set_height_from_velocity(p_particles, p_enable);
}
bool VisualServerRaster::particles_has_height_from_velocity(RID p_particles) const {
return rasterizer->particles_has_height_from_velocity(p_particles);
}
void VisualServerRaster::particles_set_use_local_coordinates(RID p_particles, bool p_enable) {
rasterizer->particles_set_use_local_coordinates(p_particles, p_enable);
}
bool VisualServerRaster::particles_is_using_local_coordinates(RID p_particles) const {
return rasterizer->particles_is_using_local_coordinates(p_particles);
}
/* Light API */
RID VisualServerRaster::light_create(LightType p_type) {
return rasterizer->light_create(p_type);
}
VisualServer::LightType VisualServerRaster::light_get_type(RID p_light) const {
return rasterizer->light_get_type(p_light);
}
void VisualServerRaster::light_set_color(RID p_light, LightColor p_type, const Color &p_color) {
VS_CHANGED;
rasterizer->light_set_color(p_light, p_type, p_color);
}
Color VisualServerRaster::light_get_color(RID p_light, LightColor p_type) const {
return rasterizer->light_get_color(p_light, p_type);
}
void VisualServerRaster::light_set_shadow(RID p_light, bool p_enabled) {
VS_CHANGED;
rasterizer->light_set_shadow(p_light, p_enabled);
}
bool VisualServerRaster::light_has_shadow(RID p_light) const {
return rasterizer->light_has_shadow(p_light);
}
void VisualServerRaster::light_set_volumetric(RID p_light, bool p_enabled) {
VS_CHANGED;
rasterizer->light_set_volumetric(p_light, p_enabled);
}
bool VisualServerRaster::light_is_volumetric(RID p_light) const {
return rasterizer->light_is_volumetric(p_light);
}
void VisualServerRaster::light_set_projector(RID p_light, RID p_texture) {
VS_CHANGED;
rasterizer->light_set_projector(p_light, p_texture);
}
RID VisualServerRaster::light_get_projector(RID p_light) const {
return rasterizer->light_get_projector(p_light);
}
void VisualServerRaster::light_set_param(RID p_light, LightParam p_var, float p_value) {
VS_CHANGED;
rasterizer->light_set_var(p_light, p_var, p_value);
_dependency_queue_update(p_light, true);
}
float VisualServerRaster::light_get_param(RID p_light, LightParam p_var) const {
return rasterizer->light_get_var(p_light, p_var);
}
void VisualServerRaster::light_set_operator(RID p_light, LightOp p_op) {
VS_CHANGED;
rasterizer->light_set_operator(p_light, p_op);
}
VisualServerRaster::LightOp VisualServerRaster::light_get_operator(RID p_light) const {
return rasterizer->light_get_operator(p_light);
}
void VisualServerRaster::light_omni_set_shadow_mode(RID p_light, LightOmniShadowMode p_mode) {
VS_CHANGED;
rasterizer->light_omni_set_shadow_mode(p_light, p_mode);
}
VisualServerRaster::LightOmniShadowMode VisualServerRaster::light_omni_get_shadow_mode(RID p_light) const {
return rasterizer->light_omni_get_shadow_mode(p_light);
}
void VisualServerRaster::light_directional_set_shadow_mode(RID p_light, LightDirectionalShadowMode p_mode) {
VS_CHANGED;
rasterizer->light_directional_set_shadow_mode(p_light, p_mode);
}
VS::LightDirectionalShadowMode VisualServerRaster::light_directional_get_shadow_mode(RID p_light) const {
return rasterizer->light_directional_get_shadow_mode(p_light);
}
void VisualServerRaster::light_directional_set_shadow_param(RID p_light, LightDirectionalShadowParam p_param, float p_value) {
VS_CHANGED;
rasterizer->light_directional_set_shadow_param(p_light, p_param, p_value);
}
float VisualServerRaster::light_directional_get_shadow_param(RID p_light, LightDirectionalShadowParam p_param) const {
return rasterizer->light_directional_get_shadow_param(p_light, p_param);
}
RID VisualServerRaster::skeleton_create() {
return rasterizer->skeleton_create();
}
void VisualServerRaster::skeleton_resize(RID p_skeleton, int p_bones) {
VS_CHANGED;
rasterizer->skeleton_resize(p_skeleton, p_bones);
}
int VisualServerRaster::skeleton_get_bone_count(RID p_skeleton) const {
return rasterizer->skeleton_get_bone_count(p_skeleton);
}
void VisualServerRaster::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform) {
VS_CHANGED;
rasterizer->skeleton_bone_set_transform(p_skeleton, p_bone, p_transform);
Map<RID, Set<Instance *> >::Element *E = skeleton_dependency_map.find(p_skeleton);
if (E) {
//detach skeletons
for (Set<Instance *>::Element *F = E->get().front(); F; F = F->next()) {
_instance_queue_update(F->get(), true);
}
}
}
Transform VisualServerRaster::skeleton_bone_get_transform(RID p_skeleton, int p_bone) {
return rasterizer->skeleton_bone_get_transform(p_skeleton, p_bone);
}
/* VISIBILITY API */
/* ROOM API */
RID VisualServerRaster::room_create() {
Room *room = memnew(Room);
ERR_FAIL_COND_V(!room, RID());
return room_owner.make_rid(room);
}
void VisualServerRaster::room_set_bounds(RID p_room, const BSP_Tree &p_bounds) {
VS_CHANGED;
Room *room = room_owner.get(p_room);
ERR_FAIL_COND(!room);
room->bounds = p_bounds;
_dependency_queue_update(p_room, true);
}
BSP_Tree VisualServerRaster::room_get_bounds(RID p_room) const {
Room *room = room_owner.get(p_room);
ERR_FAIL_COND_V(!room, BSP_Tree());
return room->bounds;
}
/* PORTAL API */
RID VisualServerRaster::portal_create() {
VS_CHANGED;
Portal *portal = memnew(Portal);
ERR_FAIL_COND_V(!portal, RID());
return portal_owner.make_rid(portal);
}
void VisualServerRaster::portal_set_shape(RID p_portal, const Vector<Point2> &p_shape) {
VS_CHANGED;
Portal *portal = portal_owner.get(p_portal);
ERR_FAIL_COND(!portal);
portal->shape = p_shape;
portal->bounds = Rect2();
for (int i = 0; i < p_shape.size(); i++) {
if (i == 0)
portal->bounds.pos = p_shape[i];
else
portal->bounds.expand_to(p_shape[i]);
}
_dependency_queue_update(p_portal, true);
}
Vector<Point2> VisualServerRaster::portal_get_shape(RID p_portal) const {
Portal *portal = portal_owner.get(p_portal);
ERR_FAIL_COND_V(!portal, Vector<Point2>());
return portal->shape;
}
void VisualServerRaster::portal_set_enabled(RID p_portal, bool p_enabled) {
VS_CHANGED;
Portal *portal = portal_owner.get(p_portal);
ERR_FAIL_COND(!portal);
portal->enabled = p_enabled;
}
bool VisualServerRaster::portal_is_enabled(RID p_portal) const {
Portal *portal = portal_owner.get(p_portal);
ERR_FAIL_COND_V(!portal, false);
return portal->enabled;
}
void VisualServerRaster::portal_set_disable_distance(RID p_portal, float p_distance) {
VS_CHANGED;
Portal *portal = portal_owner.get(p_portal);
ERR_FAIL_COND(!portal);
portal->disable_distance = p_distance;
}
float VisualServerRaster::portal_get_disable_distance(RID p_portal) const {
Portal *portal = portal_owner.get(p_portal);
ERR_FAIL_COND_V(!portal, -1);
return portal->disable_distance;
}
void VisualServerRaster::portal_set_disabled_color(RID p_portal, const Color &p_color) {
VS_CHANGED;
Portal *portal = portal_owner.get(p_portal);
ERR_FAIL_COND(!portal);
portal->disable_color = p_color;
}
Color VisualServerRaster::portal_get_disabled_color(RID p_portal) const {
Portal *portal = portal_owner.get(p_portal);
ERR_FAIL_COND_V(!portal, Color());
return portal->disable_color;
}
void VisualServerRaster::portal_set_connect_range(RID p_portal, float p_range) {
VS_CHANGED;
Portal *portal = portal_owner.get(p_portal);
ERR_FAIL_COND(!portal);
portal->connect_range = p_range;
_dependency_queue_update(p_portal, true);
}
float VisualServerRaster::portal_get_connect_range(RID p_portal) const {
Portal *portal = portal_owner.get(p_portal);
ERR_FAIL_COND_V(!portal, 0);
return portal->connect_range;
}
RID VisualServerRaster::baked_light_create() {
BakedLight *baked_light = memnew(BakedLight);
ERR_FAIL_COND_V(!baked_light, RID());
baked_light->data.mode = BAKED_LIGHT_OCTREE;
baked_light->data.octree_lattice_size = 0;
baked_light->data.octree_lattice_divide = 0;
baked_light->data.octree_steps = 1;
baked_light->data.lightmap_multiplier = 1.0;
baked_light->data.realtime_color_enabled = false;
baked_light->data.realtime_color = Color(1.0, 1.0, 1.0);
baked_light->data.realtime_energy = 1.0;
return baked_light_owner.make_rid(baked_light);
}
void VisualServerRaster::baked_light_set_mode(RID p_baked_light, BakedLightMode p_mode) {
VS_CHANGED;
BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND(!baked_light);
baked_light->data.mode = p_mode;
baked_light->data.color_multiplier = 1.0;
_dependency_queue_update(p_baked_light, true);
}
VisualServer::BakedLightMode VisualServerRaster::baked_light_get_mode(RID p_baked_light) const {
const BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND_V(!baked_light, BAKED_LIGHT_OCTREE);
return baked_light->data.mode;
}
void VisualServerRaster::baked_light_set_lightmap_multiplier(RID p_baked_light, float p_multiplier) {
VS_CHANGED;
BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND(!baked_light);
baked_light->data.lightmap_multiplier = p_multiplier;
}
float VisualServerRaster::baked_light_get_lightmap_multiplier(RID p_baked_light) const {
const BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND_V(!baked_light, 0);
return baked_light->data.lightmap_multiplier;
}
void VisualServerRaster::baked_light_set_octree(RID p_baked_light, const DVector<uint8_t> p_octree) {
VS_CHANGED;
BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND(!baked_light);
if (p_octree.size() == 0) {
if (baked_light->data.octree_texture.is_valid())
rasterizer->free(baked_light->data.octree_texture);
baked_light->data.octree_texture = RID();
baked_light->octree_aabb = AABB();
baked_light->octree_tex_size = Size2();
} else {
int tex_w;
int tex_h;
int light_tex_w;
int light_tex_h;
bool is16;
bool has_light_tex = false;
{
DVector<uint8_t>::Read r = p_octree.read();
tex_w = decode_uint32(&r[0]);
tex_h = decode_uint32(&r[4]);
print_line("TEX W: " + itos(tex_w) + " TEX H:" + itos(tex_h) + " LEN: " + itos(p_octree.size()));
is16 = decode_uint32(&r[8]);
baked_light->data.octree_lattice_size = decode_float(&r[12]);
baked_light->data.octree_lattice_divide = tex_w / 4.0;
print_line("LATTICE SIZE: " + rtos(baked_light->data.octree_lattice_size));
print_line("LATTICE DIVIDE: " + rtos(baked_light->data.octree_lattice_divide));
baked_light->data.octree_steps = decode_uint32(&r[16]);
baked_light->data.octree_tex_pixel_size.x = 1.0 / tex_w;
baked_light->data.octree_tex_pixel_size.y = 1.0 / tex_h;
baked_light->data.texture_multiplier = decode_uint32(&r[20]);
light_tex_w = decode_uint16(&r[24]);
light_tex_h = decode_uint16(&r[26]);
print_line("ltexw " + itos(light_tex_w));
print_line("ltexh " + itos(light_tex_h));
if (light_tex_w > 0 && light_tex_h > 0) {
baked_light->data.light_tex_pixel_size.x = 1.0 / light_tex_w;
baked_light->data.light_tex_pixel_size.y = 1.0 / light_tex_h;
has_light_tex = true;
} else {
baked_light->data.light_tex_pixel_size = baked_light->data.octree_tex_pixel_size;
}
baked_light->octree_aabb.pos.x = decode_float(&r[32]);
baked_light->octree_aabb.pos.y = decode_float(&r[36]);
baked_light->octree_aabb.pos.z = decode_float(&r[40]);
baked_light->octree_aabb.size.x = decode_float(&r[44]);
baked_light->octree_aabb.size.y = decode_float(&r[48]);
baked_light->octree_aabb.size.z = decode_float(&r[52]);
}
if (baked_light->data.octree_texture.is_valid()) {
if (tex_w != baked_light->octree_tex_size.x || tex_h != baked_light->octree_tex_size.y) {
rasterizer->free(baked_light->data.octree_texture);
baked_light->data.octree_texture = RID();
baked_light->octree_tex_size.x = 0;
baked_light->octree_tex_size.y = 0;
}
}
if (baked_light->data.light_texture.is_valid()) {
if (!has_light_tex || light_tex_w != baked_light->light_tex_size.x || light_tex_h != baked_light->light_tex_size.y) {
rasterizer->free(baked_light->data.light_texture);
baked_light->data.light_texture = RID();
baked_light->light_tex_size.x = 0;
baked_light->light_tex_size.y = 0;
}
}
if (!baked_light->data.octree_texture.is_valid()) {
baked_light->data.octree_texture = rasterizer->texture_create();
rasterizer->texture_allocate(baked_light->data.octree_texture, tex_w, tex_h, Image::FORMAT_RGBA, TEXTURE_FLAG_FILTER);
baked_light->octree_tex_size.x = tex_w;
baked_light->octree_tex_size.y = tex_h;
}
if (!baked_light->data.light_texture.is_valid() && has_light_tex) {
baked_light->data.light_texture = rasterizer->texture_create();
rasterizer->texture_allocate(baked_light->data.light_texture, light_tex_w, light_tex_h, Image::FORMAT_RGBA, TEXTURE_FLAG_FILTER);
baked_light->light_tex_size.x = light_tex_w;
baked_light->light_tex_size.y = light_tex_h;
}
Image img(tex_w, tex_h, 0, Image::FORMAT_RGBA, p_octree);
rasterizer->texture_set_data(baked_light->data.octree_texture, img);
}
_dependency_queue_update(p_baked_light, true);
}
DVector<uint8_t> VisualServerRaster::baked_light_get_octree(RID p_baked_light) const {
BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND_V(!baked_light, DVector<uint8_t>());
if (rasterizer->is_texture(baked_light->data.octree_texture)) {
Image img = rasterizer->texture_get_data(baked_light->data.octree_texture);
return img.get_data();
} else {
return DVector<uint8_t>();
}
}
void VisualServerRaster::baked_light_set_light(RID p_baked_light, const DVector<uint8_t> p_light) {
VS_CHANGED;
BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND(!baked_light);
ERR_FAIL_COND(p_light.size() == 0);
int tex_w = baked_light->light_tex_size.x;
int tex_h = baked_light->light_tex_size.y;
ERR_FAIL_COND(tex_w == 0 && tex_h == 0);
ERR_FAIL_COND(!baked_light->data.light_texture.is_valid());
print_line("w: " + itos(tex_w) + " h: " + itos(tex_h) + " lightsize: " + itos(p_light.size()));
Image img(tex_w, tex_h, 0, Image::FORMAT_RGBA, p_light);
rasterizer->texture_set_data(baked_light->data.light_texture, img);
}
DVector<uint8_t> VisualServerRaster::baked_light_get_light(RID p_baked_light) const {
BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND_V(!baked_light, DVector<uint8_t>());
if (rasterizer->is_texture(baked_light->data.light_texture)) {
Image img = rasterizer->texture_get_data(baked_light->data.light_texture);
return img.get_data();
} else {
return DVector<uint8_t>();
}
}
void VisualServerRaster::baked_light_set_sampler_octree(RID p_baked_light, const DVector<int> &p_sampler) {
BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND(!baked_light);
baked_light->sampler = p_sampler;
}
DVector<int> VisualServerRaster::baked_light_get_sampler_octree(RID p_baked_light) const {
BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND_V(!baked_light, DVector<int>());
return baked_light->sampler;
}
void VisualServerRaster::baked_light_add_lightmap(RID p_baked_light, const RID p_texture, int p_id) {
VS_CHANGED;
BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND(!baked_light);
baked_light->data.lightmaps.insert(p_id, p_texture);
}
void VisualServerRaster::baked_light_clear_lightmaps(RID p_baked_light) {
VS_CHANGED;
BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND(!baked_light);
baked_light->data.lightmaps.clear();
}
void VisualServerRaster::baked_light_set_realtime_color_enabled(RID p_baked_light, const bool p_enabled) {
VS_CHANGED;
BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND(!baked_light);
baked_light->data.realtime_color_enabled = p_enabled;
}
bool VisualServerRaster::baked_light_get_realtime_color_enabled(RID p_baked_light) const {
const BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND_V(!baked_light, false);
return baked_light->data.realtime_color_enabled;
}
void VisualServerRaster::baked_light_set_realtime_color(RID p_baked_light, const Color &p_color) {
VS_CHANGED;
BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND(!baked_light);
baked_light->data.realtime_color = p_color;
}
Color VisualServerRaster::baked_light_get_realtime_color(RID p_baked_light) const {
const BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND_V(!baked_light, Color(1.0, 1.0, 1.0));
return baked_light->data.realtime_color;
}
void VisualServerRaster::baked_light_set_realtime_energy(RID p_baked_light, const float p_energy) {
VS_CHANGED;
BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND(!baked_light);
baked_light->data.realtime_energy = p_energy;
}
float VisualServerRaster::baked_light_get_realtime_energy(RID p_baked_light) const {
const BakedLight *baked_light = baked_light_owner.get(p_baked_light);
ERR_FAIL_COND_V(!baked_light, 1.0f);
return baked_light->data.realtime_energy;
}
/* BAKED LIGHT SAMPLER */
RID VisualServerRaster::baked_light_sampler_create() {
BakedLightSampler *blsamp = memnew(BakedLightSampler);
RID rid = baked_light_sampler_owner.make_rid(blsamp);
_update_baked_light_sampler_dp_cache(blsamp);
return rid;
}
void VisualServerRaster::baked_light_sampler_set_param(RID p_baked_light_sampler, BakedLightSamplerParam p_param, float p_value) {
VS_CHANGED;
BakedLightSampler *blsamp = baked_light_sampler_owner.get(p_baked_light_sampler);
ERR_FAIL_COND(!blsamp);
ERR_FAIL_INDEX(p_param, BAKED_LIGHT_SAMPLER_MAX);
blsamp->params[p_param] = p_value;
_dependency_queue_update(p_baked_light_sampler, true);
}
float VisualServerRaster::baked_light_sampler_get_param(RID p_baked_light_sampler, BakedLightSamplerParam p_param) const {
BakedLightSampler *blsamp = baked_light_sampler_owner.get(p_baked_light_sampler);
ERR_FAIL_COND_V(!blsamp, 0);
ERR_FAIL_INDEX_V(p_param, BAKED_LIGHT_SAMPLER_MAX, 0);
return blsamp->params[p_param];
}
void VisualServerRaster::_update_baked_light_sampler_dp_cache(BakedLightSampler *blsamp) {
int res = blsamp->resolution;
blsamp->dp_cache.resize(res * res * 2);
Vector3 *dp_normals = blsamp->dp_cache.ptr();
for (int p = 0; p < 2; p++) {
float sign = p == 0 ? 1 : -1;
int ofs = res * res * p;
for (int i = 0; i < res; i++) {
for (int j = 0; j < res; j++) {
Vector2 v(
(i / float(res)) * 2.0 - 1.0,
(j / float(res)) * 2.0 - 1.0);
float l = v.length();
if (l > 1.0) {
v /= l;
l = 1.0; //clamp to avoid imaginary
}
v *= (2 * l) / (l * l + 1); //inverse of the dual paraboloid function
Vector3 n = Vector3(v.x, v.y, sign * sqrtf(MAX(1 - v.dot(v), 0))); //reconstruction of z
n.y *= sign;
dp_normals[j * res + i + ofs] = n;
}
}
}
}
void VisualServerRaster::baked_light_sampler_set_resolution(RID p_baked_light_sampler, int p_resolution) {
ERR_FAIL_COND(p_resolution < 4 || p_resolution > 64);
VS_CHANGED;
BakedLightSampler *blsamp = baked_light_sampler_owner.get(p_baked_light_sampler);
ERR_FAIL_COND(!blsamp);
blsamp->resolution = p_resolution;
_update_baked_light_sampler_dp_cache(blsamp);
}
int VisualServerRaster::baked_light_sampler_get_resolution(RID p_baked_light_sampler) const {
BakedLightSampler *blsamp = baked_light_sampler_owner.get(p_baked_light_sampler);
ERR_FAIL_COND_V(!blsamp, 0);
return blsamp->resolution;
}
/* CAMERA API */
RID VisualServerRaster::camera_create() {
Camera *camera = memnew(Camera);
return camera_owner.make_rid(camera);
}
void VisualServerRaster::camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far) {
VS_CHANGED
Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND(!camera);
camera->type = Camera::PERSPECTIVE;
camera->fov = p_fovy_degrees;
camera->znear = p_z_near;
camera->zfar = p_z_far;
}
void VisualServerRaster::camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far) {
VS_CHANGED;
Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND(!camera);
camera->type = Camera::ORTHOGONAL;
camera->size = p_size;
camera->znear = p_z_near;
camera->zfar = p_z_far;
}
void VisualServerRaster::camera_set_transform(RID p_camera, const Transform &p_transform) {
VS_CHANGED;
Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND(!camera);
camera->transform = p_transform.orthonormalized();
}
void VisualServerRaster::camera_set_visible_layers(RID p_camera, uint32_t p_layers) {
VS_CHANGED;
Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND(!camera);
camera->visible_layers = p_layers;
}
uint32_t VisualServerRaster::camera_get_visible_layers(RID p_camera) const {
const Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND_V(!camera, 0);
return camera->visible_layers;
}
void VisualServerRaster::camera_set_environment(RID p_camera, RID p_env) {
Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND(!camera);
camera->env = p_env;
}
RID VisualServerRaster::camera_get_environment(RID p_camera) const {
const Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND_V(!camera, RID());
return camera->env;
}
void VisualServerRaster::camera_set_use_vertical_aspect(RID p_camera, bool p_enable) {
Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND(!camera);
camera->vaspect = p_enable;
}
bool VisualServerRaster::camera_is_using_vertical_aspect(RID p_camera, bool p_enable) const {
const Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND_V(!camera, false);
return camera->vaspect;
}
/* VIEWPORT API */
RID VisualServerRaster::viewport_create() {
Viewport *viewport = memnew(Viewport);
RID rid = viewport_owner.make_rid(viewport);
ERR_FAIL_COND_V(!rid.is_valid(), rid);
viewport->self = rid;
viewport->hide_scenario = false;
viewport->hide_canvas = false;
viewport->viewport_data = rasterizer->viewport_data_create();
return rid;
}
void VisualServerRaster::viewport_attach_to_screen(RID p_viewport, int p_screen) {
VS_CHANGED;
Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
screen_viewports[p_viewport] = p_screen;
}
void VisualServerRaster::viewport_detach(RID p_viewport) {
VS_CHANGED;
Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
ERR_FAIL_COND(!screen_viewports.has(p_viewport));
screen_viewports.erase(p_viewport);
}
void VisualServerRaster::viewport_set_as_render_target(RID p_viewport, bool p_enable) {
VS_CHANGED;
Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
if (viewport->render_target.is_valid() == p_enable)
return;
if (!p_enable) {
rasterizer->free(viewport->render_target);
viewport->render_target = RID();
viewport->render_target_texture = RID();
if (viewport->update_list.in_list())
viewport_update_list.remove(&viewport->update_list);
} else {
viewport->render_target = rasterizer->render_target_create();
rasterizer->render_target_set_size(viewport->render_target, viewport->rect.width, viewport->rect.height);
viewport->render_target_texture = rasterizer->render_target_get_texture(viewport->render_target);
if (viewport->render_target_update_mode != RENDER_TARGET_UPDATE_DISABLED)
viewport_update_list.add(&viewport->update_list);
}
}
void VisualServerRaster::viewport_set_render_target_update_mode(RID p_viewport, RenderTargetUpdateMode p_mode) {
VS_CHANGED;
Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
if (viewport->render_target.is_valid() && viewport->update_list.in_list())
viewport_update_list.remove(&viewport->update_list);
viewport->render_target_update_mode = p_mode;
if (viewport->render_target.is_valid() && viewport->render_target_update_mode != RENDER_TARGET_UPDATE_DISABLED)
viewport_update_list.add(&viewport->update_list);
}
VisualServer::RenderTargetUpdateMode VisualServerRaster::viewport_get_render_target_update_mode(RID p_viewport) const {
const Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND_V(!viewport, RENDER_TARGET_UPDATE_DISABLED);
return viewport->render_target_update_mode;
}
RID VisualServerRaster::viewport_get_render_target_texture(RID p_viewport) const {
Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND_V(!viewport, RID());
return viewport->render_target_texture;
}
void VisualServerRaster::viewport_set_render_target_vflip(RID p_viewport, bool p_enable) {
Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
viewport->render_target_vflip = p_enable;
}
void VisualServerRaster::viewport_set_render_target_clear_on_new_frame(RID p_viewport, bool p_enable) {
Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
viewport->render_target_clear_on_new_frame = p_enable;
}
void VisualServerRaster::viewport_set_render_target_to_screen_rect(RID p_viewport, const Rect2 &p_rect) {
Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
viewport->rt_to_screen_rect = p_rect;
}
bool VisualServerRaster::viewport_get_render_target_vflip(RID p_viewport) const {
const Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND_V(!viewport, false);
return viewport->render_target_vflip;
}
bool VisualServerRaster::viewport_get_render_target_clear_on_new_frame(RID p_viewport) const {
const Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND_V(!viewport, false);
return viewport->render_target_clear_on_new_frame;
}
void VisualServerRaster::viewport_render_target_clear(RID p_viewport) {
Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
viewport->render_target_clear = true;
}
void VisualServerRaster::viewport_queue_screen_capture(RID p_viewport) {
VS_CHANGED;
Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
viewport->queue_capture = true;
}
Image VisualServerRaster::viewport_get_screen_capture(RID p_viewport) const {
Viewport *viewport = (Viewport *)viewport_owner.get(p_viewport);
ERR_FAIL_COND_V(!viewport, Image());
Image ret = viewport->capture;
viewport->capture = Image();
return ret;
}
void VisualServerRaster::viewport_set_rect(RID p_viewport, const ViewportRect &p_rect) {
VS_CHANGED;
Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
viewport->rect = p_rect;
if (viewport->render_target.is_valid()) {
rasterizer->render_target_set_size(viewport->render_target, viewport->rect.width, viewport->rect.height);
}
}
VisualServer::ViewportRect VisualServerRaster::viewport_get_rect(RID p_viewport) const {
const Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND_V(!viewport, ViewportRect());
return viewport->rect;
}
void VisualServerRaster::viewport_set_hide_scenario(RID p_viewport, bool p_hide) {
VS_CHANGED;
Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
viewport->hide_scenario = p_hide;
}
void VisualServerRaster::viewport_set_hide_canvas(RID p_viewport, bool p_hide) {
VS_CHANGED;
Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
viewport->hide_canvas = p_hide;
}
void VisualServerRaster::viewport_set_disable_environment(RID p_viewport, bool p_disable) {
VS_CHANGED;
Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
viewport->disable_environment = p_disable;
}
void VisualServerRaster::viewport_attach_camera(RID p_viewport, RID p_camera) {
VS_CHANGED;
Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
if (p_camera.is_valid()) {
ERR_FAIL_COND(!camera_owner.owns(p_camera));
// a camera
viewport->camera = p_camera;
} else {
viewport->camera = RID();
}
}
void VisualServerRaster::viewport_set_scenario(RID p_viewport, RID p_scenario) {
VS_CHANGED;
Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
if (p_scenario.is_valid()) {
ERR_FAIL_COND(!scenario_owner.owns(p_scenario));
// a camera
viewport->scenario = p_scenario;
} else {
viewport->scenario = RID();
}
}
RID VisualServerRaster::viewport_get_attached_camera(RID p_viewport) const {
const Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND_V(!viewport, RID());
return viewport->camera;
}
void VisualServerRaster::viewport_attach_canvas(RID p_viewport, RID p_canvas) {
VS_CHANGED;
Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
Canvas *canvas = canvas_owner.get(p_canvas);
ERR_FAIL_COND(!canvas);
ERR_EXPLAIN("Canvas already attached.");
ERR_FAIL_COND(viewport->canvas_map.has(p_canvas));
Viewport::CanvasData cd;
cd.canvas = canvas;
cd.layer = 0;
viewport->canvas_map[p_canvas] = cd;
canvas->viewports.insert(p_viewport);
}
void VisualServerRaster::viewport_set_canvas_transform(RID p_viewport, RID p_canvas, const Matrix32 &p_transform) {
VS_CHANGED;
Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
Map<RID, Viewport::CanvasData>::Element *E = viewport->canvas_map.find(p_canvas);
if (!E) {
ERR_EXPLAIN("Viewport does not contain the canvas");
ERR_FAIL_COND(!E);
}
E->get().transform = p_transform;
}
Matrix32 VisualServerRaster::viewport_get_canvas_transform(RID p_viewport, RID p_canvas) const {
Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND_V(!viewport, Matrix32());
Map<RID, Viewport::CanvasData>::Element *E = viewport->canvas_map.find(p_canvas);
if (!E) {
ERR_EXPLAIN("Viewport does not contain the canvas");
ERR_FAIL_COND_V(!E, Matrix32());
}
return E->get().transform;
}
void VisualServerRaster::viewport_set_global_canvas_transform(RID p_viewport, const Matrix32 &p_transform) {
VS_CHANGED
Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
viewport->global_transform = p_transform;
}
Matrix32 VisualServerRaster::viewport_get_global_canvas_transform(RID p_viewport) const {
Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND_V(!viewport, Matrix32());
return viewport->global_transform;
}
void VisualServerRaster::viewport_remove_canvas(RID p_viewport, RID p_canvas) {
VS_CHANGED;
Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
Canvas *canvas = canvas_owner.get(p_canvas);
ERR_FAIL_COND(!canvas);
Map<RID, Viewport::CanvasData>::Element *E = viewport->canvas_map.find(p_canvas);
if (!E) {
ERR_EXPLAIN("Viewport does not contain the canvas");
ERR_FAIL_COND(!E);
}
canvas->viewports.erase(p_viewport);
viewport->canvas_map.erase(E);
}
void VisualServerRaster::viewport_set_canvas_layer(RID p_viewport, RID p_canvas, int p_layer) {
VS_CHANGED;
Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
Map<RID, Viewport::CanvasData>::Element *E = viewport->canvas_map.find(p_canvas);
if (!E) {
ERR_EXPLAIN("Viewport does not contain the canvas");
ERR_FAIL_COND(!E);
}
E->get().layer = p_layer;
}
void VisualServerRaster::viewport_set_transparent_background(RID p_viewport, bool p_enabled) {
VS_CHANGED;
Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND(!viewport);
viewport->transparent_bg = p_enabled;
}
bool VisualServerRaster::viewport_has_transparent_background(RID p_viewport) const {
Viewport *viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND_V(!viewport, false);
return viewport->transparent_bg;
}
RID VisualServerRaster::viewport_get_scenario(RID p_viewport) const {
const Viewport *viewport = NULL;
viewport = viewport_owner.get(p_viewport);
ERR_FAIL_COND_V(!viewport, RID());
return viewport->scenario;
}
RID VisualServerRaster::environment_create() {
return rasterizer->environment_create();
}
void VisualServerRaster::environment_set_background(RID p_env, EnvironmentBG p_bg) {
rasterizer->environment_set_background(p_env, p_bg);
}
VisualServer::EnvironmentBG VisualServerRaster::environment_get_background(RID p_env) const {
return rasterizer->environment_get_background(p_env);
}
void VisualServerRaster::environment_set_background_param(RID p_env, EnvironmentBGParam p_param, const Variant &p_value) {
rasterizer->environment_set_background_param(p_env, p_param, p_value);
}
Variant VisualServerRaster::environment_get_background_param(RID p_env, EnvironmentBGParam p_param) const {
return rasterizer->environment_get_background_param(p_env, p_param);
}
void VisualServerRaster::environment_set_enable_fx(RID p_env, EnvironmentFx p_effect, bool p_enabled) {
rasterizer->environment_set_enable_fx(p_env, p_effect, p_enabled);
}
bool VisualServerRaster::environment_is_fx_enabled(RID p_env, EnvironmentFx p_effect) const {
return rasterizer->environment_is_fx_enabled(p_env, p_effect);
}
void VisualServerRaster::environment_fx_set_param(RID p_env, EnvironmentFxParam p_param, const Variant &p_value) {
rasterizer->environment_fx_set_param(p_env, p_param, p_value);
}
Variant VisualServerRaster::environment_fx_get_param(RID p_env, EnvironmentFxParam p_param) const {
return environment_fx_get_param(p_env, p_param);
}
/* SCENARIO API */
void VisualServerRaster::_dependency_queue_update(RID p_rid, bool p_update_aabb, bool p_update_materials) {
Map<RID, Set<RID> >::Element *E = instance_dependency_map.find(p_rid);
if (!E)
return;
Set<RID>::Element *I = E->get().front();
while (I) {
Instance *ins = instance_owner.get(I->get());
_instance_queue_update(ins, p_update_aabb, p_update_materials);
I = I->next();
}
}
void VisualServerRaster::_instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_materials) {
if (p_update_aabb)
p_instance->update_aabb = true;
if (p_update_materials)
p_instance->update_materials = true;
if (p_instance->update)
return;
p_instance->update_next = instance_update_list;
instance_update_list = p_instance;
p_instance->update = true;
}
RID VisualServerRaster::scenario_create() {
Scenario *scenario = memnew(Scenario);
ERR_FAIL_COND_V(!scenario, RID());
RID scenario_rid = scenario_owner.make_rid(scenario);
scenario->self = scenario_rid;
scenario->octree.set_pair_callback(instance_pair, this);
scenario->octree.set_unpair_callback(instance_unpair, this);
return scenario_rid;
}
void VisualServerRaster::scenario_set_debug(RID p_scenario, ScenarioDebugMode p_debug_mode) {
VS_CHANGED;
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->debug = p_debug_mode;
}
void VisualServerRaster::scenario_set_environment(RID p_scenario, RID p_environment) {
VS_CHANGED;
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->environment = p_environment;
}
void VisualServerRaster::scenario_set_fallback_environment(RID p_scenario, RID p_environment) {
VS_CHANGED;
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->fallback_environment = p_environment;
}
RID VisualServerRaster::scenario_get_environment(RID p_scenario, RID p_environment) const {
const Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND_V(!scenario, RID());
return scenario->environment;
}
/* INSTANCING API */
RID VisualServerRaster::instance_create() {
Instance *instance = memnew(Instance);
ERR_FAIL_COND_V(!instance, RID());
RID instance_rid = instance_owner.make_rid(instance);
instance->self = instance_rid;
instance->base_type = INSTANCE_NONE;
instance->scenario = NULL;
return instance_rid;
}
void VisualServerRaster::instance_set_base(RID p_instance, RID p_base) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (instance->base_type != INSTANCE_NONE) {
//free anything related to that base
Map<RID, Set<RID> >::Element *E = instance_dependency_map.find(instance->base_rid);
if (E) {
// wtf, no E?
E->get().erase(instance->self);
} else {
ERR_PRINT("no base E? Bug?");
}
if (instance->room) {
instance_set_room(p_instance, RID());
/*
if((1<<instance->base_type)&INSTANCE_GEOMETRY_MASK)
instance->room->room_info->owned_geometry_instances.erase(instance->RE);
else if (instance->base_type==INSTANCE_PORTAL) {
print_line("freeing portal, is it there? "+itos(instance->room->room_info->owned_portal_instances.(instance->RE)));
instance->room->room_info->owned_portal_instances.erase(instance->RE);
} else if (instance->base_type==INSTANCE_ROOM)
instance->room->room_info->owned_room_instances.erase(instance->RE);
else if (instance->base_type==INSTANCE_LIGHT)
instance->room->room_info->owned_light_instances.erase(instance->RE);
instance->RE=NULL;*/
}
if (instance->light_info) {
if (instance->scenario && instance->light_info->D)
instance->scenario->directional_lights.erase(instance->light_info->D);
rasterizer->free(instance->light_info->instance);
memdelete(instance->light_info);
instance->light_info = NULL;
}
if (instance->portal_info) {
_portal_disconnect(instance, true);
memdelete(instance->portal_info);
instance->portal_info = NULL;
}
if (instance->baked_light_info) {
while (instance->baked_light_info->owned_instances.size()) {
Instance *owned = instance->baked_light_info->owned_instances.front()->get();
owned->baked_light = NULL;
owned->data.baked_light = NULL;
owned->data.baked_light_octree_xform = NULL;
owned->BLE = NULL;
instance->baked_light_info->owned_instances.pop_front();
}
memdelete(instance->baked_light_info);
instance->baked_light_info = NULL;
}
if (instance->scenario && instance->octree_id) {
instance->scenario->octree.erase(instance->octree_id);
instance->octree_id = 0;
}
if (instance->room_info) {
for (List<Instance *>::Element *E = instance->room_info->owned_geometry_instances.front(); E; E = E->next()) {
Instance *owned = E->get();
owned->room = NULL;
owned->RE = NULL;
}
for (List<Instance *>::Element *E = instance->room_info->owned_portal_instances.front(); E; E = E->next()) {
_portal_disconnect(E->get(), true);
Instance *owned = E->get();
owned->room = NULL;
owned->RE = NULL;
}
for (List<Instance *>::Element *E = instance->room_info->owned_room_instances.front(); E; E = E->next()) {
Instance *owned = E->get();
owned->room = NULL;
owned->RE = NULL;
}
if (instance->room_info->disconnected_child_portals.size()) {
ERR_PRINT("BUG: Disconnected portals remain!");
}
memdelete(instance->room_info);
instance->room_info = NULL;
}
if (instance->particles_info) {
rasterizer->free(instance->particles_info->instance);
memdelete(instance->particles_info);
instance->particles_info = NULL;
}
if (instance->baked_light_sampler_info) {
while (instance->baked_light_sampler_info->owned_instances.size()) {
instance_geometry_set_baked_light_sampler(instance->baked_light_sampler_info->owned_instances.front()->get()->self, RID());
}
if (instance->baked_light_sampler_info->sampled_light.is_valid()) {
rasterizer->free(instance->baked_light_sampler_info->sampled_light);
}
memdelete(instance->baked_light_sampler_info);
instance->baked_light_sampler_info = NULL;
}
instance->data.morph_values.clear();
instance->data.materials.clear();
}
instance->base_type = INSTANCE_NONE;
instance->base_rid = RID();
if (p_base.is_valid()) {
if (rasterizer->is_mesh(p_base)) {
instance->base_type = INSTANCE_MESH;
instance->data.morph_values.resize(rasterizer->mesh_get_morph_target_count(p_base));
instance->data.materials.resize(rasterizer->mesh_get_surface_count(p_base));
} else if (rasterizer->is_multimesh(p_base)) {
instance->base_type = INSTANCE_MULTIMESH;
} else if (rasterizer->is_immediate(p_base)) {
instance->base_type = INSTANCE_IMMEDIATE;
} else if (rasterizer->is_particles(p_base)) {
instance->base_type = INSTANCE_PARTICLES;
instance->particles_info = memnew(Instance::ParticlesInfo);
instance->particles_info->instance = rasterizer->particles_instance_create(p_base);
} else if (rasterizer->is_light(p_base)) {
instance->base_type = INSTANCE_LIGHT;
instance->light_info = memnew(Instance::LightInfo);
instance->light_info->instance = rasterizer->light_instance_create(p_base);
if (instance->scenario && rasterizer->light_get_type(p_base) == LIGHT_DIRECTIONAL) {
instance->light_info->D = instance->scenario->directional_lights.push_back(instance->self);
}
} else if (room_owner.owns(p_base)) {
instance->base_type = INSTANCE_ROOM;
instance->room_info = memnew(Instance::RoomInfo);
instance->room_info->room = room_owner.get(p_base);
} else if (portal_owner.owns(p_base)) {
instance->base_type = INSTANCE_PORTAL;
instance->portal_info = memnew(Instance::PortalInfo);
instance->portal_info->portal = portal_owner.get(p_base);
} else if (baked_light_owner.owns(p_base)) {
instance->base_type = INSTANCE_BAKED_LIGHT;
instance->baked_light_info = memnew(Instance::BakedLightInfo);
instance->baked_light_info->baked_light = baked_light_owner.get(p_base);
//instance->portal_info = memnew(Instance::PortalInfo);
//instance->portal_info->portal=portal_owner.get(p_base);
} else if (baked_light_sampler_owner.owns(p_base)) {
instance->base_type = INSTANCE_BAKED_LIGHT_SAMPLER;
instance->baked_light_sampler_info = memnew(Instance::BakedLightSamplerInfo);
instance->baked_light_sampler_info->sampler = baked_light_sampler_owner.get(p_base);
//instance->portal_info = memnew(Instance::PortalInfo);
//instance->portal_info->portal=portal_owner.get(p_base);
} else {
ERR_EXPLAIN("Invalid base RID for instance!")
ERR_FAIL();
}
instance_dependency_map[p_base].insert(instance->self);
instance->base_rid = p_base;
if (instance->scenario)
_instance_queue_update(instance, true);
}
}
RID VisualServerRaster::instance_get_base(RID p_instance) const {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, RID());
return instance->base_rid;
}
void VisualServerRaster::instance_set_scenario(RID p_instance, RID p_scenario) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (instance->scenario) {
Map<RID, Set<RID> >::Element *E = instance_dependency_map.find(instance->scenario->self);
if (E) {
// wtf, no E?
E->get().erase(instance->self);
} else {
ERR_PRINT("no scenario E? Bug?");
}
if (instance->light_info) {
if (instance->light_info->D)
instance->scenario->directional_lights.erase(instance->light_info->D);
}
if (instance->portal_info) {
_portal_disconnect(instance, true);
}
if (instance->octree_id) {
instance->scenario->octree.erase(instance->octree_id);
instance->octree_id = 0;
}
instance->scenario = NULL;
}
if (p_scenario.is_valid()) {
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND(!scenario);
instance->scenario = scenario;
instance_dependency_map[p_scenario].insert(instance->self);
instance->scenario = scenario;
if (instance->base_type == INSTANCE_LIGHT && rasterizer->light_get_type(instance->base_rid) == LIGHT_DIRECTIONAL) {
instance->light_info->D = instance->scenario->directional_lights.push_back(instance->self);
}
_instance_queue_update(instance, true);
}
}
RID VisualServerRaster::instance_get_scenario(RID p_instance) const {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, RID());
if (instance->scenario)
return instance->scenario->self;
else
return RID();
}
void VisualServerRaster::instance_set_layer_mask(RID p_instance, uint32_t p_mask) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
instance->layer_mask = p_mask;
}
uint32_t VisualServerRaster::instance_get_layer_mask(RID p_instance) const {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, 0);
return instance->layer_mask;
}
AABB VisualServerRaster::instance_get_base_aabb(RID p_instance) const {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, AABB());
return instance->aabb;
}
void VisualServerRaster::instance_attach_object_instance_ID(RID p_instance, uint32_t p_ID) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
instance->object_ID = p_ID;
}
uint32_t VisualServerRaster::instance_get_object_instance_ID(RID p_instance) const {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, 0);
return instance->object_ID;
}
void VisualServerRaster::instance_attach_skeleton(RID p_instance, RID p_skeleton) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (instance->data.skeleton.is_valid()) {
skeleton_dependency_map[instance->data.skeleton].erase(instance);
}
instance->data.skeleton = p_skeleton;
if (instance->data.skeleton.is_valid()) {
skeleton_dependency_map[instance->data.skeleton].insert(instance);
}
}
RID VisualServerRaster::instance_get_skeleton(RID p_instance) const {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, RID());
return instance->data.skeleton;
}
void VisualServerRaster::instance_set_morph_target_weight(RID p_instance, int p_shape, float p_weight) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
ERR_FAIL_INDEX(p_shape, instance->data.morph_values.size());
instance->data.morph_values[p_shape] = p_weight;
}
float VisualServerRaster::instance_get_morph_target_weight(RID p_instance, int p_shape) const {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, 0);
ERR_FAIL_INDEX_V(p_shape, instance->data.morph_values.size(), 0);
return instance->data.morph_values[p_shape];
}
void VisualServerRaster::instance_set_surface_material(RID p_instance, int p_surface, RID p_material) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
ERR_FAIL_INDEX(p_surface, instance->data.materials.size());
instance->data.materials[p_surface] = p_material;
}
void VisualServerRaster::instance_set_transform(RID p_instance, const Transform &p_transform) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (p_transform == instance->data.transform) // must improve somehow
return;
instance->data.transform = p_transform;
if (instance->base_type == INSTANCE_LIGHT)
instance->data.transform.orthonormalize();
_instance_queue_update(instance);
}
Transform VisualServerRaster::instance_get_transform(RID p_instance) const {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, Transform());
return instance->data.transform;
}
void VisualServerRaster::instance_set_exterior(RID p_instance, bool p_enabled) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
ERR_EXPLAIN("Portals can't be assigned to be exterior");
ERR_FAIL_COND(instance->base_type == INSTANCE_PORTAL);
if (instance->exterior == p_enabled)
return;
instance->exterior = p_enabled;
_instance_queue_update(instance);
}
bool VisualServerRaster::instance_is_exterior(RID p_instance) const {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, false);
return instance->exterior;
}
void VisualServerRaster::instance_set_room(RID p_instance, RID p_room) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (instance->room && instance->RE) {
//instance already havs a room, remove it from there
if ((1 << instance->base_type) & INSTANCE_GEOMETRY_MASK) {
instance->room->room_info->owned_geometry_instances.erase(instance->RE);
if (!p_room.is_valid() && instance->octree_id) {
//remove from the octree, so it's re-added with different flags
instance->scenario->octree.erase(instance->octree_id);
instance->octree_id = 0;
_instance_queue_update(instance, true);
}
} else if (instance->base_type == INSTANCE_ROOM) {
instance->room->room_info->owned_room_instances.erase(instance->RE);
for (List<Instance *>::Element *E = instance->room_info->owned_portal_instances.front(); E; E = E->next()) {
_portal_disconnect(E->get());
_instance_queue_update(E->get(), false);
}
} else if (instance->base_type == INSTANCE_PORTAL) {
_portal_disconnect(instance, true);
bool ss = instance->room->room_info->owned_portal_instances.erase(instance->RE);
} else if (instance->base_type == INSTANCE_LIGHT) {
instance->room->room_info->owned_light_instances.erase(instance->RE);
} else {
ERR_FAIL();
}
instance->RE = NULL;
instance->room = NULL;
} else {
if (p_room.is_valid() && instance->octree_id) {
//remove from the octree, so it's re-added with different flags
instance->scenario->octree.erase(instance->octree_id);
instance->octree_id = 0;
_instance_queue_update(instance, true);
}
}
if (!p_room.is_valid())
return; // just clearning the room
Instance *room = instance_owner.get(p_room);
ERR_FAIL_COND(!room);
ERR_FAIL_COND(room->base_type != INSTANCE_ROOM);
if (instance->base_type == INSTANCE_ROOM) {
//perform cycle test
Instance *parent = instance;
while (parent) {
ERR_EXPLAIN("Cycle in room assignment");
ERR_FAIL_COND(parent == room);
parent = parent->room;
}
}
if ((1 << instance->base_type) & INSTANCE_GEOMETRY_MASK) {
instance->RE = room->room_info->owned_geometry_instances.push_back(instance);
} else if (instance->base_type == INSTANCE_ROOM) {
instance->RE = room->room_info->owned_room_instances.push_back(instance);
for (List<Instance *>::Element *E = instance->room_info->owned_portal_instances.front(); E; E = E->next())
_instance_queue_update(E->get(), false);
} else if (instance->base_type == INSTANCE_PORTAL) {
instance->RE = room->room_info->owned_portal_instances.push_back(instance);
} else if (instance->base_type == INSTANCE_LIGHT) {
instance->RE = room->room_info->owned_light_instances.push_back(instance);
} else {
ERR_FAIL();
}
instance->room = room;
}
RID VisualServerRaster::instance_get_room(RID p_instance) const {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, RID());
if (instance->room)
return instance->room->self;
else
return RID();
}
void VisualServerRaster::instance_set_extra_visibility_margin(RID p_instance, real_t p_margin) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
instance->extra_margin = p_margin;
}
real_t VisualServerRaster::instance_get_extra_visibility_margin(RID p_instance) const {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, 0);
return instance->extra_margin;
}
Vector<RID> VisualServerRaster::instances_cull_aabb(const AABB &p_aabb, RID p_scenario) const {
Vector<RID> instances;
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND_V(!scenario, instances);
const_cast<VisualServerRaster *>(this)->_update_instances(); // check dirty instances before culling
int culled = 0;
Instance *cull[1024];
culled = scenario->octree.cull_AABB(p_aabb, cull, 1024);
for (int i = 0; i < culled; i++) {
Instance *instance = cull[i];
ERR_CONTINUE(!instance);
instances.push_back(instance->self);
}
return instances;
}
Vector<RID> VisualServerRaster::instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario) const {
Vector<RID> instances;
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND_V(!scenario, instances);
const_cast<VisualServerRaster *>(this)->_update_instances(); // check dirty instances before culling
int culled = 0;
Instance *cull[1024];
culled = scenario->octree.cull_segment(p_from, p_to * 10000, cull, 1024);
for (int i = 0; i < culled; i++) {
Instance *instance = cull[i];
ERR_CONTINUE(!instance);
instances.push_back(instance->self);
}
return instances;
}
Vector<RID> VisualServerRaster::instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario) const {
Vector<RID> instances;
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND_V(!scenario, instances);
const_cast<VisualServerRaster *>(this)->_update_instances(); // check dirty instances before culling
int culled = 0;
Instance *cull[1024];
culled = scenario->octree.cull_convex(p_convex, cull, 1024);
for (int i = 0; i < culled; i++) {
Instance *instance = cull[i];
ERR_CONTINUE(!instance);
instances.push_back(instance->self);
}
return instances;
}
void VisualServerRaster::instance_geometry_set_flag(RID p_instance, InstanceFlags p_flags, bool p_enabled) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
// ERR_FAIL_COND( ! ( (1<<instance->base_type) & INSTANCE_GEOMETRY_MASK) );
switch (p_flags) {
case INSTANCE_FLAG_VISIBLE: {
instance->visible = p_enabled;
} break;
case INSTANCE_FLAG_BILLBOARD: {
instance->data.billboard = p_enabled;
} break;
case INSTANCE_FLAG_BILLBOARD_FIX_Y: {
instance->data.billboard_y = p_enabled;
} break;
case INSTANCE_FLAG_CAST_SHADOW: {
if (p_enabled == true) {
instance->data.cast_shadows = SHADOW_CASTING_SETTING_ON;
} else {
instance->data.cast_shadows = SHADOW_CASTING_SETTING_OFF;
}
} break;
case INSTANCE_FLAG_RECEIVE_SHADOWS: {
instance->data.receive_shadows = p_enabled;
} break;
case INSTANCE_FLAG_DEPH_SCALE: {
instance->data.depth_scale = p_enabled;
} break;
case INSTANCE_FLAG_VISIBLE_IN_ALL_ROOMS: {
instance->visible_in_all_rooms = p_enabled;
} break;
}
}
bool VisualServerRaster::instance_geometry_get_flag(RID p_instance, InstanceFlags p_flags) const {
const Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, false);
// ERR_FAIL_COND_V( ! ( (1<<instance->base_type) & INSTANCE_GEOMETRY_MASK), false );
switch (p_flags) {
case INSTANCE_FLAG_VISIBLE: {
return instance->visible;
} break;
case INSTANCE_FLAG_BILLBOARD: {
return instance->data.billboard;
} break;
case INSTANCE_FLAG_BILLBOARD_FIX_Y: {
return instance->data.billboard_y;
} break;
case INSTANCE_FLAG_CAST_SHADOW: {
if (instance->data.cast_shadows == SHADOW_CASTING_SETTING_OFF) {
return false;
} else {
return true;
}
} break;
case INSTANCE_FLAG_RECEIVE_SHADOWS: {
return instance->data.receive_shadows;
} break;
case INSTANCE_FLAG_DEPH_SCALE: {
return instance->data.depth_scale;
} break;
case INSTANCE_FLAG_VISIBLE_IN_ALL_ROOMS: {
return instance->visible_in_all_rooms;
} break;
}
return false;
}
void VisualServerRaster::instance_geometry_set_cast_shadows_setting(RID p_instance, VS::ShadowCastingSetting p_shadow_casting_setting) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
instance->data.cast_shadows = p_shadow_casting_setting;
}
VS::ShadowCastingSetting VisualServerRaster::instance_geometry_get_cast_shadows_setting(RID p_instance) const {
const Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, SHADOW_CASTING_SETTING_OFF);
return instance->data.cast_shadows;
}
void VisualServerRaster::instance_geometry_set_material_override(RID p_instance, RID p_material) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
instance->data.material_override = p_material;
}
RID VisualServerRaster::instance_geometry_get_material_override(RID p_instance) const {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, RID());
return instance->data.material_override;
}
void VisualServerRaster::instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
instance->draw_range_begin = p_min;
instance->draw_range_end = p_max;
}
float VisualServerRaster::instance_geometry_get_draw_range_min(RID p_instance) const {
const Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, 0);
return instance->draw_range_begin;
}
float VisualServerRaster::instance_geometry_get_draw_range_max(RID p_instance) const {
const Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, 0);
return instance->draw_range_end;
}
void VisualServerRaster::instance_geometry_set_baked_light(RID p_instance, RID p_baked_light) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (instance->baked_light) {
instance->baked_light->baked_light_info->owned_instances.erase(instance->BLE);
instance->BLE = NULL;
instance->baked_light = NULL;
instance->data.baked_light = NULL;
instance->data.baked_light_octree_xform = NULL;
}
if (!p_baked_light.is_valid())
return;
Instance *bl_instance = instance_owner.get(p_baked_light);
ERR_FAIL_COND(!bl_instance);
ERR_FAIL_COND(bl_instance->base_type != INSTANCE_BAKED_LIGHT);
instance->baked_light = bl_instance;
instance->BLE = bl_instance->baked_light_info->owned_instances.push_back(instance);
instance->data.baked_light = &bl_instance->baked_light_info->baked_light->data;
instance->data.baked_light_octree_xform = &bl_instance->baked_light_info->affine_inverse;
}
RID VisualServerRaster::instance_geometry_get_baked_light(RID p_instance) const {
const Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, RID());
if (instance->baked_light)
return instance->baked_light->self;
return RID();
}
void VisualServerRaster::instance_geometry_set_baked_light_sampler(RID p_instance, RID p_baked_light_sampler) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (instance->sampled_light) {
instance->sampled_light->baked_light_sampler_info->owned_instances.erase(instance);
instance->data.sampled_light = RID();
}
if (p_baked_light_sampler.is_valid()) {
Instance *sampler_instance = instance_owner.get(p_baked_light_sampler);
ERR_FAIL_COND(!sampler_instance);
ERR_FAIL_COND(sampler_instance->base_type != INSTANCE_BAKED_LIGHT_SAMPLER);
instance->sampled_light = sampler_instance;
instance->sampled_light->baked_light_sampler_info->owned_instances.insert(instance);
} else {
instance->sampled_light = NULL;
}
instance->data.sampled_light = RID();
}
RID VisualServerRaster::instance_geometry_get_baked_light_sampler(RID p_instance) const {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, RID());
if (instance->sampled_light)
return instance->sampled_light->self;
else
return RID();
}
void VisualServerRaster::instance_geometry_set_baked_light_texture_index(RID p_instance, int p_tex_id) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
instance->data.baked_lightmap_id = p_tex_id;
}
int VisualServerRaster::instance_geometry_get_baked_light_texture_index(RID p_instance) const {
const Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, 0);
return instance->data.baked_lightmap_id;
}
void VisualServerRaster::_update_instance(Instance *p_instance) {
p_instance->version++;
if (p_instance->base_type == INSTANCE_LIGHT) {
rasterizer->light_instance_set_transform(p_instance->light_info->instance, p_instance->data.transform);
}
if (p_instance->aabb.has_no_surface())
return;
if (p_instance->base_type == INSTANCE_PARTICLES) {
rasterizer->particles_instance_set_transform(p_instance->particles_info->instance, p_instance->data.transform);
}
if ((1 << p_instance->base_type) & INSTANCE_GEOMETRY_MASK) {
//make sure lights are updated
InstanceSet::Element *E = p_instance->lights.front();
while (E) {
E->get()->version++;
E = E->next();
}
} else if (p_instance->base_type == INSTANCE_ROOM) {
p_instance->room_info->affine_inverse = p_instance->data.transform.affine_inverse();
} else if (p_instance->base_type == INSTANCE_BAKED_LIGHT) {
Transform scale;
scale.basis.scale(p_instance->baked_light_info->baked_light->octree_aabb.size);
scale.origin = p_instance->baked_light_info->baked_light->octree_aabb.pos;
//print_line("scale: "+scale);
p_instance->baked_light_info->affine_inverse = (p_instance->data.transform * scale).affine_inverse();
}
p_instance->data.mirror = p_instance->data.transform.basis.determinant() < 0.0;
AABB new_aabb;
if (p_instance->base_type == INSTANCE_PORTAL) {
//portals need to be transformed in a special way, so they don't become too wide if they have scale..
Transform portal_xform = p_instance->data.transform;
portal_xform.basis.set_axis(2, portal_xform.basis.get_axis(2).normalized());
p_instance->portal_info->plane_cache = Plane(p_instance->data.transform.origin, portal_xform.basis.get_axis(2));
int point_count = p_instance->portal_info->portal->shape.size();
p_instance->portal_info->transformed_point_cache.resize(point_count);
AABB portal_aabb;
for (int i = 0; i < point_count; i++) {
Point2 src = p_instance->portal_info->portal->shape[i];
Vector3 point = portal_xform.xform(Vector3(src.x, src.y, 0));
p_instance->portal_info->transformed_point_cache[i] = point;
if (i == 0)
portal_aabb.pos = point;
else
portal_aabb.expand_to(point);
}
portal_aabb.grow_by(p_instance->portal_info->portal->connect_range);
new_aabb = portal_aabb;
} else {
new_aabb = p_instance->data.transform.xform(p_instance->aabb);
}
for (InstanceSet::Element *E = p_instance->lights.front(); E; E = E->next()) {
Instance *light = E->get();
light->version++;
}
p_instance->transformed_aabb = new_aabb;
if (!p_instance->scenario) {
return;
}
if (p_instance->octree_id == 0) {
uint32_t base_type = 1 << p_instance->base_type;
uint32_t pairable_mask = 0;
bool pairable = false;
if (p_instance->base_type == INSTANCE_LIGHT) {
pairable_mask = p_instance->light_info->enabled ? INSTANCE_GEOMETRY_MASK : 0;
pairable = true;
}
if (p_instance->base_type == INSTANCE_PORTAL) {
pairable_mask = (1 << INSTANCE_PORTAL);
pairable = true;
}
if (p_instance->base_type == INSTANCE_BAKED_LIGHT_SAMPLER) {
pairable_mask = (1 << INSTANCE_BAKED_LIGHT);
pairable = true;
}
if (!p_instance->room && (1 << p_instance->base_type) & INSTANCE_GEOMETRY_MASK) {
base_type |= INSTANCE_ROOMLESS_MASK;
}
if (p_instance->base_type == INSTANCE_ROOM) {
pairable_mask = INSTANCE_ROOMLESS_MASK;
pairable = true;
}
// not inside octree
p_instance->octree_id = p_instance->scenario->octree.create(p_instance, new_aabb, 0, pairable, base_type, pairable_mask);
} else {
// if (new_aabb==p_instance->data.transformed_aabb)
// return;
p_instance->scenario->octree.move(p_instance->octree_id, new_aabb);
}
if (p_instance->base_type == INSTANCE_PORTAL) {
_portal_attempt_connect(p_instance);
}
if (!p_instance->room && (1 << p_instance->base_type) & INSTANCE_GEOMETRY_MASK) {
_instance_validate_autorooms(p_instance);
}
if (p_instance->base_type == INSTANCE_ROOM) {
for (Set<Instance *>::Element *E = p_instance->room_info->owned_autoroom_geometry.front(); E; E = E->next())
_instance_validate_autorooms(E->get());
}
}
void VisualServerRaster::_update_instance_aabb(Instance *p_instance) {
AABB new_aabb;
ERR_FAIL_COND(p_instance->base_type != INSTANCE_NONE && !p_instance->base_rid.is_valid());
switch (p_instance->base_type) {
case VisualServer::INSTANCE_NONE: {
// do nothing
} break;
case VisualServer::INSTANCE_MESH: {
new_aabb = rasterizer->mesh_get_aabb(p_instance->base_rid, p_instance->data.skeleton);
} break;
case VisualServer::INSTANCE_MULTIMESH: {
new_aabb = rasterizer->multimesh_get_aabb(p_instance->base_rid);
} break;
case VisualServer::INSTANCE_IMMEDIATE: {
new_aabb = rasterizer->immediate_get_aabb(p_instance->base_rid);
} break;
case VisualServer::INSTANCE_PARTICLES: {
new_aabb = rasterizer->particles_get_aabb(p_instance->base_rid);
} break;
case VisualServer::INSTANCE_LIGHT: {
new_aabb = rasterizer->light_get_aabb(p_instance->base_rid);
} break;
case VisualServer::INSTANCE_ROOM: {
Room *room = room_owner.get(p_instance->base_rid);
ERR_FAIL_COND(!room);
new_aabb = room->bounds.get_aabb();
} break;
case VisualServer::INSTANCE_PORTAL: {
Portal *portal = portal_owner.get(p_instance->base_rid);
ERR_FAIL_COND(!portal);
for (int i = 0; i < portal->shape.size(); i++) {
Vector3 point(portal->shape[i].x, portal->shape[i].y, 0);
if (i == 0) {
new_aabb.pos = point;
new_aabb.size.z = 0.01; // make it not flat for octree
} else {
new_aabb.expand_to(point);
}
}
} break;
case VisualServer::INSTANCE_BAKED_LIGHT: {
BakedLight *baked_light = baked_light_owner.get(p_instance->base_rid);
ERR_FAIL_COND(!baked_light);
new_aabb = baked_light->octree_aabb;
} break;
case VisualServer::INSTANCE_BAKED_LIGHT_SAMPLER: {
BakedLightSampler *baked_light_sampler = baked_light_sampler_owner.get(p_instance->base_rid);
ERR_FAIL_COND(!baked_light_sampler);
float radius = baked_light_sampler->params[VS::BAKED_LIGHT_SAMPLER_RADIUS];
new_aabb = AABB(Vector3(-radius, -radius, -radius), Vector3(radius * 2, radius * 2, radius * 2));
} break;
default: {}
}
if (p_instance->extra_margin)
new_aabb.grow_by(p_instance->extra_margin);
p_instance->aabb = new_aabb;
}
void VisualServerRaster::_update_instances() {
while (instance_update_list) {
Instance *instance = instance_update_list;
instance_update_list = instance_update_list->update_next;
if (instance->update_aabb)
_update_instance_aabb(instance);
if (instance->update_materials) {
if (instance->base_type == INSTANCE_MESH) {
instance->data.materials.resize(rasterizer->mesh_get_surface_count(instance->base_rid));
}
}
_update_instance(instance);
instance->update = false;
instance->update_aabb = false;
instance->update_materials = false;
instance->update_next = 0;
}
}
void VisualServerRaster::instance_light_set_enabled(RID p_instance, bool p_enabled) {
VS_CHANGED;
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
ERR_FAIL_COND(instance->base_type != INSTANCE_LIGHT);
if (p_enabled == instance->light_info->enabled)
return;
instance->light_info->enabled = p_enabled;
if (light_get_type(instance->base_rid) != VS::LIGHT_DIRECTIONAL && instance->octree_id && instance->scenario)
instance->scenario->octree.set_pairable(instance->octree_id, p_enabled, 1 << INSTANCE_LIGHT, p_enabled ? INSTANCE_GEOMETRY_MASK : 0);
//_instance_queue_update( instance , true );
}
bool VisualServerRaster::instance_light_is_enabled(RID p_instance) const {
const Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND_V(!instance, false);
ERR_FAIL_COND_V(instance->base_type != INSTANCE_LIGHT, false);
return instance->light_info->enabled;
}
/****** CANVAS *********/
RID VisualServerRaster::canvas_create() {
Canvas *canvas = memnew(Canvas);
ERR_FAIL_COND_V(!canvas, RID());
RID rid = canvas_owner.make_rid(canvas);
return rid;
}
void VisualServerRaster::canvas_set_item_mirroring(RID p_canvas, RID p_item, const Point2 &p_mirroring) {
Canvas *canvas = canvas_owner.get(p_canvas);
ERR_FAIL_COND(!canvas);
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
int idx = canvas->find_item(canvas_item);
ERR_FAIL_COND(idx == -1);
canvas->child_items[idx].mirror = p_mirroring;
}
Point2 VisualServerRaster::canvas_get_item_mirroring(RID p_canvas, RID p_item) const {
Canvas *canvas = canvas_owner.get(p_canvas);
ERR_FAIL_COND_V(!canvas, Point2());
CanvasItem *canvas_item = memnew(CanvasItem);
ERR_FAIL_COND_V(!canvas_item, Point2());
int idx = canvas->find_item(canvas_item);
ERR_FAIL_COND_V(idx == -1, Point2());
return canvas->child_items[idx].mirror;
}
void VisualServerRaster::canvas_set_modulate(RID p_canvas, const Color &p_color) {
Canvas *canvas = canvas_owner.get(p_canvas);
ERR_FAIL_COND(!canvas);
canvas->modulate = p_color;
}
RID VisualServerRaster::canvas_item_create() {
CanvasItem *canvas_item = memnew(CanvasItem);
ERR_FAIL_COND_V(!canvas_item, RID());
return canvas_item_owner.make_rid(canvas_item);
}
void VisualServerRaster::canvas_item_set_parent(RID p_item, RID p_parent) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
if (canvas_item->parent.is_valid()) {
if (canvas_owner.owns(canvas_item->parent)) {
Canvas *canvas = canvas_owner.get(canvas_item->parent);
canvas->erase_item(canvas_item);
} else if (canvas_item_owner.owns(canvas_item->parent)) {
CanvasItem *item_owner = canvas_item_owner.get(canvas_item->parent);
item_owner->child_items.erase(canvas_item);
}
canvas_item->parent = RID();
}
if (p_parent.is_valid()) {
if (canvas_owner.owns(p_parent)) {
Canvas *canvas = canvas_owner.get(p_parent);
Canvas::ChildItem ci;
ci.item = canvas_item;
canvas->child_items.push_back(ci);
} else if (canvas_item_owner.owns(p_parent)) {
CanvasItem *item_owner = canvas_item_owner.get(p_parent);
item_owner->child_items.push_back(canvas_item);
} else {
ERR_EXPLAIN("Invalid parent");
ERR_FAIL();
}
}
canvas_item->parent = p_parent;
}
RID VisualServerRaster::canvas_item_get_parent(RID p_canvas_item) const {
CanvasItem *canvas_item = canvas_item_owner.get(p_canvas_item);
ERR_FAIL_COND_V(!canvas_item, RID());
return canvas_item->parent;
}
void VisualServerRaster::canvas_item_set_visible(RID p_item, bool p_visible) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
canvas_item->visible = p_visible;
}
bool VisualServerRaster::canvas_item_is_visible(RID p_item) const {
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND_V(!canvas_item, RID());
return canvas_item->visible;
}
void VisualServerRaster::canvas_item_set_light_mask(RID p_canvas_item, int p_mask) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_canvas_item);
ERR_FAIL_COND(!canvas_item);
if (canvas_item->light_mask == p_mask)
return;
VS_CHANGED;
canvas_item->light_mask = p_mask;
}
void VisualServerRaster::canvas_item_set_blend_mode(RID p_canvas_item, MaterialBlendMode p_blend) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_canvas_item);
ERR_FAIL_COND(!canvas_item);
if (canvas_item->blend_mode == p_blend)
return;
VS_CHANGED;
canvas_item->blend_mode = p_blend;
}
void VisualServerRaster::canvas_item_attach_viewport(RID p_canvas_item, RID p_viewport) {
CanvasItem *canvas_item = canvas_item_owner.get(p_canvas_item);
ERR_FAIL_COND(!canvas_item);
VS_CHANGED;
canvas_item->viewport = p_viewport;
}
/*
void VisualServerRaster::canvas_item_set_rect(RID p_item, const Rect2& p_rect) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get( p_item );
ERR_FAIL_COND(!canvas_item);
canvas_item->rect=p_rect;
}*/
void VisualServerRaster::canvas_item_set_clip(RID p_item, bool p_clip) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
canvas_item->clip = p_clip;
}
void VisualServerRaster::canvas_item_set_distance_field_mode(RID p_item, bool p_distance_field) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
canvas_item->distance_field = p_distance_field;
}
void VisualServerRaster::canvas_item_set_transform(RID p_item, const Matrix32 &p_transform) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
canvas_item->xform = p_transform;
}
void VisualServerRaster::canvas_item_set_custom_rect(RID p_item, bool p_custom_rect, const Rect2 &p_rect) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
canvas_item->custom_rect = p_custom_rect;
if (p_custom_rect)
canvas_item->rect = p_rect;
}
void VisualServerRaster::canvas_item_set_opacity(RID p_item, float p_opacity) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
canvas_item->opacity = p_opacity;
}
float VisualServerRaster::canvas_item_get_opacity(RID p_item, float p_opacity) const {
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND_V(!canvas_item, -1);
return canvas_item->opacity;
}
void VisualServerRaster::canvas_item_set_on_top(RID p_item, bool p_on_top) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
canvas_item->ontop = p_on_top;
}
bool VisualServerRaster::canvas_item_is_on_top(RID p_item) const {
const CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND_V(!canvas_item, false);
return canvas_item->ontop;
}
void VisualServerRaster::canvas_item_set_self_opacity(RID p_item, float p_self_opacity) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
canvas_item->self_opacity = p_self_opacity;
}
float VisualServerRaster::canvas_item_get_self_opacity(RID p_item, float p_self_opacity) const {
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND_V(!canvas_item, -1);
return canvas_item->self_opacity;
}
void VisualServerRaster::canvas_item_add_line(RID p_item, const Point2 &p_from, const Point2 &p_to, const Color &p_color, float p_width) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
CanvasItem::CommandLine *line = memnew(CanvasItem::CommandLine);
ERR_FAIL_COND(!line);
line->color = p_color;
line->from = p_from;
line->to = p_to;
line->width = p_width;
canvas_item->rect_dirty = true;
canvas_item->commands.push_back(line);
}
void VisualServerRaster::canvas_item_add_rect(RID p_item, const Rect2 &p_rect, const Color &p_color) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
CanvasItem::CommandRect *rect = memnew(CanvasItem::CommandRect);
ERR_FAIL_COND(!rect);
rect->modulate = p_color;
rect->rect = p_rect;
canvas_item->rect_dirty = true;
canvas_item->commands.push_back(rect);
}
void VisualServerRaster::canvas_item_add_circle(RID p_item, const Point2 &p_pos, float p_radius, const Color &p_color) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
CanvasItem::CommandCircle *circle = memnew(CanvasItem::CommandCircle);
ERR_FAIL_COND(!circle);
circle->color = p_color;
circle->pos = p_pos;
circle->radius = p_radius;
canvas_item->commands.push_back(circle);
}
void VisualServerRaster::canvas_item_add_texture_rect(RID p_item, const Rect2 &p_rect, RID p_texture, bool p_tile, const Color &p_modulate, bool p_transpose) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
CanvasItem::CommandRect *rect = memnew(CanvasItem::CommandRect);
ERR_FAIL_COND(!rect);
rect->modulate = p_modulate;
rect->rect = p_rect;
rect->flags = 0;
if (p_tile) {
rect->flags |= Rasterizer::CANVAS_RECT_TILE;
rect->flags |= Rasterizer::CANVAS_RECT_REGION;
rect->source = Rect2(0, 0, p_rect.size.width, p_rect.size.height);
}
if (p_rect.size.x < 0) {
rect->flags |= Rasterizer::CANVAS_RECT_FLIP_H;
rect->rect.size.x = -rect->rect.size.x;
}
if (p_rect.size.y < 0) {
rect->flags |= Rasterizer::CANVAS_RECT_FLIP_V;
rect->rect.size.y = -rect->rect.size.y;
}
if (p_transpose) {
rect->flags |= Rasterizer::CANVAS_RECT_TRANSPOSE;
SWAP(rect->rect.size.x, rect->rect.size.y);
}
rect->texture = p_texture;
canvas_item->rect_dirty = true;
canvas_item->commands.push_back(rect);
}
void VisualServerRaster::canvas_item_add_texture_rect_region(RID p_item, const Rect2 &p_rect, RID p_texture, const Rect2 &p_src_rect, const Color &p_modulate, bool p_transpose) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
CanvasItem::CommandRect *rect = memnew(CanvasItem::CommandRect);
ERR_FAIL_COND(!rect);
rect->modulate = p_modulate;
rect->rect = p_rect;
rect->texture = p_texture;
rect->source = p_src_rect;
rect->flags = Rasterizer::CANVAS_RECT_REGION;
if (p_rect.size.x < 0) {
rect->flags |= Rasterizer::CANVAS_RECT_FLIP_H;
rect->rect.size.x = -rect->rect.size.x;
}
if (p_rect.size.y < 0) {
rect->flags |= Rasterizer::CANVAS_RECT_FLIP_V;
rect->rect.size.y = -rect->rect.size.y;
}
if (p_transpose) {
rect->flags |= Rasterizer::CANVAS_RECT_TRANSPOSE;
SWAP(rect->rect.size.x, rect->rect.size.y);
}
canvas_item->rect_dirty = true;
canvas_item->commands.push_back(rect);
}
void VisualServerRaster::canvas_item_add_style_box(RID p_item, const Rect2 &p_rect, const Rect2 &p_source, RID p_texture, const Vector2 &p_topleft, const Vector2 &p_bottomright, bool p_draw_center, const Color &p_modulate) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
CanvasItem::CommandStyle *style = memnew(CanvasItem::CommandStyle);
ERR_FAIL_COND(!style);
style->texture = p_texture;
style->rect = p_rect;
style->source = p_source;
style->draw_center = p_draw_center;
style->color = p_modulate;
style->margin[MARGIN_LEFT] = p_topleft.x;
style->margin[MARGIN_TOP] = p_topleft.y;
style->margin[MARGIN_RIGHT] = p_bottomright.x;
style->margin[MARGIN_BOTTOM] = p_bottomright.y;
canvas_item->rect_dirty = true;
canvas_item->commands.push_back(style);
}
void VisualServerRaster::canvas_item_add_primitive(RID p_item, const Vector<Point2> &p_points, const Vector<Color> &p_colors, const Vector<Point2> &p_uvs, RID p_texture, float p_width) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
CanvasItem::CommandPrimitive *prim = memnew(CanvasItem::CommandPrimitive);
ERR_FAIL_COND(!prim);
prim->texture = p_texture;
prim->points = p_points;
prim->uvs = p_uvs;
prim->colors = p_colors;
prim->width = p_width;
canvas_item->rect_dirty = true;
canvas_item->commands.push_back(prim);
}
void VisualServerRaster::canvas_item_add_polygon(RID p_item, const Vector<Point2> &p_points, const Vector<Color> &p_colors, const Vector<Point2> &p_uvs, RID p_texture) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
#ifdef DEBUG_ENABLED
int pointcount = p_points.size();
ERR_FAIL_COND(pointcount < 3);
int color_size = p_colors.size();
int uv_size = p_uvs.size();
ERR_FAIL_COND(color_size != 0 && color_size != 1 && color_size != pointcount);
ERR_FAIL_COND(uv_size != 0 && (uv_size != pointcount || !p_texture.is_valid()));
#endif
Vector<int> indices = Geometry::triangulate_polygon(p_points);
if (indices.empty()) {
ERR_EXPLAIN("Bad Polygon!");
ERR_FAIL_V();
}
CanvasItem::CommandPolygon *polygon = memnew(CanvasItem::CommandPolygon);
ERR_FAIL_COND(!polygon);
polygon->texture = p_texture;
polygon->points = p_points;
polygon->uvs = p_uvs;
polygon->colors = p_colors;
polygon->indices = indices;
polygon->count = indices.size();
canvas_item->rect_dirty = true;
canvas_item->commands.push_back(polygon);
}
void VisualServerRaster::canvas_item_add_triangle_array_ptr(RID p_item, int p_count, const int *p_indices, const Point2 *p_points, const Color *p_colors, const Point2 *p_uvs, RID p_texture) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
ERR_FAIL_COND(p_count <= 0);
ERR_FAIL_COND(p_points == NULL);
CanvasItem::CommandPolygonPtr *polygon = memnew(CanvasItem::CommandPolygonPtr);
ERR_FAIL_COND(!polygon);
polygon->texture = p_texture;
polygon->points = p_points;
polygon->uvs = p_uvs;
polygon->colors = p_colors;
polygon->indices = p_indices;
polygon->count = p_count * 3;
canvas_item->rect_dirty = true;
canvas_item->commands.push_back(polygon);
};
void VisualServerRaster::canvas_item_add_triangle_array(RID p_item, const Vector<int> &p_indices, const Vector<Point2> &p_points, const Vector<Color> &p_colors, const Vector<Point2> &p_uvs, RID p_texture, int p_count) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
int ps = p_points.size();
ERR_FAIL_COND(!p_colors.empty() && p_colors.size() != ps && p_colors.size() != 1);
ERR_FAIL_COND(!p_uvs.empty() && p_uvs.size() != ps);
Vector<int> indices = p_indices;
int count = p_count * 3;
if (indices.empty()) {
ERR_FAIL_COND(ps % 3 != 0);
if (p_count == -1)
count = ps;
} else {
ERR_FAIL_COND(indices.size() % 3 != 0);
if (p_count == -1)
count = indices.size();
}
CanvasItem::CommandPolygon *polygon = memnew(CanvasItem::CommandPolygon);
ERR_FAIL_COND(!polygon);
polygon->texture = p_texture;
polygon->points = p_points;
polygon->uvs = p_uvs;
polygon->colors = p_colors;
polygon->indices = indices;
polygon->count = count;
canvas_item->rect_dirty = true;
canvas_item->commands.push_back(polygon);
}
void VisualServerRaster::canvas_item_add_set_transform(RID p_item, const Matrix32 &p_transform) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
CanvasItem::CommandTransform *tr = memnew(CanvasItem::CommandTransform);
ERR_FAIL_COND(!tr);
tr->xform = p_transform;
canvas_item->commands.push_back(tr);
}
void VisualServerRaster::canvas_item_add_set_blend_mode(RID p_item, MaterialBlendMode p_blend) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
CanvasItem::CommandBlendMode *bm = memnew(CanvasItem::CommandBlendMode);
ERR_FAIL_COND(!bm);
bm->blend_mode = p_blend;
canvas_item->commands.push_back(bm);
};
void VisualServerRaster::canvas_item_set_z(RID p_item, int p_z) {
ERR_FAIL_COND(p_z < CANVAS_ITEM_Z_MIN || p_z > CANVAS_ITEM_Z_MAX);
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
canvas_item->z = p_z;
}
void VisualServerRaster::canvas_item_set_z_as_relative_to_parent(RID p_item, bool p_enable) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
canvas_item->z_relative = p_enable;
}
void VisualServerRaster::canvas_item_set_copy_to_backbuffer(RID p_item, bool p_enable, const Rect2 &p_rect) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
if (bool(canvas_item->copy_back_buffer != NULL) != p_enable) {
if (p_enable) {
canvas_item->copy_back_buffer = memnew(Rasterizer::CanvasItem::CopyBackBuffer);
} else {
memdelete(canvas_item->copy_back_buffer);
canvas_item->copy_back_buffer = NULL;
}
}
if (p_enable) {
canvas_item->copy_back_buffer->rect = p_rect;
canvas_item->copy_back_buffer->full = p_rect == Rect2();
}
}
void VisualServerRaster::canvas_item_set_use_parent_material(RID p_item, bool p_enable) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
canvas_item->use_parent_material = p_enable;
}
void VisualServerRaster::canvas_item_set_material(RID p_item, RID p_material) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
if (canvas_item->material)
canvas_item->material->owners.erase(canvas_item);
canvas_item->material = NULL;
if (canvas_item_material_owner.owns(p_material)) {
canvas_item->material = canvas_item_material_owner.get(p_material);
canvas_item->material->owners.insert(canvas_item);
}
}
void VisualServerRaster::canvas_item_set_sort_children_by_y(RID p_item, bool p_enable) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
canvas_item->sort_y = p_enable;
}
void VisualServerRaster::canvas_item_add_clip_ignore(RID p_item, bool p_ignore) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
CanvasItem::CommandClipIgnore *ci = memnew(CanvasItem::CommandClipIgnore);
ERR_FAIL_COND(!ci);
ci->ignore = p_ignore;
canvas_item->commands.push_back(ci);
}
void VisualServerRaster::canvas_item_clear(RID p_item) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
canvas_item->clear();
}
void VisualServerRaster::canvas_item_raise(RID p_item) {
VS_CHANGED;
CanvasItem *canvas_item = canvas_item_owner.get(p_item);
ERR_FAIL_COND(!canvas_item);
if (canvas_item->parent.is_valid()) {
if (canvas_owner.owns(canvas_item->parent)) {
Canvas *canvas = canvas_owner.get(canvas_item->parent);
int idx = canvas->find_item(canvas_item);
ERR_FAIL_COND(idx < 0);
Canvas::ChildItem ci = canvas->child_items[idx];
canvas->child_items.remove(idx);
canvas->child_items.push_back(ci);
} else if (canvas_item_owner.owns(canvas_item->parent)) {
CanvasItem *item_owner = canvas_item_owner.get(canvas_item->parent);
int idx = item_owner->child_items.find(canvas_item);
ERR_FAIL_COND(idx < 0);
item_owner->child_items.remove(idx);
item_owner->child_items.push_back(canvas_item);
}
}
}
/***** CANVAS LIGHT *******/
RID VisualServerRaster::canvas_light_create() {
Rasterizer::CanvasLight *clight = memnew(Rasterizer::CanvasLight);
return canvas_light_owner.make_rid(clight);
}
void VisualServerRaster::canvas_light_attach_to_canvas(RID p_light, RID p_canvas) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
if (clight->canvas.is_valid()) {
Canvas *canvas = canvas_owner.get(clight->canvas);
canvas->lights.erase(clight);
}
if (!canvas_owner.owns(p_canvas))
p_canvas = RID();
clight->canvas = p_canvas;
if (clight->canvas.is_valid()) {
Canvas *canvas = canvas_owner.get(clight->canvas);
canvas->lights.insert(clight);
}
}
void VisualServerRaster::canvas_light_set_enabled(RID p_light, bool p_enabled) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->enabled = p_enabled;
}
void VisualServerRaster::canvas_light_set_transform(RID p_light, const Matrix32 &p_transform) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->xform = p_transform;
}
void VisualServerRaster::canvas_light_set_scale(RID p_light, float p_scale) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->scale = p_scale;
}
void VisualServerRaster::canvas_light_set_texture(RID p_light, RID p_texture) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->texture = p_texture;
}
void VisualServerRaster::canvas_light_set_texture_offset(RID p_light, const Vector2 &p_offset) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->texture_offset = p_offset;
}
void VisualServerRaster::canvas_light_set_color(RID p_light, const Color &p_color) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->color = p_color;
}
void VisualServerRaster::canvas_light_set_height(RID p_light, float p_height) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->height = p_height;
}
void VisualServerRaster::canvas_light_set_energy(RID p_light, float p_energy) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->energy = p_energy;
}
void VisualServerRaster::canvas_light_set_z_range(RID p_light, int p_min_z, int p_max_z) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->z_min = p_min_z;
clight->z_max = p_max_z;
}
void VisualServerRaster::canvas_light_set_layer_range(RID p_light, int p_min_layer, int p_max_layer) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->layer_min = p_min_layer;
clight->layer_max = p_max_layer;
}
void VisualServerRaster::canvas_light_set_item_mask(RID p_light, int p_mask) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->item_mask = p_mask;
}
void VisualServerRaster::canvas_light_set_item_shadow_mask(RID p_light, int p_mask) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->item_shadow_mask = p_mask;
}
void VisualServerRaster::canvas_light_set_mode(RID p_light, CanvasLightMode p_mode) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->mode = p_mode;
}
void VisualServerRaster::canvas_light_set_shadow_enabled(RID p_light, bool p_enabled) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
if (clight->shadow_buffer.is_valid() == p_enabled)
return;
if (p_enabled) {
clight->shadow_buffer = rasterizer->canvas_light_shadow_buffer_create(clight->shadow_buffer_size);
} else {
rasterizer->free(clight->shadow_buffer);
clight->shadow_buffer = RID();
}
}
void VisualServerRaster::canvas_light_set_shadow_buffer_size(RID p_light, int p_size) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
ERR_FAIL_COND(p_size < 32 || p_size > 16384);
clight->shadow_buffer_size = nearest_power_of_2(p_size);
if (clight->shadow_buffer.is_valid()) {
rasterizer->free(clight->shadow_buffer);
clight->shadow_buffer = rasterizer->canvas_light_shadow_buffer_create(clight->shadow_buffer_size);
}
}
void VisualServerRaster::canvas_light_set_shadow_esm_multiplier(RID p_light, float p_multiplier) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->shadow_esm_mult = p_multiplier;
}
void VisualServerRaster::canvas_light_set_shadow_color(RID p_light, const Color &p_color) {
Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light);
ERR_FAIL_COND(!clight);
clight->shadow_color = p_color;
}
/****** CANVAS LIGHT OCCLUDER ******/
RID VisualServerRaster::canvas_light_occluder_create() {
Rasterizer::CanvasLightOccluderInstance *occluder = memnew(Rasterizer::CanvasLightOccluderInstance);
return canvas_light_occluder_owner.make_rid(occluder);
}
void VisualServerRaster::canvas_light_occluder_attach_to_canvas(RID p_occluder, RID p_canvas) {
Rasterizer::CanvasLightOccluderInstance *occluder = canvas_light_occluder_owner.get(p_occluder);
ERR_FAIL_COND(!occluder);
if (occluder->canvas.is_valid()) {
Canvas *canvas = canvas_owner.get(occluder->canvas);
canvas->occluders.erase(occluder);
}
if (!canvas_owner.owns(p_canvas))
p_canvas = RID();
occluder->canvas = p_canvas;
if (occluder->canvas.is_valid()) {
Canvas *canvas = canvas_owner.get(occluder->canvas);
canvas->occluders.insert(occluder);
}
}
void VisualServerRaster::canvas_light_occluder_set_enabled(RID p_occluder, bool p_enabled) {
Rasterizer::CanvasLightOccluderInstance *occluder = canvas_light_occluder_owner.get(p_occluder);
ERR_FAIL_COND(!occluder);
occluder->enabled = p_enabled;
}
void VisualServerRaster::canvas_light_occluder_set_polygon(RID p_occluder, RID p_polygon) {
Rasterizer::CanvasLightOccluderInstance *occluder = canvas_light_occluder_owner.get(p_occluder);
ERR_FAIL_COND(!occluder);
if (occluder->polygon.is_valid()) {
CanvasLightOccluderPolygon *occluder_poly = canvas_light_occluder_polygon_owner.get(p_polygon);
if (occluder_poly) {
occluder_poly->owners.erase(occluder);
}
}
occluder->polygon = p_polygon;
occluder->polygon_buffer = RID();
if (occluder->polygon.is_valid()) {
CanvasLightOccluderPolygon *occluder_poly = canvas_light_occluder_polygon_owner.get(p_polygon);
if (!occluder_poly)
occluder->polygon = RID();
ERR_FAIL_COND(!occluder_poly);
occluder_poly->owners.insert(occluder);
occluder->polygon_buffer = occluder_poly->occluder;
occluder->aabb_cache = occluder_poly->aabb;
occluder->cull_cache = occluder_poly->cull_mode;
}
}
void VisualServerRaster::canvas_light_occluder_set_transform(RID p_occluder, const Matrix32 &p_xform) {
Rasterizer::CanvasLightOccluderInstance *occluder = canvas_light_occluder_owner.get(p_occluder);
ERR_FAIL_COND(!occluder);
occluder->xform = p_xform;
}
void VisualServerRaster::canvas_light_occluder_set_light_mask(RID p_occluder, int p_mask) {
Rasterizer::CanvasLightOccluderInstance *occluder = canvas_light_occluder_owner.get(p_occluder);
ERR_FAIL_COND(!occluder);
occluder->light_mask = p_mask;
}
RID VisualServerRaster::canvas_occluder_polygon_create() {
CanvasLightOccluderPolygon *occluder_poly = memnew(CanvasLightOccluderPolygon);
occluder_poly->occluder = rasterizer->canvas_light_occluder_create();
return canvas_light_occluder_polygon_owner.make_rid(occluder_poly);
}
void VisualServerRaster::canvas_occluder_polygon_set_shape(RID p_occluder_polygon, const DVector<Vector2> &p_shape, bool p_close) {
if (p_shape.size() < 3) {
canvas_occluder_polygon_set_shape_as_lines(p_occluder_polygon, p_shape);
return;
}
DVector<Vector2> lines;
int lc = p_shape.size() * 2;
lines.resize(lc - (p_close ? 0 : 2));
{
DVector<Vector2>::Write w = lines.write();
DVector<Vector2>::Read r = p_shape.read();
int max = lc / 2;
if (!p_close) {
max--;
}
for (int i = 0; i < max; i++) {
Vector2 a = r[i];
Vector2 b = r[(i + 1) % (lc / 2)];
w[i * 2 + 0] = a;
w[i * 2 + 1] = b;
}
}
canvas_occluder_polygon_set_shape_as_lines(p_occluder_polygon, lines);
}
void VisualServerRaster::canvas_occluder_polygon_set_shape_as_lines(RID p_occluder_polygon, const DVector<Vector2> &p_shape) {
CanvasLightOccluderPolygon *occluder_poly = canvas_light_occluder_polygon_owner.get(p_occluder_polygon);
ERR_FAIL_COND(!occluder_poly);
ERR_FAIL_COND(p_shape.size() & 1);
int lc = p_shape.size();
occluder_poly->aabb = Rect2();
{
DVector<Vector2>::Read r = p_shape.read();
for (int i = 0; i < lc; i++) {
if (i == 0)
occluder_poly->aabb.pos = r[i];
else
occluder_poly->aabb.expand_to(r[i]);
}
}
rasterizer->canvas_light_occluder_set_polylines(occluder_poly->occluder, p_shape);
for (Set<Rasterizer::CanvasLightOccluderInstance *>::Element *E = occluder_poly->owners.front(); E; E = E->next()) {
E->get()->aabb_cache = occluder_poly->aabb;
}
}
void VisualServerRaster::canvas_occluder_polygon_set_cull_mode(RID p_occluder_polygon, CanvasOccluderPolygonCullMode p_mode) {
CanvasLightOccluderPolygon *occluder_poly = canvas_light_occluder_polygon_owner.get(p_occluder_polygon);
ERR_FAIL_COND(!occluder_poly);
occluder_poly->cull_mode = p_mode;
for (Set<Rasterizer::CanvasLightOccluderInstance *>::Element *E = occluder_poly->owners.front(); E; E = E->next()) {
E->get()->cull_cache = p_mode;
}
}
RID VisualServerRaster::canvas_item_material_create() {
Rasterizer::CanvasItemMaterial *material = memnew(Rasterizer::CanvasItemMaterial);
return canvas_item_material_owner.make_rid(material);
}
void VisualServerRaster::canvas_item_material_set_shader(RID p_material, RID p_shader) {
VS_CHANGED;
Rasterizer::CanvasItemMaterial *material = canvas_item_material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->shader = p_shader;
}
void VisualServerRaster::canvas_item_material_set_shader_param(RID p_material, const StringName &p_param, const Variant &p_value) {
VS_CHANGED;
Rasterizer::CanvasItemMaterial *material = canvas_item_material_owner.get(p_material);
ERR_FAIL_COND(!material);
if (p_value.get_type() == Variant::NIL)
material->shader_param.erase(p_param);
else
material->shader_param[p_param] = p_value;
}
Variant VisualServerRaster::canvas_item_material_get_shader_param(RID p_material, const StringName &p_param) const {
Rasterizer::CanvasItemMaterial *material = canvas_item_material_owner.get(p_material);
ERR_FAIL_COND_V(!material, Variant());
if (!material->shader_param.has(p_param)) {
ERR_FAIL_COND_V(!material->shader.is_valid(), Variant());
return rasterizer->shader_get_default_param(material->shader, p_param);
}
return material->shader_param[p_param];
}
void VisualServerRaster::canvas_item_material_set_shading_mode(RID p_material, CanvasItemShadingMode p_mode) {
VS_CHANGED;
Rasterizer::CanvasItemMaterial *material = canvas_item_material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->shading_mode = p_mode;
}
/******** CANVAS *********/
void VisualServerRaster::cursor_set_rotation(float p_rotation, int p_cursor) {
VS_CHANGED;
ERR_FAIL_INDEX(p_cursor, MAX_CURSORS);
cursors[p_cursor].rot = p_rotation;
};
void VisualServerRaster::cursor_set_texture(RID p_texture, const Point2 &p_center_offset, int p_cursor, const Rect2 &p_region) {
VS_CHANGED;
ERR_FAIL_INDEX(p_cursor, MAX_CURSORS);
cursors[p_cursor].texture = p_texture;
cursors[p_cursor].center = p_center_offset;
cursors[p_cursor].region = p_region;
};
void VisualServerRaster::cursor_set_visible(bool p_visible, int p_cursor) {
VS_CHANGED;
ERR_FAIL_INDEX(p_cursor, MAX_CURSORS);
cursors[p_cursor].visible = p_visible;
};
void VisualServerRaster::cursor_set_pos(const Point2 &p_pos, int p_cursor) {
ERR_FAIL_INDEX(p_cursor, MAX_CURSORS);
if (cursors[p_cursor].pos == p_pos)
return;
VS_CHANGED;
cursors[p_cursor].pos = p_pos;
};
void VisualServerRaster::black_bars_set_margins(int p_left, int p_top, int p_right, int p_bottom) {
black_margin[MARGIN_LEFT] = p_left;
black_margin[MARGIN_TOP] = p_top;
black_margin[MARGIN_RIGHT] = p_right;
black_margin[MARGIN_BOTTOM] = p_bottom;
}
void VisualServerRaster::black_bars_set_images(RID p_left, RID p_top, RID p_right, RID p_bottom) {
black_image[MARGIN_LEFT] = p_left;
black_image[MARGIN_TOP] = p_top;
black_image[MARGIN_RIGHT] = p_right;
black_image[MARGIN_BOTTOM] = p_bottom;
}
void VisualServerRaster::_free_attached_instances(RID p_rid, bool p_free_scenario) {
Map<RID, Set<RID> >::Element *E = instance_dependency_map.find(p_rid);
if (E) {
// has instances
while (E->get().size()) {
// erase all attached instances
if (p_free_scenario)
instance_set_scenario(E->get().front()->get(), RID());
else
instance_set_base(E->get().front()->get(), RID());
}
}
instance_dependency_map.erase(p_rid);
}
void VisualServerRaster::custom_shade_model_set_shader(int p_model, RID p_shader) {
VS_CHANGED;
// rasterizer->custom_shade_model_set_shader(p_model,p_shader);
}
RID VisualServerRaster::custom_shade_model_get_shader(int p_model) const {
//return rasterizer->custom_shade_model_get_shader(p_model);
return RID();
}
void VisualServerRaster::custom_shade_model_set_name(int p_model, const String &p_name) {
//rasterizer->custom_shade_model_set_name(p_model,p_name);
}
String VisualServerRaster::custom_shade_model_get_name(int p_model) const {
//return rasterizer->custom_shade_model_get_name(p_model);
return "";
}
void VisualServerRaster::custom_shade_model_set_param_info(int p_model, const List<PropertyInfo> &p_info) {
VS_CHANGED;
//rasterizer->custom_shade_model_set_param_info(p_model,p_info);
}
void VisualServerRaster::custom_shade_model_get_param_info(int p_model, List<PropertyInfo> *p_info) const {
//rasterizer->custom_shade_model_get_param_info(p_model,p_info);
}
void VisualServerRaster::free(RID p_rid) {
VS_CHANGED;
if (rasterizer->is_texture(p_rid) || rasterizer->is_material(p_rid) || rasterizer->is_shader(p_rid) || rasterizer->is_environment(p_rid)) {
rasterizer->free(p_rid);
} else if (rasterizer->is_skeleton(p_rid)) {
Map<RID, Set<Instance *> >::Element *E = skeleton_dependency_map.find(p_rid);
if (E) {
//detach skeletons
for (Set<Instance *>::Element *F = E->get().front(); F; F = F->next()) {
F->get()->data.skeleton = RID();
}
skeleton_dependency_map.erase(E);
}
rasterizer->free(p_rid);
} else if (rasterizer->is_mesh(p_rid) || rasterizer->is_multimesh(p_rid) || rasterizer->is_light(p_rid) || rasterizer->is_particles(p_rid) || rasterizer->is_immediate(p_rid)) {
//delete the resource
_free_attached_instances(p_rid);
rasterizer->free(p_rid);
} else if (room_owner.owns(p_rid)) {
_free_attached_instances(p_rid);
Room *room = room_owner.get(p_rid);
ERR_FAIL_COND(!room);
room_owner.free(p_rid);
memdelete(room);
} else if (portal_owner.owns(p_rid)) {
_free_attached_instances(p_rid);
Portal *portal = portal_owner.get(p_rid);
ERR_FAIL_COND(!portal);
portal_owner.free(p_rid);
memdelete(portal);
} else if (baked_light_owner.owns(p_rid)) {
_free_attached_instances(p_rid);
BakedLight *baked_light = baked_light_owner.get(p_rid);
ERR_FAIL_COND(!baked_light);
if (baked_light->data.octree_texture.is_valid())
rasterizer->free(baked_light->data.octree_texture);
baked_light_owner.free(p_rid);
memdelete(baked_light);
} else if (baked_light_sampler_owner.owns(p_rid)) {
_free_attached_instances(p_rid);
BakedLightSampler *baked_light_sampler = baked_light_sampler_owner.get(p_rid);
ERR_FAIL_COND(!baked_light_sampler);
//if (baked_light->data.octree_texture.is_valid())
// rasterizer->free(baked_light->data.octree_texture);
baked_light_sampler_owner.free(p_rid);
memdelete(baked_light_sampler);
} else if (camera_owner.owns(p_rid)) {
// delete te camera
Camera *camera = camera_owner.get(p_rid);
ERR_FAIL_COND(!camera);
camera_owner.free(p_rid);
memdelete(camera);
} else if (viewport_owner.owns(p_rid)) {
// delete the viewport
Viewport *viewport = viewport_owner.get(p_rid);
ERR_FAIL_COND(!viewport);
// Viewport *parent=NULL;
rasterizer->free(viewport->viewport_data);
if (viewport->render_target.is_valid()) {
rasterizer->free(viewport->render_target);
}
if (viewport->update_list.in_list())
viewport_update_list.remove(&viewport->update_list);
if (screen_viewports.has(p_rid))
screen_viewports.erase(p_rid);
while (viewport->canvas_map.size()) {
Canvas *c = viewport->canvas_map.front()->get().canvas;
c->viewports.erase(p_rid);
viewport->canvas_map.erase(viewport->canvas_map.front());
}
viewport_owner.free(p_rid);
memdelete(viewport);
} else if (instance_owner.owns(p_rid)) {
// delete the instance
_update_instances(); // be sure
Instance *instance = instance_owner.get(p_rid);
ERR_FAIL_COND(!instance);
instance_set_room(p_rid, RID());
instance_set_scenario(p_rid, RID());
instance_geometry_set_baked_light(p_rid, RID());
instance_geometry_set_baked_light_sampler(p_rid, RID());
instance_set_base(p_rid, RID());
if (instance->data.skeleton.is_valid())
instance_attach_skeleton(p_rid, RID());
instance_owner.free(p_rid);
memdelete(instance);
} else if (canvas_owner.owns(p_rid)) {
Canvas *canvas = canvas_owner.get(p_rid);
ERR_FAIL_COND(!canvas);
while (canvas->viewports.size()) {
Viewport *vp = viewport_owner.get(canvas->viewports.front()->get());
ERR_FAIL_COND(!vp);
Map<RID, Viewport::CanvasData>::Element *E = vp->canvas_map.find(p_rid);
ERR_FAIL_COND(!E);
vp->canvas_map.erase(p_rid);
canvas->viewports.erase(canvas->viewports.front());
}
for (int i = 0; i < canvas->child_items.size(); i++) {
canvas->child_items[i].item->parent = RID();
}
for (Set<Rasterizer::CanvasLight *>::Element *E = canvas->lights.front(); E; E = E->next()) {
E->get()->canvas = RID();
}
for (Set<Rasterizer::CanvasLightOccluderInstance *>::Element *E = canvas->occluders.front(); E; E = E->next()) {
E->get()->canvas = RID();
}
canvas_owner.free(p_rid);
memdelete(canvas);
} else if (canvas_item_owner.owns(p_rid)) {
CanvasItem *canvas_item = canvas_item_owner.get(p_rid);
ERR_FAIL_COND(!canvas_item);
if (canvas_item->parent.is_valid()) {
if (canvas_owner.owns(canvas_item->parent)) {
Canvas *canvas = canvas_owner.get(canvas_item->parent);
canvas->erase_item(canvas_item);
} else if (canvas_item_owner.owns(canvas_item->parent)) {
CanvasItem *item_owner = canvas_item_owner.get(canvas_item->parent);
item_owner->child_items.erase(canvas_item);
}
}
for (int i = 0; i < canvas_item->child_items.size(); i++) {
canvas_item->child_items[i]->parent = RID();
}
if (canvas_item->material) {
canvas_item->material->owners.erase(canvas_item);
}
canvas_item_owner.free(p_rid);
memdelete(canvas_item);
} else if (canvas_item_material_owner.owns(p_rid)) {
Rasterizer::CanvasItemMaterial *material = canvas_item_material_owner.get(p_rid);
ERR_FAIL_COND(!material);
for (Set<Rasterizer::CanvasItem *>::Element *E = material->owners.front(); E; E = E->next()) {
E->get()->material = NULL;
}
canvas_item_material_owner.free(p_rid);
memdelete(material);
} else if (canvas_light_owner.owns(p_rid)) {
Rasterizer::CanvasLight *canvas_light = canvas_light_owner.get(p_rid);
ERR_FAIL_COND(!canvas_light);
if (canvas_light->canvas.is_valid()) {
Canvas *canvas = canvas_owner.get(canvas_light->canvas);
if (canvas)
canvas->lights.erase(canvas_light);
}
if (canvas_light->shadow_buffer.is_valid())
rasterizer->free(canvas_light->shadow_buffer);
canvas_light_owner.free(p_rid);
memdelete(canvas_light);
} else if (canvas_light_occluder_owner.owns(p_rid)) {
Rasterizer::CanvasLightOccluderInstance *occluder = canvas_light_occluder_owner.get(p_rid);
ERR_FAIL_COND(!occluder);
if (occluder->polygon.is_valid()) {
CanvasLightOccluderPolygon *occluder_poly = canvas_light_occluder_polygon_owner.get(occluder->polygon);
if (occluder_poly) {
occluder_poly->owners.erase(occluder);
}
}
if (occluder->canvas.is_valid() && canvas_owner.owns(occluder->canvas)) {
Canvas *canvas = canvas_owner.get(occluder->canvas);
canvas->occluders.erase(occluder);
}
canvas_light_occluder_owner.free(p_rid);
memdelete(occluder);
} else if (canvas_light_occluder_polygon_owner.owns(p_rid)) {
CanvasLightOccluderPolygon *occluder_poly = canvas_light_occluder_polygon_owner.get(p_rid);
ERR_FAIL_COND(!occluder_poly);
rasterizer->free(occluder_poly->occluder);
while (occluder_poly->owners.size()) {
occluder_poly->owners.front()->get()->polygon = RID();
occluder_poly->owners.erase(occluder_poly->owners.front());
}
canvas_light_occluder_polygon_owner.free(p_rid);
memdelete(occluder_poly);
} else if (scenario_owner.owns(p_rid)) {
Scenario *scenario = scenario_owner.get(p_rid);
ERR_FAIL_COND(!scenario);
_update_instances(); // be sure
_free_attached_instances(p_rid, true);
//rasterizer->free( scenario->environment );
scenario_owner.free(p_rid);
memdelete(scenario);
} else {
ERR_FAIL();
}
}
void VisualServerRaster::_instance_draw(Instance *p_instance) {
if (p_instance->light_cache_dirty) {
int l = 0;
//add positional lights
InstanceSet::Element *LE = p_instance->lights.front();
p_instance->data.light_instances.resize(p_instance->lights.size());
while (LE) {
p_instance->data.light_instances[l++] = LE->get()->light_info->instance;
LE = LE->next();
}
p_instance->light_cache_dirty = false;
}
switch (p_instance->base_type) {
case INSTANCE_MESH: {
rasterizer->add_mesh(p_instance->base_rid, &p_instance->data);
} break;
case INSTANCE_MULTIMESH: {
rasterizer->add_multimesh(p_instance->base_rid, &p_instance->data);
} break;
case INSTANCE_IMMEDIATE: {
rasterizer->add_immediate(p_instance->base_rid, &p_instance->data);
} break;
case INSTANCE_PARTICLES: {
rasterizer->add_particles(p_instance->particles_info->instance, &p_instance->data);
} break;
default: {};
}
}
Vector<Vector3> VisualServerRaster::_camera_generate_endpoints(Instance *p_light, Camera *p_camera, float p_range_min, float p_range_max) {
// setup a camera matrix for that range!
CameraMatrix camera_matrix;
switch (p_camera->type) {
case Camera::ORTHOGONAL: {
camera_matrix.set_orthogonal(p_camera->size, viewport_rect.width / (float)viewport_rect.height, p_range_min, p_range_max, p_camera->vaspect);
} break;
case Camera::PERSPECTIVE: {
camera_matrix.set_perspective(
p_camera->fov,
viewport_rect.width / (float)viewport_rect.height,
p_range_min,
p_range_max,
p_camera->vaspect);
} break;
}
//obtain the frustum endpoints
Vector<Vector3> endpoints;
endpoints.resize(8);
bool res = camera_matrix.get_endpoints(p_camera->transform, &endpoints[0]);
ERR_FAIL_COND_V(!res, Vector<Vector3>());
return endpoints;
}
Vector<Plane> VisualServerRaster::_camera_generate_orthogonal_planes(Instance *p_light, Camera *p_camera, float p_range_min, float p_range_max) {
Vector<Vector3> endpoints = _camera_generate_endpoints(p_light, p_camera, p_range_min, p_range_max); // frustum plane endpoints
ERR_FAIL_COND_V(endpoints.empty(), Vector<Plane>());
// obtain the light frustm ranges (given endpoints)
Vector3 x_vec = p_light->data.transform.basis.get_axis(Vector3::AXIS_X).normalized();
Vector3 y_vec = p_light->data.transform.basis.get_axis(Vector3::AXIS_Y).normalized();
Vector3 z_vec = p_light->data.transform.basis.get_axis(Vector3::AXIS_Z).normalized();
float x_min, x_max;
float y_min, y_max;
float z_min, z_max;
for (int j = 0; j < 8; j++) {
float d_x = x_vec.dot(endpoints[j]);
float d_y = y_vec.dot(endpoints[j]);
float d_z = z_vec.dot(endpoints[j]);
if (j == 0 || d_x < x_min)
x_min = d_x;
if (j == 0 || d_x > x_max)
x_max = d_x;
if (j == 0 || d_y < y_min)
y_min = d_y;
if (j == 0 || d_y > y_max)
y_max = d_y;
if (j == 0 || d_z < z_min)
z_min = d_z;
if (j == 0 || d_z > z_max)
z_max = d_z;
}
//now that we now all ranges, we can proceed to make the light frustum planes, for culling octree
Vector<Plane> light_frustum_planes;
light_frustum_planes.resize(6);
//right/left
light_frustum_planes[0] = Plane(x_vec, x_max);
light_frustum_planes[1] = Plane(-x_vec, -x_min);
//top/bottom
light_frustum_planes[2] = Plane(y_vec, y_max);
light_frustum_planes[3] = Plane(-y_vec, -y_min);
//near/far
light_frustum_planes[4] = Plane(z_vec, z_max + 1e6);
light_frustum_planes[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed
//TODO@ add more actual frustum planes to minimize get
return light_frustum_planes;
}
void VisualServerRaster::_light_instance_update_pssm_shadow(Instance *p_light, Scenario *p_scenario, Camera *p_camera, const CullRange &p_cull_range) {
int splits = rasterizer->light_instance_get_shadow_passes(p_light->light_info->instance);
float split_weight = rasterizer->light_directional_get_shadow_param(p_light->base_rid, LIGHT_DIRECTIONAL_SHADOW_PARAM_PSSM_SPLIT_WEIGHT);
float distances[5];
float texsize = rasterizer->light_instance_get_shadow_size(p_light->light_info->instance);
// float cull_min=p_cull_range.min;
//float cull_max=p_cull_range.max;
bool overlap = rasterizer->light_instance_get_pssm_shadow_overlap(p_light->light_info->instance);
float cull_min = p_camera->znear;
float cull_max = p_camera->zfar;
float max_dist = rasterizer->light_directional_get_shadow_param(p_light->base_rid, VS::LIGHT_DIRECTIONAL_SHADOW_PARAM_MAX_DISTANCE);
if (max_dist > 0.0)
cull_max = MIN(cull_max, max_dist);
for (int i = 0; i < splits; i++) {
float idm = i / (float)splits;
float lg = cull_min * Math::pow(cull_max / cull_min, idm);
float uniform = cull_min + (cull_max - cull_min) * idm;
distances[i] = lg * split_weight + uniform * (1.0 - split_weight);
}
distances[0] = cull_min;
distances[splits] = cull_max;
for (int i = 0; i < splits; i++) {
// setup a camera matrix for that range!
CameraMatrix camera_matrix;
switch (p_camera->type) {
case Camera::ORTHOGONAL: {
camera_matrix.set_orthogonal(
p_camera->size,
viewport_rect.width / (float)viewport_rect.height,
distances[(i == 0 || !overlap) ? i : i - 1],
distances[i + 1],
p_camera->vaspect
);
} break;
case Camera::PERSPECTIVE: {
camera_matrix.set_perspective(
p_camera->fov,
viewport_rect.width / (float)viewport_rect.height,
distances[(i == 0 || !overlap) ? i : i - 1],
distances[i + 1],
p_camera->vaspect
);
} break;
}
//obtain the frustum endpoints
Vector3 endpoints[8]; // frustum plane endpoints
bool res = camera_matrix.get_endpoints(p_camera->transform, endpoints);
ERR_CONTINUE(!res);
// obtain the light frustm ranges (given endpoints)
Vector3 x_vec = p_light->data.transform.basis.get_axis(Vector3::AXIS_X).normalized();
Vector3 y_vec = p_light->data.transform.basis.get_axis(Vector3::AXIS_Y).normalized();
Vector3 z_vec = p_light->data.transform.basis.get_axis(Vector3::AXIS_Z).normalized();
//z_vec points agsint the camera, like in default opengl
float x_min, x_max;
float y_min, y_max;
float z_min, z_max;
float x_min_cam, x_max_cam;
float y_min_cam, y_max_cam;
float z_min_cam, z_max_cam;
//used for culling
for (int j = 0; j < 8; j++) {
float d_x = x_vec.dot(endpoints[j]);
float d_y = y_vec.dot(endpoints[j]);
float d_z = z_vec.dot(endpoints[j]);
if (j == 0 || d_x < x_min)
x_min = d_x;
if (j == 0 || d_x > x_max)
x_max = d_x;
if (j == 0 || d_y < y_min)
y_min = d_y;
if (j == 0 || d_y > y_max)
y_max = d_y;
if (j == 0 || d_z < z_min)
z_min = d_z;
if (j == 0 || d_z > z_max)
z_max = d_z;
}
{
//camera viewport stuff
//this trick here is what stabilizes the shadow (make potential jaggies to not move)
//at the cost of some wasted resolution. Still the quality increase is very well worth it
Vector3 center;
for (int j = 0; j < 8; j++) {
center += endpoints[j];
}
center /= 8.0;
//center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5;
float radius = 0;
for (int j = 0; j < 8; j++) {
float d = center.distance_to(endpoints[j]);
if (d > radius)
radius = d;
}
radius *= texsize / (texsize - 2.0); //add a texel by each side, so stepified texture will always fit
x_max_cam = x_vec.dot(center) + radius;
x_min_cam = x_vec.dot(center) - radius;
y_max_cam = y_vec.dot(center) + radius;
y_min_cam = y_vec.dot(center) - radius;
z_max_cam = z_vec.dot(center) + radius;
z_min_cam = z_vec.dot(center) - radius;
float unit = radius * 2.0 / texsize;
x_max_cam = Math::stepify(x_max_cam, unit);
x_min_cam = Math::stepify(x_min_cam, unit);
y_max_cam = Math::stepify(y_max_cam, unit);
y_min_cam = Math::stepify(y_min_cam, unit);
}
//now that we now all ranges, we can proceed to make the light frustum planes, for culling octree
Vector<Plane> light_frustum_planes;
light_frustum_planes.resize(6);
//right/left
light_frustum_planes[0] = Plane(x_vec, x_max);
light_frustum_planes[1] = Plane(-x_vec, -x_min);
//top/bottom
light_frustum_planes[2] = Plane(y_vec, y_max);
light_frustum_planes[3] = Plane(-y_vec, -y_min);
//near/far
light_frustum_planes[4] = Plane(z_vec, z_max + 1e6);
light_frustum_planes[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed
int caster_cull_count = p_scenario->octree.cull_convex(light_frustum_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, INSTANCE_GEOMETRY_MASK);
// a pre pass will need to be needed to determine the actual z-near to be used
for (int j = 0; j < caster_cull_count; j++) {
float min, max;
Instance *ins = instance_shadow_cull_result[j];
if (!ins->visible || ins->data.cast_shadows == VS::SHADOW_CASTING_SETTING_OFF)
continue;
ins->transformed_aabb.project_range_in_plane(Plane(z_vec, 0), min, max);
if (max > z_max)
z_max = max;
}
{
CameraMatrix ortho_camera;
real_t half_x = (x_max_cam - x_min_cam) * 0.5;
real_t half_y = (y_max_cam - y_min_cam) * 0.5;
ortho_camera.set_orthogonal(-half_x, half_x, -half_y, half_y, 0, (z_max - z_min_cam));
Transform ortho_transform;
ortho_transform.basis = p_light->data.transform.basis;
ortho_transform.origin = x_vec * (x_min_cam + half_x) + y_vec * (y_min_cam + half_y) + z_vec * z_max;
rasterizer->light_instance_set_shadow_transform(p_light->light_info->instance, i, ortho_camera, ortho_transform, distances[i], distances[i + 1]);
}
rasterizer->begin_shadow_map(p_light->light_info->instance, i);
for (int j = 0; j < caster_cull_count; j++) {
Instance *instance = instance_shadow_cull_result[j];
if (!instance->visible || instance->data.cast_shadows == VS::SHADOW_CASTING_SETTING_OFF)
continue;
_instance_draw(instance);
}
rasterizer->end_shadow_map();
}
}
CameraMatrix _lispm_look(const Vector3 pos, const Vector3 dir, const Vector3 up) {
Vector3 dirN;
Vector3 upN;
Vector3 lftN;
lftN = dir.cross(up);
lftN.normalize();
upN = lftN.cross(dir);
upN.normalize();
dirN = dir.normalized();
CameraMatrix cmout;
float *output = &cmout.matrix[0][0];
output[0] = lftN[0];
output[1] = upN[0];
output[2] = -dirN[0];
output[3] = 0.0;
output[4] = lftN[1];
output[5] = upN[1];
output[6] = -dirN[1];
output[7] = 0.0;
output[8] = lftN[2];
output[9] = upN[2];
output[10] = -dirN[2];
output[11] = 0.0;
output[12] = -lftN.dot(pos);
output[13] = -upN.dot(pos);
output[14] = dirN.dot(pos);
output[15] = 1.0;
return cmout;
}
#if 1
void VisualServerRaster::_light_instance_update_lispsm_shadow(Instance *p_light, Scenario *p_scenario, Camera *p_camera, const CullRange &p_cull_range) {
Vector3 light_vec = -p_light->data.transform.basis.get_axis(2);
Vector3 view_vec = -p_camera->transform.basis.get_axis(2);
float near_dist = 1;
Vector<Plane> light_frustum_planes = _camera_generate_orthogonal_planes(p_light, p_camera, p_cull_range.min, p_cull_range.max);
int caster_count = p_scenario->octree.cull_convex(light_frustum_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, INSTANCE_GEOMETRY_MASK);
// this could be faster by just getting supports from the AABBs..
// but, safer to do as the original implementation explains for now..
Vector<Vector3> caster_pointcloud;
caster_pointcloud.resize(caster_count * 8);
int caster_pointcloud_size = 0;
{
//fill pointcloud
Vector3 *caster_pointcloud_ptr = &caster_pointcloud[0];
for (int i = 0; i < caster_count; i++) {
Instance *ins = instance_shadow_cull_result[i];
if (!ins->visible || ins->data.cast_shadows == VS::SHADOW_CASTING_SETTING_OFF)
continue;
for (int j = 0; j < 8; j++) {
Vector3 v = ins->aabb.get_endpoint(j);
v = ins->data.transform.xform(v);
caster_pointcloud_ptr[caster_pointcloud_size + j] = v;
}
caster_pointcloud_size += 8;
}
}
// now generate a pointcloud that contains the maximum bound (camera extruded by light)
Vector<Vector3> camera_pointcloud = _camera_generate_endpoints(p_light, p_camera, p_cull_range.min, p_cull_range.max);
int cpcsize = camera_pointcloud.size();
camera_pointcloud.resize(cpcsize * 2);
for (int i = 0; i < cpcsize; i++) {
camera_pointcloud[i + cpcsize] = camera_pointcloud[i] - light_vec * 1000;
}
// Vector<Vector3> frustum_points=_camera_generate_endpoints(p_light,p_camera,p_cull_range.min,p_cull_range.max);
// compute the "light-space" basis, using the algorithm described in the paper
// note: since bodyB is defined in eye space, all of these vectors should also be defined in eye space
Vector3 eye = p_camera->transform.origin;
Vector3 up = light_vec.cross(view_vec).cross(light_vec).normalized();
CameraMatrix light_space_basis = _lispm_look(eye, light_vec, up);
AABB light_space_aabb;
{ //create an optimal AABB from both the camera pointcloud and the objects pointcloud
AABB light_space_pointcloud_aabb;
AABB light_space_camera_aabb;
//xform pointcloud
const Vector3 *caster_pointcloud_ptr = &caster_pointcloud[0];
for (int i = 0; i < caster_pointcloud_size; i++) {
Vector3 p = light_space_basis.xform(caster_pointcloud_ptr[i]);
if (i == 0) {
light_space_pointcloud_aabb.pos = p;
} else {
light_space_pointcloud_aabb.expand_to(p);
}
}
for (int i = 0; i < camera_pointcloud.size(); i++) {
Vector3 p = light_space_basis.xform(camera_pointcloud[i]);
if (i == 0) {
light_space_camera_aabb.pos = p;
} else {
light_space_camera_aabb.expand_to(p);
}
}
light_space_aabb = light_space_pointcloud_aabb.intersection(light_space_camera_aabb);
}
float lvdp = light_vec.dot(view_vec);
float sin_gamma = Math::sqrt(1.0 - lvdp * lvdp);
//use the formulas of the paper to get n (and f)
float factor = 1.0 / sin_gamma;
float z_n = factor * near_dist; //often 1
float d = Math::abs(light_space_aabb.size.y); //perspective transform depth //light space y extents
float z_f = z_n + d * sin_gamma;
float n = (z_n + Math::sqrt(z_f * z_n)) / sin_gamma;
float f = n + d;
Vector3 pos = eye - up * (n - near_dist);
CameraMatrix light_space_basis2 = _lispm_look(pos, light_vec, up);
//Transform light_space_basis2;
//light_space_basis2.set_look_at(pos,light_vec-pos,up);
//light_space_basis2.affine_invert();
//one possibility for a simple perspective transformation matrix
//with the two parameters n(near) and f(far) in y direction
CameraMatrix lisp_matrix;
lisp_matrix.matrix[1][1] = (f + n) / (f - n);
lisp_matrix.matrix[3][1] = -2 * f * n / (f - n);
lisp_matrix.matrix[1][3] = 1;
lisp_matrix.matrix[3][3] = 0;
CameraMatrix projection = lisp_matrix * light_space_basis2;
//CameraMatrix projection = light_space_basis2 * lisp_matrix;
AABB proj_space_aabb;
{
AABB proj_space_pointcloud_aabb;
AABB proj_space_camera_aabb;
//xform pointcloud
Vector3 *caster_pointcloud_ptr = &caster_pointcloud[0];
for (int i = 0; i < caster_pointcloud_size; i++) {
Vector3 p = projection.xform(caster_pointcloud_ptr[i]);
if (i == 0) {
proj_space_pointcloud_aabb.pos = p;
} else {
proj_space_pointcloud_aabb.expand_to(p);
}
}
for (int i = 0; i < camera_pointcloud.size(); i++) {
Vector3 p = projection.xform(camera_pointcloud[i]);
if (i == 0) {
proj_space_camera_aabb.pos = p;
} else {
proj_space_camera_aabb.expand_to(p);
}
}
//proj_space_aabb=proj_space_pointcloud_aabb.intersection_with(proj_space_camera_aabb);
proj_space_aabb = proj_space_pointcloud_aabb;
}
projection.scale_translate_to_fit(proj_space_aabb);
projection = projection * lisp_matrix;
CameraMatrix scale;
scale.make_scale(Vector3(1.0, 1.0, -1.0)); // transform to left handed
projection = scale * projection;
rasterizer->light_instance_set_shadow_transform(p_light->light_info->instance, 0, projection, light_space_basis2.inverse());
rasterizer->begin_shadow_map(p_light->light_info->instance, 0);
for (int i = 0; i < caster_count; i++) {
Instance *instance = instance_shadow_cull_result[i];
if (!instance->visible || instance->data.cast_shadows == VS::SHADOW_CASTING_SETTING_OFF)
continue;
_instance_draw(instance);
}
rasterizer->end_shadow_map();
}
#else
void VisualServerRaster::_light_instance_update_lispsm_shadow(Instance *p_light, Scenario *p_scenario, Camera *p_camera, const CullRange &p_cull_range) {
/* STEP 1: GENERATE LIGHT TRANSFORM */
Vector3 light_vec = -p_light->data.transform.basis.get_axis(2);
Vector3 view_vec = -p_camera->transform.basis.get_axis(2);
float viewdot = Math::absf(light_vec.dot(view_vec));
Vector3 up = light_vec.cross(view_vec).cross(light_vec).normalized();
Transform light_transform;
light_transform.set_look_at(Vector3(), light_vec, up);
/* STEP 2: GENERATE WORDLSPACE PLANES AND VECTORS*/
float range_min = 0.01; //p_cull_range.min
float range_max = 20; //p_cull_range.max;
Vector<Vector3> camera_endpoints = _camera_generate_endpoints(p_light, p_camera, range_min, range_max); // frustum plane endpoints
ERR_FAIL_COND(camera_endpoints.empty());
// obtain the light frustm ranges (given endpoints)
Vector3 light_x_vec = light_transform.basis.get_axis(Vector3::AXIS_X).normalized();
Vector3 light_y_vec = light_transform.basis.get_axis(Vector3::AXIS_Y).normalized();
Vector3 light_z_vec = light_transform.basis.get_axis(Vector3::AXIS_Z).normalized();
Vector3 light_axis_max;
Vector3 light_axis_min;
for (int j = 0; j < 8; j++) {
float d_x = light_x_vec.dot(camera_endpoints[j]);
float d_y = light_y_vec.dot(camera_endpoints[j]);
float d_z = light_z_vec.dot(camera_endpoints[j]);
if (j == 0 || d_x < light_axis_min.x)
light_axis_min.x = d_x;
if (j == 0 || d_x > light_axis_max.x)
light_axis_max.x = d_x;
if (j == 0 || d_y < light_axis_min.y)
light_axis_min.y = d_y;
if (j == 0 || d_y > light_axis_max.y)
light_axis_max.y = d_y;
if (j == 0 || d_z < light_axis_min.z)
light_axis_min.z = d_z;
if (j == 0 || d_z > light_axis_max.z)
light_axis_max.z = d_z;
}
//now that we now all ranges, we can proceed to make the light frustum planes, for culling octree
Vector<Plane> light_cull_planes;
light_cull_planes.resize(6);
//right/left
light_cull_planes[0] = Plane(light_x_vec, light_axis_max.x);
light_cull_planes[1] = Plane(-light_x_vec, -light_axis_min.x);
//top/bottom
light_cull_planes[2] = Plane(light_y_vec, light_axis_max.y);
light_cull_planes[3] = Plane(-light_y_vec, -light_axis_min.y);
//near/far
light_cull_planes[4] = Plane(light_z_vec, light_axis_max.z + 1e6);
light_cull_planes[5] = Plane(-light_z_vec, -light_axis_min.z); // z_min is ok, since casters further than far-light plane are not needed
/* STEP 3: CULL CASTERS */
int caster_count = p_scenario->octree.cull_convex(light_cull_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, INSTANCE_GEOMETRY_MASK);
/* STEP 4: ADJUST FAR Z PLANE */
float caster_max_z = 1e-1;
for (int i = 0; i < caster_count; i++) {
Instance *ins = instance_shadow_cull_result[i];
if (!ins->visible || ins->cast_shadows == VS::SHADOW_CASTING_SETTING_OFF)
continue;
//@TODO optimize using support mapping
for (int j = 0; j < 8; j++) {
Vector3 v = ins->data.transform.xform(ins->aabb.get_endpoint(j));
float d = light_z_vec.dot(v);
if (d > caster_max_z)
caster_max_z = d;
}
}
float expand = caster_max_z - light_axis_max.z;
if (expand < 0)
expand = 0;
light_axis_max.z = MAX(caster_max_z, light_axis_max.z);
/* STEP 5: CREATE ORTHOGONAL PROJECTION */
CameraMatrix light_projection;
real_t half_x = (light_axis_max.x - light_axis_min.x) * 0.5;
real_t half_y = (light_axis_max.y - light_axis_min.y) * 0.5;
light_projection.set_orthogonal(-half_x, half_x, half_y, -half_y, 0, (light_axis_max.z - light_axis_min.z));
light_transform.origin = light_x_vec * (light_axis_min.x + half_x) + light_y_vec * (light_axis_min.y + half_y) + light_z_vec * light_axis_max.z;
if (/*false &&*/ viewdot < 0.96) {
float lvdp = light_vec.dot(view_vec);
float near_dist = 1.0;
float sin_gamma = Math::sqrt(1.0 - lvdp * lvdp);
//use the formulas of the paper to get n (and f)
float factor = 1.0 / sin_gamma;
float z_n = factor * near_dist; //often 1
float d = Math::abs(light_axis_max.y - light_axis_min.y); //perspective transform depth //light space y extents
float z_f = z_n + d * sin_gamma;
float n = (z_n + Math::sqrt(z_f * z_n)) / sin_gamma;
float f = n + d;
CameraMatrix lisp_matrix;
lisp_matrix.matrix[1][1] = (f + n) / (f - n);
lisp_matrix.matrix[3][1] = -2 * f * n / (f - n);
lisp_matrix.matrix[1][3] = 1;
lisp_matrix.matrix[3][3] = 0;
Vector3 pos = p_camera->transform.origin - up * (n - near_dist);
CameraMatrix world2light = _lispm_look(pos, light_vec, up);
CameraMatrix projection = lisp_matrix * world2light;
AABB projection_bounds;
for (int i = 0; i < camera_endpoints.size(); i++) {
Vector3 p = camera_endpoints[i];
if (i == 0)
projection_bounds.pos = projection.xform(p);
else
projection_bounds.expand_to(projection.xform(p));
projection_bounds.expand_to(projection.xform(p + light_vec * -expand));
}
CameraMatrix scaletrans;
scaletrans.scale_translate_to_fit(projection_bounds);
projection = scaletrans * lisp_matrix;
CameraMatrix scale;
scale.make_scale(Vector3(1.0, 1.0, -1.0)); // transform to left handed
projection = scale * projection;
rasterizer->light_instance_set_shadow_transform(p_light->light_info->instance, 0, projection, world2light.inverse(), viewdot);
} else {
//orthogonal
rasterizer->light_instance_set_shadow_transform(p_light->light_info->instance, 0, light_projection, light_transform, viewdot);
}
rasterizer->begin_shadow_map(p_light->light_info->instance, 0);
for (int i = 0; i < caster_count; i++) {
Instance *instance = instance_shadow_cull_result[i];
if (!instance->visible || instance->cast_shadows == VS::SHADOW_CASTING_SETTING_OFF)
continue;
_instance_draw(instance);
}
rasterizer->end_shadow_map();
}
#endif
void VisualServerRaster::_light_instance_update_shadow(Instance *p_light, Scenario *p_scenario, Camera *p_camera, const CullRange &p_cull_range) {
if (!rasterizer->shadow_allocate_near(p_light->light_info->instance))
return; // shadow could not be updated
/* VisualServerRaster supports for many shadow techniques, using the one the rasterizer requests */
Rasterizer::ShadowType shadow_type = rasterizer->light_instance_get_shadow_type(p_light->light_info->instance);
switch (shadow_type) {
case Rasterizer::SHADOW_SIMPLE: {
/* SPOT SHADOW */
rasterizer->begin_shadow_map(p_light->light_info->instance, 0);
//using this one ensures that raster deferred will have it
float far = rasterizer->light_get_var(p_light->base_rid, VS::LIGHT_PARAM_RADIUS);
float angle = rasterizer->light_get_var(p_light->base_rid, VS::LIGHT_PARAM_SPOT_ANGLE);
CameraMatrix cm;
cm.set_perspective(angle * 2.0, 1.0, 0.001, far);
Vector<Plane> planes = cm.get_projection_planes(p_light->data.transform);
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, INSTANCE_GEOMETRY_MASK);
for (int i = 0; i < cull_count; i++) {
Instance *instance = instance_shadow_cull_result[i];
if (!instance->visible || instance->data.cast_shadows == VS::SHADOW_CASTING_SETTING_OFF)
continue;
_instance_draw(instance);
}
rasterizer->end_shadow_map();
} break;
case Rasterizer::SHADOW_DUAL_PARABOLOID: {
/* OMNI SHADOW */
int passes = rasterizer->light_instance_get_shadow_passes(p_light->light_info->instance);
if (passes == 2) {
for (int i = 0; i < 2; i++) {
rasterizer->begin_shadow_map(p_light->light_info->instance, i);
//using this one ensures that raster deferred will have it
float radius = rasterizer->light_get_var(p_light->base_rid, VS::LIGHT_PARAM_RADIUS);
float z = i == 0 ? -1 : 1;
Vector<Plane> planes;
planes.resize(5);
planes[0] = p_light->data.transform.xform(Plane(Vector3(0, 0, z), radius));
planes[1] = p_light->data.transform.xform(Plane(Vector3(1, 0, z).normalized(), radius));
planes[2] = p_light->data.transform.xform(Plane(Vector3(-1, 0, z).normalized(), radius));
planes[3] = p_light->data.transform.xform(Plane(Vector3(0, 1, z).normalized(), radius));
planes[4] = p_light->data.transform.xform(Plane(Vector3(0, -1, z).normalized(), radius));
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, INSTANCE_GEOMETRY_MASK);
for (int j = 0; j < cull_count; j++) {
Instance *instance = instance_shadow_cull_result[j];
if (!instance->visible || instance->data.cast_shadows == VS::SHADOW_CASTING_SETTING_OFF)
continue;
_instance_draw(instance);
}
rasterizer->end_shadow_map();
}
} else if (passes == 1) {
//one go
}
} break;
case Rasterizer::SHADOW_CUBE: {
// todo
} break;
case Rasterizer::SHADOW_ORTHOGONAL: {
_light_instance_update_pssm_shadow(p_light, p_scenario, p_camera, p_cull_range);
} break;
case Rasterizer::SHADOW_PSSM: {
_light_instance_update_pssm_shadow(p_light, p_scenario, p_camera, p_cull_range);
} break;
case Rasterizer::SHADOW_PSM: {
_light_instance_update_lispsm_shadow(p_light, p_scenario, p_camera, p_cull_range);
// todo
} break;
default: {}
}
}
void VisualServerRaster::_portal_disconnect(Instance *p_portal, bool p_cleanup) {
if (p_portal->portal_info->connected) {
//disconnect first
p_portal->portal_info->connected->portal_info->connected = NULL;
p_portal->portal_info->connected = NULL;
}
if (p_portal->room && p_portal->room->room) {
if (p_cleanup) {
p_portal->room->room->room_info->disconnected_child_portals.erase(p_portal);
//p_portal->room->room->room_info->disconnected_child_portals.erase(p_portal);
} else {
p_portal->room->room->room_info->disconnected_child_portals.insert(p_portal);
}
}
}
void VisualServerRaster::_instance_validate_autorooms(Instance *p_geometry) {
if (p_geometry->auto_rooms.size() == 0)
return;
p_geometry->valid_auto_rooms.clear();
int point_count = aabb_random_points.size();
const Vector3 *src_points = &aabb_random_points[0];
for (Set<Instance *>::Element *E = p_geometry->valid_auto_rooms.front(); E; E = E->next()) {
Instance *room = E->get();
Vector3 *dst_points = &transformed_aabb_random_points[0];
//generate points
for (int i = 0; i < point_count; i++) {
dst_points[i] = room->room_info->affine_inverse.xform(p_geometry->data.transform.xform((src_points[i] * p_geometry->transformed_aabb.size) + p_geometry->transformed_aabb.pos));
}
int pass = room->room_info->room->bounds.get_points_inside(dst_points, point_count);
float ratio = pass;
if (point_count != 0) {
ratio /= (float)point_count;
}
if (ratio > 0.5) // should make some constant
p_geometry->valid_auto_rooms.insert(room);
}
}
void VisualServerRaster::_portal_attempt_connect(Instance *p_portal) {
_portal_disconnect(p_portal);
Vector3 A_norm = p_portal->data.transform.basis.get_axis(Vector3::AXIS_Z).normalized();
Plane A_plane(p_portal->data.transform.origin, A_norm);
float A_surface = p_portal->portal_info->portal->bounds.get_area();
if (A_surface == 0)
return; //wtf
Instance *found = NULL;
Transform affine_inverse = p_portal->data.transform.affine_inverse();
for (Set<Instance *>::Element *E = p_portal->portal_info->candidate_set.front(); E; E = E->next()) {
Instance *B = E->get();
if (B->portal_info->connected)
continue; // in use
Vector3 B_norm = B->data.transform.basis.get_axis(Vector3::AXIS_Z).normalized();
// check that they are in front of another
float dot = A_norm.dot(-B_norm);
if (dot < 0.707) // 45 degrees, TODO unharcode this
continue;
// check the max distance to the other portal
bool valid = true;
Rect2 local_bounds;
for (int i = 0; i < B->portal_info->portal->shape.size(); i++) {
Point2 point2 = B->portal_info->portal->shape[i];
Vector3 point = B->data.transform.xform(Vector3(point2.x, point2.y, 0));
float dist = Math::abs(A_plane.distance_to(point));
if (
dist > p_portal->portal_info->portal->connect_range ||
dist > B->portal_info->portal->connect_range) {
valid = false;
break;
}
Vector3 point_local = affine_inverse.xform(A_plane.project(point));
point2 = Point2(point_local.x, point_local.y);
if (i == 0)
local_bounds.pos = point2;
else
local_bounds.expand_to(point2);
}
if (!valid)
continue;
float B_surface = B->portal_info->portal->bounds.get_area();
if (B_surface == 0)
continue; //wtf
float clip_area = p_portal->portal_info->portal->bounds.clip(local_bounds).get_area();
//check that most of the area is shared
if ((clip_area / A_surface) < 0.5 || (clip_area / B_surface) < 0.5) // TODO change for something else
continue;
found = B;
break;
}
if (!found) {
if (p_portal->room && p_portal->room->room) {
p_portal->room->room->room_info->disconnected_child_portals.insert(p_portal);
}
return;
}
p_portal->portal_info->connected = found;
found->portal_info->connected = p_portal;
}
void *VisualServerRaster::instance_pair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int) {
VisualServerRaster *self = (VisualServerRaster *)p_self;
Instance *A = p_A;
Instance *B = p_B;
if (A->base_type == INSTANCE_PORTAL) {
ERR_FAIL_COND_V(B->base_type != INSTANCE_PORTAL, NULL);
A->portal_info->candidate_set.insert(B);
B->portal_info->candidate_set.insert(A);
self->_portal_attempt_connect(A);
//attempt to conncet portal A (will go through B anyway)
//this is a little hackish, but works fine in practice
} else if (A->base_type == INSTANCE_BAKED_LIGHT || B->base_type == INSTANCE_BAKED_LIGHT) {
if (B->base_type == INSTANCE_BAKED_LIGHT) {
SWAP(A, B);
}
ERR_FAIL_COND_V(B->base_type != INSTANCE_BAKED_LIGHT_SAMPLER, NULL);
B->baked_light_sampler_info->baked_lights.insert(A);
} else if (A->base_type == INSTANCE_ROOM || B->base_type == INSTANCE_ROOM) {
if (B->base_type == INSTANCE_ROOM)
SWAP(A, B);
ERR_FAIL_COND_V(!((1 << B->base_type) & INSTANCE_GEOMETRY_MASK), NULL);
B->auto_rooms.insert(A);
A->room_info->owned_autoroom_geometry.insert(B);
self->_instance_validate_autorooms(B);
} else {
if (B->base_type == INSTANCE_LIGHT) {
SWAP(A, B);
} else if (A->base_type != INSTANCE_LIGHT) {
return NULL;
}
A->light_info->affected.insert(B);
B->lights.insert(A);
B->light_cache_dirty = true;
}
return NULL;
}
void VisualServerRaster::instance_unpair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int, void *) {
VisualServerRaster *self = (VisualServerRaster *)p_self;
Instance *A = p_A;
Instance *B = p_B;
if (A->base_type == INSTANCE_PORTAL) {
ERR_FAIL_COND(B->base_type != INSTANCE_PORTAL);
A->portal_info->candidate_set.erase(B);
B->portal_info->candidate_set.erase(A);
//after disconnecting them, see if they can connect again
self->_portal_attempt_connect(A);
self->_portal_attempt_connect(B);
} else if (A->base_type == INSTANCE_BAKED_LIGHT || B->base_type == INSTANCE_BAKED_LIGHT) {
if (B->base_type == INSTANCE_BAKED_LIGHT) {
SWAP(A, B);
}
ERR_FAIL_COND(B->base_type != INSTANCE_BAKED_LIGHT_SAMPLER);
B->baked_light_sampler_info->baked_lights.erase(A);
} else if (A->base_type == INSTANCE_ROOM || B->base_type == INSTANCE_ROOM) {
if (B->base_type == INSTANCE_ROOM)
SWAP(A, B);
ERR_FAIL_COND(!((1 << B->base_type) & INSTANCE_GEOMETRY_MASK));
B->auto_rooms.erase(A);
B->valid_auto_rooms.erase(A);
A->room_info->owned_autoroom_geometry.erase(B);
} else {
if (B->base_type == INSTANCE_LIGHT) {
SWAP(A, B);
} else if (A->base_type != INSTANCE_LIGHT) {
return;
}
A->light_info->affected.erase(B);
B->lights.erase(A);
B->light_cache_dirty = true;
}
}
bool VisualServerRaster::_test_portal_cull(Camera *p_camera, Instance *p_from_portal, Instance *p_to_portal) {
int src_point_count = p_from_portal->portal_info->transformed_point_cache.size();
int dst_point_count = p_to_portal->portal_info->transformed_point_cache.size();
if (src_point_count < 2 || dst_point_count < 2)
return false;
const Vector3 *src_points = &p_from_portal->portal_info->transformed_point_cache[0];
const Vector3 *dst_points = &p_to_portal->portal_info->transformed_point_cache[0];
bool outside = false;
bool clockwise = !p_from_portal->portal_info->plane_cache.is_point_over(p_camera->transform.origin);
for (int i = 0; i < src_point_count; i++) {
const Vector3 &point_prev = src_points[i ? (i - 1) : (src_point_count - 1)];
const Vector3 &point = src_points[i];
Plane p = clockwise ? Plane(p_camera->transform.origin, point, point_prev) : Plane(p_camera->transform.origin, point_prev, point);
bool all_over = true;
for (int j = 0; j < dst_point_count; j++) {
if (!p.is_point_over(dst_points[j])) {
all_over = false;
break;
}
}
if (all_over) {
outside = true;
break;
}
}
return !outside;
}
void VisualServerRaster::_cull_portal(Camera *p_camera, Instance *p_portal, Instance *p_from_portal) {
ERR_FAIL_COND(!p_portal->scenario); //scenario outside
Instance *portal = p_portal;
if (!portal->room) {
return; //portals need all to belong to a room, it may be unconfigured yet
} else if (portal->last_render_pass != render_pass) {
return; //invalid portal, ignore
} else if (portal->portal_info->last_visited_pass == render_pass) {
return; //portal already visited
} else if (portal == p_from_portal) {
return; // came from this portal, don't even bother testing
}
/* TEST DISABLE DISTANCE */
float disable_distance = p_portal->portal_info->portal->disable_distance;
if (disable_distance) {
//has disable distance..
float distance = p_camera->transform.origin.distance_to(portal->data.transform.origin);
if (disable_distance < distance) {
return;
}
}
/* TEST PORTAL NOT FACING OPTIMIZATION */
if (p_portal->portal_info->connected) {
//connected portal means, it must face against the camera to be seen
if (p_portal->portal_info->plane_cache.is_point_over(p_camera->transform.origin)) { //portal facing against camera (exterior)
return;
}
} else {
//disconencted portals (go from room to parent room or exterior) must face towards the canera
if (!p_portal->portal_info->plane_cache.is_point_over(p_camera->transform.origin)) { //portal facing against camera (exterior)
return;
}
}
if (p_from_portal && !_test_portal_cull(p_camera, p_from_portal, portal)) {
return; // portal not visible (culled)
}
portal->portal_info->last_visited_pass = render_pass;
if (portal->portal_info->connected) {
//interior<->interior portal
Instance *to_room = portal->portal_info->connected->room;
if (!to_room) {
return; //wtf.. oh well, connected to a roomless (invalid) portal
}
_cull_room(p_camera, to_room, portal->portal_info->connected);
} else {
//to exterior/to parent roomportal
Instance *parent_room = portal->room->room;
_cull_room(p_camera, parent_room, portal);
}
}
void VisualServerRaster::_cull_room(Camera *p_camera, Instance *p_room, Instance *p_from_portal) {
if (p_room == NULL) {
//exterior
exterior_visited = true;
for (int i = 0; i < exterior_portal_cull_count; i++) {
_cull_portal(p_camera, exterior_portal_cull_result[i], p_from_portal);
}
} else {
ERR_FAIL_COND(!p_room->scenario);
if (p_room->last_render_pass != render_pass)
return; //this room is invalid
//interior
//first of all, validate the room
p_room->room_info->last_visited_pass = render_pass;
//see about going around portals
if (!p_room->room_info->room->occlude_exterior)
exterior_visited = true;
for (List<Instance *>::Element *E = p_room->room_info->owned_portal_instances.front(); E; E = E->next()) {
_cull_portal(p_camera, E->get(), p_from_portal);
}
for (Set<Instance *>::Element *E = p_room->room_info->disconnected_child_portals.front(); E; E = E->next()) {
_cull_portal(p_camera, E->get(), p_from_portal);
}
}
}
void VisualServerRaster::_process_sampled_light(const Transform &p_camera, Instance *p_sampled_light, bool p_linear_colorspace) {
BakedLightSampler *sampler_opts = p_sampled_light->baked_light_sampler_info->sampler;
int res = sampler_opts->resolution;
int dp_size = res * res * 2;
Color *dp_map = (Color *)alloca(sizeof(Color) * dp_size); //allocate the dual parabolloid colors
Vector3 *dp_normals = (Vector3 *)alloca(sizeof(Vector3) * dp_size); //allocate the dual parabolloid normals
const Vector3 *dp_src_normals = p_sampled_light->baked_light_sampler_info->sampler->dp_cache.ptr();
if (!p_sampled_light->baked_light_sampler_info->sampled_light.is_valid() || p_sampled_light->baked_light_sampler_info->resolution != sampler_opts->resolution) {
if (p_sampled_light->baked_light_sampler_info->sampled_light.is_valid()) {
rasterizer->free(p_sampled_light->baked_light_sampler_info->sampled_light);
}
p_sampled_light->baked_light_sampler_info->resolution = sampler_opts->resolution;
p_sampled_light->baked_light_sampler_info->sampled_light = rasterizer->sampled_light_dp_create(sampler_opts->resolution, sampler_opts->resolution * 2);
}
zeromem(dp_map, sizeof(Color) * dp_size);
bool valid = false;
int samples = 0;
for (Set<Instance *>::Element *E = p_sampled_light->baked_light_sampler_info->baked_lights.front(); E; E = E->next()) {
Instance *bl = E->get();
if (bl->baked_light_info->baked_light->sampler.size() == 0)
continue; //not usable
Matrix3 norm_xform = bl->baked_light_info->affine_inverse.basis; //.inverse();
for (int i = 0; i < dp_size; i++) {
dp_normals[i] = norm_xform.xform(dp_src_normals[i]).normalized();
}
//normals in place
//sample octree
float r = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_RADIUS];
float att = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_ATTENUATION];
float str = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_STRENGTH];
Vector3 s = p_sampled_light->data.transform.basis.get_scale();
r *= MAX(MAX(s.x, s.y), s.z);
AABB sample_aabb = bl->data.transform.affine_inverse().xform(AABB(Vector3(-r, -r, -r) + p_sampled_light->data.transform.origin, Vector3(r * 2, r * 2, r * 2)));
//ok got octree local AABB
DVector<int>::Read rp = bl->baked_light_info->baked_light->sampler.read();
const int *rptr = rp.ptr();
int first = rptr[1];
int depth = rptr[2];
bool islinear = rptr[3] & 1;
depth += 1;
AABB aabb;
aabb.pos.x = decode_float((const uint8_t *)&rptr[4]);
aabb.pos.y = decode_float((const uint8_t *)&rptr[5]);
aabb.pos.z = decode_float((const uint8_t *)&rptr[6]);
aabb.size.x = decode_float((const uint8_t *)&rptr[7]);
aabb.size.y = decode_float((const uint8_t *)&rptr[8]);
aabb.size.z = decode_float((const uint8_t *)&rptr[9]);
uint32_t *stack = (uint32_t *)alloca(depth * sizeof(uint32_t));
int *stack_ptr = (int *)alloca(depth * sizeof(int));
AABB *aabb_stack = (AABB *)alloca(depth * sizeof(AABB));
stack[0] = 0;
stack_ptr[0] = first;
aabb_stack[0] = aabb;
Vector3 center = sample_aabb.pos + sample_aabb.size * 0.5;
int stack_pos = 0;
Color max_col;
//int reso = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_DETAIL_RATIO];
int lalimit = sample_aabb.get_longest_axis_index();
float limit = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_DETAIL_RATIO] * sample_aabb.size[lalimit];
while (true) {
bool leaf = (rptr[stack_ptr[stack_pos]] >> 16) == 0;
if (aabb_stack[stack_pos].size[lalimit] < limit) {
leaf = true;
}
if (leaf) {
Vector3 from = aabb_stack[stack_pos].pos + aabb_stack[stack_pos].size * 0.5;
Vector3 norm = (from - center).normalized();
Color col;
col.r = ((rptr[stack_ptr[stack_pos]] & 0xFFFF) / 256.0);
col.g = ((rptr[stack_ptr[stack_pos] + 1] >> 16) / 256.0);
col.b = ((rptr[stack_ptr[stack_pos] + 1] & 0xFFFF) / 256.0);
max_col.r = MAX(max_col.r, col.r);
max_col.g = MAX(max_col.g, col.g);
max_col.b = MAX(max_col.b, col.b);
if (!islinear && p_linear_colorspace) {
col = col.to_linear();
}
float distance;
if (aabb_stack[stack_pos].has_point(center)) {
distance = 0;
} else {
Vector3 support = aabb_stack[stack_pos].get_support(norm);
distance = Math::absf(norm.dot(support) - norm.dot(center));
}
if (distance > r)
distance = r;
float mult = Math::pow(1.0 - distance / r, att) * str;
if (mult > 0) {
col.r *= mult;
col.g *= mult;
col.b *= mult;
for (int i = 0; i < dp_size; i++) {
float mult2 = norm.dot(dp_normals[i]);
if (mult2 < 0)
mult2 = 0;
Color col2(col.r * mult2, col.g * mult2, col.b * mult2, 1.0);
dp_map[i].r = MAX(dp_map[i].r, col2.r);
dp_map[i].g = MAX(dp_map[i].g, col2.g);
dp_map[i].b = MAX(dp_map[i].b, col2.b);
}
}
samples++;
//nothing is valid unless you hit a leaf
valid = true;
stack_pos--;
} else if ((stack[stack_pos] & 0xFF) < 8) {
int i = stack[stack_pos] & 0xFF;
int base = (stack[stack_pos] >> 8);
if (!((rptr[stack_ptr[stack_pos]] >> 16) & (1 << i))) {
//no bit, no test
stack[stack_pos] = (base << 8) + (i + 1);
continue;
}
stack[stack_pos] = ((base + 1) << 8) + (i + 1);
AABB child_aabb = aabb_stack[stack_pos];
child_aabb.size *= 0.5;
if (i & 1)
child_aabb.pos.x += child_aabb.size.x;
if (i & 2)
child_aabb.pos.y += child_aabb.size.y;
if (i & 4)
child_aabb.pos.z += child_aabb.size.z;
if (!child_aabb.intersects(sample_aabb)) {
continue;
}
if (child_aabb.encloses(sample_aabb)) {
stack[stack_pos] = (base << 8) | 8; //don't test the rest
}
stack_pos++;
ERR_FAIL_COND(stack_pos >= depth);
stack[stack_pos] = 0;
stack_ptr[stack_pos] = rptr[stack_ptr[stack_pos - 1] + 2 + base];
aabb_stack[stack_pos] = child_aabb;
} else {
stack_pos--;
if (stack_pos < 0)
break;
}
}
}
//print_line("samples "+itos(samples) );
if (valid) {
for (int i = 0; i < res; i++) {
//average seams to avoid aliasing
{
//top
int ofs1 = i;
int ofs2 = dp_size - res + i;
Color avg(
(dp_map[ofs1].r + dp_map[ofs2].r) * 0.5,
(dp_map[ofs1].g + dp_map[ofs2].g) * 0.5,
(dp_map[ofs1].b + dp_map[ofs2].b) * 0.5,
1.0);
dp_map[ofs1] = avg;
dp_map[ofs2] = avg;
}
{
//bottom
int ofs1 = res * res - res + i;
int ofs2 = res * res + i;
Color avg(
(dp_map[ofs1].r + dp_map[ofs2].r) * 0.5,
(dp_map[ofs1].g + dp_map[ofs2].g) * 0.5,
(dp_map[ofs1].b + dp_map[ofs2].b) * 0.5,
1.0);
dp_map[ofs1] = avg;
dp_map[ofs2] = avg;
}
{
//left
int ofs1 = i * res;
int ofs2 = res * res + (res - i - 1) * res;
Color avg(
(dp_map[ofs1].r + dp_map[ofs2].r) * 0.5,
(dp_map[ofs1].g + dp_map[ofs2].g) * 0.5,
(dp_map[ofs1].b + dp_map[ofs2].b) * 0.5,
1.0);
dp_map[ofs1] = avg;
dp_map[ofs2] = avg;
}
{
//right
int ofs1 = i * res + (res - 1);
int ofs2 = res * res + (res - i - 1) * res + (res - 1);
Color avg(
(dp_map[ofs1].r + dp_map[ofs2].r) * 0.5,
(dp_map[ofs1].g + dp_map[ofs2].g) * 0.5,
(dp_map[ofs1].b + dp_map[ofs2].b) * 0.5,
1.0);
dp_map[ofs1] = avg;
dp_map[ofs2] = avg;
}
}
rasterizer->sampled_light_dp_update(p_sampled_light->baked_light_sampler_info->sampled_light, dp_map, 1.0);
for (Set<Instance *>::Element *F = p_sampled_light->baked_light_sampler_info->owned_instances.front(); F; F = F->next()) {
F->get()->data.sampled_light = p_sampled_light->baked_light_sampler_info->sampled_light;
}
} else {
for (Set<Instance *>::Element *F = p_sampled_light->baked_light_sampler_info->owned_instances.front(); F; F = F->next()) {
F->get()->data.sampled_light = RID(); //do not use because nothing close
}
}
/*
highp vec3 vtx = vertex_interp;
vtx.z*=dual_paraboloid.y; //side to affect
vtx.z+=0.01;
dp_clip=vtx.z;
highp float len=length( vtx );
vtx=normalize(vtx);
vtx.xy/=1.0+vtx.z;
vtx.z = len*dual_paraboloid.x; // it's a reciprocal(len - z_near) / (z_far - z_near);
vtx+=normalize(vtx)*0.025;
vtx.z = vtx.z * 2.0 - 1.0; // fit to clipspace
vertex_interp=vtx;
*/
}
void VisualServerRaster::_render_no_camera(Viewport *p_viewport, Camera *p_camera, Scenario *p_scenario) {
RID environment;
if (p_scenario->environment.is_valid())
environment = p_scenario->environment;
else
environment = p_scenario->fallback_environment;
rasterizer->set_camera(Transform(), CameraMatrix(), false);
rasterizer->begin_scene(p_viewport->viewport_data, environment, p_scenario->debug);
rasterizer->set_viewport(viewport_rect);
rasterizer->end_scene();
}
void VisualServerRaster::_render_camera(Viewport *p_viewport, Camera *p_camera, Scenario *p_scenario) {
render_pass++;
uint32_t camera_layer_mask = p_camera->visible_layers;
/* STEP 1 - SETUP CAMERA */
CameraMatrix camera_matrix;
bool ortho = false;
switch (p_camera->type) {
case Camera::ORTHOGONAL: {
camera_matrix.set_orthogonal(
p_camera->size,
viewport_rect.width / (float)viewport_rect.height,
p_camera->znear,
p_camera->zfar,
p_camera->vaspect
);
ortho = true;
} break;
case Camera::PERSPECTIVE: {
camera_matrix.set_perspective(
p_camera->fov,
viewport_rect.width / (float)viewport_rect.height,
p_camera->znear,
p_camera->zfar,
p_camera->vaspect
);
ortho = false;
} break;
}
rasterizer->set_camera(p_camera->transform, camera_matrix, ortho);
Vector<Plane> planes = camera_matrix.get_projection_planes(p_camera->transform);
CullRange cull_range; // cull range is used for PSSM, and having an idea of the rendering depth
cull_range.nearp = Plane(p_camera->transform.origin, -p_camera->transform.basis.get_axis(2).normalized());
cull_range.z_near = camera_matrix.get_z_near();
cull_range.z_far = camera_matrix.get_z_far();
cull_range.min = cull_range.z_far;
cull_range.max = cull_range.z_near;
/* STEP 2 - CULL */
int cull_count = p_scenario->octree.cull_convex(planes, instance_cull_result, MAX_INSTANCE_CULL);
light_cull_count = 0;
light_samplers_culled = 0;
/* print_line("OT: "+rtos( (OS::get_singleton()->get_ticks_usec()-t)/1000.0));
print_line("OTO: "+itos(p_scenario->octree.get_octant_count()));
// print_line("OTE: "+itos(p_scenario->octree.get_elem_count()));
print_line("OTP: "+itos(p_scenario->octree.get_pair_count()));
*/
/* STEP 3 - PROCESS PORTALS, VALIDATE ROOMS */
// compute portals
exterior_visited = false;
exterior_portal_cull_count = 0;
if (room_cull_enabled) {
for (int i = 0; i < cull_count; i++) {
Instance *ins = instance_cull_result[i];
ins->last_render_pass = render_pass;
if (ins->base_type != INSTANCE_PORTAL)
continue;
if (ins->room)
continue;
ERR_CONTINUE(exterior_portal_cull_count >= MAX_EXTERIOR_PORTALS);
exterior_portal_cull_result[exterior_portal_cull_count++] = ins;
}
room_cull_count = p_scenario->octree.cull_point(p_camera->transform.origin, room_cull_result, MAX_ROOM_CULL, NULL, (1 << INSTANCE_ROOM) | (1 << INSTANCE_PORTAL));
Set<Instance *> current_rooms;
Set<Instance *> portal_rooms;
//add to set
for (int i = 0; i < room_cull_count; i++) {
if (room_cull_result[i]->base_type == INSTANCE_ROOM) {
current_rooms.insert(room_cull_result[i]);
}
if (room_cull_result[i]->base_type == INSTANCE_PORTAL) {
//assume inside that room if also inside the portal..
if (room_cull_result[i]->room) {
portal_rooms.insert(room_cull_result[i]->room);
}
SWAP(room_cull_result[i], room_cull_result[room_cull_count - 1]);
room_cull_count--;
i--;
}
}
//remove from set if it has a parent room or BSP doesn't contain
for (int i = 0; i < room_cull_count; i++) {
Instance *r = room_cull_result[i];
//check inside BSP
Vector3 room_local_point = r->room_info->affine_inverse.xform(p_camera->transform.origin);
if (!portal_rooms.has(r) && !r->room_info->room->bounds.point_is_inside(room_local_point)) {
current_rooms.erase(r);
continue;
}
//check parent
while (r->room) { // has parent room
current_rooms.erase(r);
r = r->room;
}
}
if (current_rooms.size()) {
//camera is inside a room
// go through rooms
for (Set<Instance *>::Element *E = current_rooms.front(); E; E = E->next()) {
_cull_room(p_camera, E->get());
}
} else {
//start from exterior
_cull_room(p_camera, NULL);
}
}
/* STEP 4 - REMOVE FURTHER CULLED OBJECTS, ADD LIGHTS */
for (int i = 0; i < cull_count; i++) {
Instance *ins = instance_cull_result[i];
bool keep = false;
if ((camera_layer_mask & ins->layer_mask) == 0) {
//failure
} else if (ins->base_type == INSTANCE_LIGHT) {
if (light_cull_count < MAX_LIGHTS_CULLED) {
light_cull_result[light_cull_count++] = ins;
// rasterizer->light_instance_set_active_hint(ins->light_info->instance);
{
//compute distance to camera using aabb support
Vector3 n = ins->data.transform.basis.xform_inv(cull_range.nearp.normal).normalized();
Vector3 s = ins->data.transform.xform(ins->aabb.get_support(n));
ins->light_info->dtc = cull_range.nearp.distance_to(s);
}
}
} else if ((1 << ins->base_type) & INSTANCE_GEOMETRY_MASK && ins->visible && ins->data.cast_shadows != VS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) {
bool discarded = false;
if (ins->draw_range_end > 0) {
float d = cull_range.nearp.distance_to(ins->data.transform.origin);
if (d < 0)
d = 0;
discarded = (d < ins->draw_range_begin || d >= ins->draw_range_end);
}
if (!discarded) {
// test if this geometry should be visible
if (room_cull_enabled) {
if (ins->visible_in_all_rooms) {
keep = true;
} else if (ins->room) {
if (ins->room->room_info->last_visited_pass == render_pass)
keep = true;
} else if (ins->auto_rooms.size()) {
for (Set<Instance *>::Element *E = ins->auto_rooms.front(); E; E = E->next()) {
if (E->get()->room_info->last_visited_pass == render_pass) {
keep = true;
break;
}
}
} else if (exterior_visited)
keep = true;
} else {
keep = true;
}
}
if (keep) {
// update cull range
float min, max;
ins->transformed_aabb.project_range_in_plane(cull_range.nearp, min, max);
if (min < cull_range.min)
cull_range.min = min;
if (max > cull_range.max)
cull_range.max = max;
if (ins->sampled_light && ins->sampled_light->baked_light_sampler_info->last_pass != render_pass) {
if (light_samplers_culled < MAX_LIGHT_SAMPLERS) {
light_sampler_cull_result[light_samplers_culled++] = ins->sampled_light;
ins->sampled_light->baked_light_sampler_info->last_pass = render_pass;
}
}
}
}
if (!keep) {
// remove, no reason to keep
cull_count--;
SWAP(instance_cull_result[i], instance_cull_result[cull_count]);
i--;
ins->last_render_pass = 0; // make invalid
} else {
ins->last_render_pass = render_pass;
}
}
if (cull_range.max > cull_range.z_far)
cull_range.max = cull_range.z_far;
if (cull_range.min < cull_range.z_near)
cull_range.min = cull_range.z_near;
/* STEP 5 - PROCESS LIGHTS */
rasterizer->shadow_clear_near(); //clear near shadows, will be recreated
// directional lights
{
List<RID>::Element *E = p_scenario->directional_lights.front();
while (E) {
Instance *light = E->get().is_valid() ? instance_owner.get(E->get()) : NULL;
if (light && light->light_info->enabled && rasterizer->light_has_shadow(light->base_rid)) {
//rasterizer->light_instance_set_active_hint(light->light_info->instance);
_light_instance_update_shadow(light, p_scenario, p_camera, cull_range);
}
E = E->next();
}
}
//discard lights not affecting anything (useful for deferred rendering, shadowmaps, etc)
for (int i = 0; i < light_cull_count; i++) {
Instance *ins = light_cull_result[i];
if (light_discard_enabled) {
//see if the light should be pre discarded because no one is seeing it
//this test may seem expensive, but in reality, it shouldn't be
//because of early out condition. It will only go through everything
//if it's being discarded.
bool valid = false;
InstanceSet::Element *E = ins->light_info->affected.front();
while (E) {
if (E->get()->last_render_pass == render_pass) {
valid = true; // early out.
break;
}
E = E->next();
}
if (!valid) {
light_cull_count--;
SWAP(light_cull_result[i], light_cull_result[light_cull_count]);
i--;
}
}
}
{ //this should eventually change to
//assign shadows by distance to camera
SortArray<Instance *, _InstanceLightsort> sorter;
sorter.sort(light_cull_result, light_cull_count);
for (int i = 0; i < light_cull_count; i++) {
Instance *ins = light_cull_result[i];
if (!rasterizer->light_has_shadow(ins->base_rid) || !shadows_enabled)
continue;
/* for far shadows?
if (ins->version == ins->light_info->last_version && rasterizer->light_instance_has_far_shadow(ins->light_info->instance))
continue; // didn't change
*/
_light_instance_update_shadow(ins, p_scenario, p_camera, cull_range);
ins->light_info->last_version = ins->version;
}
}
/* ENVIRONMENT */
RID environment;
if (p_camera->env.is_valid()) //camera has more environment priority
environment = p_camera->env;
else if (p_scenario->environment.is_valid())
environment = p_scenario->environment;
else
environment = p_scenario->fallback_environment;
/* STEP 6 - SAMPLE BAKED LIGHT */
bool islinear = false;
if (environment.is_valid()) {
islinear = rasterizer->environment_is_fx_enabled(environment, VS::ENV_FX_SRGB);
}
for (int i = 0; i < light_samplers_culled; i++) {
_process_sampled_light(p_camera->transform, light_sampler_cull_result[i], islinear);
}
/* STEP 7 - PROCESS GEOMETRY AND DRAW SCENE*/
rasterizer->begin_scene(p_viewport->viewport_data, environment, p_scenario->debug);
rasterizer->set_viewport(viewport_rect);
// add lights
{
List<RID>::Element *E = p_scenario->directional_lights.front();
for (; E; E = E->next()) {
Instance *light = E->get().is_valid() ? instance_owner.get(E->get()) : NULL;
ERR_CONTINUE(!light);
if (!light->light_info->enabled)
continue;
rasterizer->add_light(light->light_info->instance);
light->light_info->last_add_pass = render_pass;
}
for (int i = 0; i < light_cull_count; i++) {
Instance *ins = light_cull_result[i];
rasterizer->add_light(ins->light_info->instance);
ins->light_info->last_add_pass = render_pass;
}
}
// add geometry
for (int i = 0; i < cull_count; i++) {
Instance *ins = instance_cull_result[i];
ERR_CONTINUE(!((1 << ins->base_type) & INSTANCE_GEOMETRY_MASK));
_instance_draw(ins);
}
rasterizer->end_scene();
}
void VisualServerRaster::_render_canvas_item_tree(CanvasItem *p_canvas_item, const Matrix32 &p_transform, const Rect2 &p_clip_rect, const Color &p_modulate, Rasterizer::CanvasLight *p_lights) {
static const int z_range = CANVAS_ITEM_Z_MAX - CANVAS_ITEM_Z_MIN + 1;
Rasterizer::CanvasItem *z_list[z_range];
Rasterizer::CanvasItem *z_last_list[z_range];
for (int i = 0; i < z_range; i++) {
z_list[i] = NULL;
z_last_list[i] = NULL;
}
_render_canvas_item(p_canvas_item, p_transform, p_clip_rect, 1.0, 0, z_list, z_last_list, NULL, NULL);
for (int i = 0; i < z_range; i++) {
if (!z_list[i])
continue;
rasterizer->canvas_render_items(z_list[i], CANVAS_ITEM_Z_MIN + i, p_modulate, p_lights);
}
}
void VisualServerRaster::_render_canvas_item_viewport(VisualServer *p_self, void *p_vp, const Rect2 &p_rect) {
VisualServerRaster *self = (VisualServerRaster *)(p_self);
Viewport *vp = (Viewport *)p_vp;
self->_draw_viewport(vp, p_rect.pos.x, p_rect.pos.y, p_rect.size.x, p_rect.size.y);
self->rasterizer->canvas_begin();
}
void VisualServerRaster::_render_canvas_item(CanvasItem *p_canvas_item, const Matrix32 &p_transform, const Rect2 &p_clip_rect, float p_opacity, int p_z, Rasterizer::CanvasItem **z_list, Rasterizer::CanvasItem **z_last_list, CanvasItem *p_canvas_clip, CanvasItem *p_material_owner) {
CanvasItem *ci = p_canvas_item;
if (!ci->visible)
return;
if (p_opacity < 0.007)
return;
Rect2 rect = ci->get_rect();
Matrix32 xform = p_transform * ci->xform;
Rect2 global_rect = xform.xform(rect);
global_rect.pos += p_clip_rect.pos;
if (global_rect.intersects(p_clip_rect) && ci->viewport.is_valid() && viewport_owner.owns(ci->viewport)) {
Viewport *vp = viewport_owner.get(ci->viewport);
Point2i from = xform.get_origin() + Point2(viewport_rect.x, viewport_rect.y);
Point2i size = rect.size;
size.x *= xform[0].length();
size.y *= xform[1].length();
ci->vp_render = memnew(Rasterizer::CanvasItem::ViewportRender);
ci->vp_render->owner = this;
ci->vp_render->udata = vp;
ci->vp_render->rect = Rect2(from.x,
from.y,
size.x,
size.y);
/*
_draw_viewport(vp,
from.x,
from.y,
size.x,
size.y);
*/
//rasterizer->canvas_begin();
} else {
ci->vp_render = NULL;
}
if (ci->use_parent_material && p_material_owner)
ci->material_owner = p_material_owner;
else {
p_material_owner = ci;
ci->material_owner = NULL;
}
float opacity = ci->opacity * p_opacity;
int child_item_count = ci->child_items.size();
CanvasItem **child_items = (CanvasItem **)alloca(child_item_count * sizeof(CanvasItem *));
copymem(child_items, ci->child_items.ptr(), child_item_count * sizeof(CanvasItem *));
if (ci->clip) {
if (p_canvas_clip != NULL) {
ci->final_clip_rect = p_canvas_clip->final_clip_rect.clip(global_rect);
} else {
ci->final_clip_rect = global_rect;
}
ci->final_clip_owner = ci;
} else {
ci->final_clip_owner = p_canvas_clip;
}
if (ci->sort_y) {
SortArray<CanvasItem *, CanvasItemPtrSort> sorter;
sorter.sort(child_items, child_item_count);
}
if (ci->z_relative)
p_z = CLAMP(p_z + ci->z, CANVAS_ITEM_Z_MIN, CANVAS_ITEM_Z_MAX);
else
p_z = ci->z;
for (int i = 0; i < child_item_count; i++) {
if (child_items[i]->ontop)
continue;
_render_canvas_item(child_items[i], xform, p_clip_rect, opacity, p_z, z_list, z_last_list, (CanvasItem *)ci->final_clip_owner, p_material_owner);
}
if (ci->copy_back_buffer) {
ci->copy_back_buffer->screen_rect = xform.xform(ci->copy_back_buffer->rect).clip(p_clip_rect);
}
if ((!ci->commands.empty() && p_clip_rect.intersects(global_rect)) || ci->vp_render || ci->copy_back_buffer) {
//something to draw?
ci->final_transform = xform;
ci->final_opacity = opacity * ci->self_opacity;
ci->global_rect_cache = global_rect;
ci->global_rect_cache.pos -= p_clip_rect.pos;
ci->light_masked = false;
int zidx = p_z - CANVAS_ITEM_Z_MIN;
if (z_last_list[zidx]) {
z_last_list[zidx]->next = ci;
z_last_list[zidx] = ci;
} else {
z_list[zidx] = ci;
z_last_list[zidx] = ci;
}
ci->next = NULL;
}
for (int i = 0; i < child_item_count; i++) {
if (!child_items[i]->ontop)
continue;
_render_canvas_item(child_items[i], xform, p_clip_rect, opacity, p_z, z_list, z_last_list, (CanvasItem *)ci->final_clip_owner, p_material_owner);
}
}
void VisualServerRaster::_light_mask_canvas_items(int p_z, Rasterizer::CanvasItem *p_canvas_item, Rasterizer::CanvasLight *p_masked_lights) {
if (!p_masked_lights)
return;
Rasterizer::CanvasItem *ci = p_canvas_item;
while (ci) {
Rasterizer::CanvasLight *light = p_masked_lights;
while (light) {
if (ci->light_mask & light->item_mask && p_z >= light->z_min && p_z <= light->z_max && ci->global_rect_cache.intersects_transformed(light->xform_cache, light->rect_cache)) {
ci->light_masked = true;
}
light = light->mask_next_ptr;
}
ci = ci->next;
}
}
void VisualServerRaster::_render_canvas(Canvas *p_canvas, const Matrix32 &p_transform, Rasterizer::CanvasLight *p_lights, Rasterizer::CanvasLight *p_masked_lights) {
rasterizer->canvas_begin();
int l = p_canvas->child_items.size();
Canvas::ChildItem *ci = p_canvas->child_items.ptr();
bool has_mirror = false;
for (int i = 0; i < l; i++) {
if (ci[i].mirror.x || ci[i].mirror.y) {
has_mirror = true;
break;
}
}
Rect2 clip_rect(viewport_rect.x, viewport_rect.y, viewport_rect.width, viewport_rect.height);
if (!has_mirror) {
static const int z_range = CANVAS_ITEM_Z_MAX - CANVAS_ITEM_Z_MIN + 1;
Rasterizer::CanvasItem *z_list[z_range];
Rasterizer::CanvasItem *z_last_list[z_range];
for (int i = 0; i < z_range; i++) {
z_list[i] = NULL;
z_last_list[i] = NULL;
}
for (int i = 0; i < l; i++) {
_render_canvas_item(ci[i].item, p_transform, clip_rect, 1.0, 0, z_list, z_last_list, NULL, NULL);
}
for (int i = 0; i < z_range; i++) {
if (!z_list[i])
continue;
if (p_masked_lights) {
_light_mask_canvas_items(CANVAS_ITEM_Z_MIN + i, z_list[i], p_masked_lights);
}
rasterizer->canvas_render_items(z_list[i], CANVAS_ITEM_Z_MIN + i, p_canvas->modulate, p_lights);
}
} else {
for (int i = 0; i < l; i++) {
Canvas::ChildItem &ci = p_canvas->child_items[i];
_render_canvas_item_tree(ci.item, p_transform, clip_rect, p_canvas->modulate, p_lights);
//mirroring (useful for scrolling backgrounds)
if (ci.mirror.x != 0) {
Matrix32 xform2 = p_transform * Matrix32(0, Vector2(ci.mirror.x, 0));
_render_canvas_item_tree(ci.item, xform2, clip_rect, p_canvas->modulate, p_lights);
}
if (ci.mirror.y != 0) {
Matrix32 xform2 = p_transform * Matrix32(0, Vector2(0, ci.mirror.y));
_render_canvas_item_tree(ci.item, xform2, clip_rect, p_canvas->modulate, p_lights);
}
if (ci.mirror.y != 0 && ci.mirror.x != 0) {
Matrix32 xform2 = p_transform * Matrix32(0, ci.mirror);
_render_canvas_item_tree(ci.item, xform2, clip_rect, p_canvas->modulate, p_lights);
}
}
}
}
void VisualServerRaster::_draw_viewport_camera(Viewport *p_viewport, bool p_ignore_camera) {
Camera *camera = NULL;
if (camera_owner.owns(p_viewport->camera))
camera = camera_owner.get(p_viewport->camera);
Scenario *scenario = scenario_owner.get(p_viewport->scenario);
_update_instances(); // check dirty instances before rendering
if (p_ignore_camera)
_render_no_camera(p_viewport, camera, scenario);
else
_render_camera(p_viewport, camera, scenario);
}
void VisualServerRaster::_draw_viewport(Viewport *p_viewport, int p_ofs_x, int p_ofs_y, int p_parent_w, int p_parent_h) {
ViewportRect desired_rect = p_viewport->rect;
ViewportRect old_rect = viewport_rect;
// bool vpchanged=false;
// convert default expanding viewports to actual size
//if (desired_rect.x==0 && desired_rect.y==0 && desired_rect.width==0 && desired_rect.height==0) {
if (p_parent_w != 0 && p_parent_h != 0) {
desired_rect.width = p_parent_w;
desired_rect.height = p_parent_h;
}
ERR_FAIL_COND(desired_rect.width <= 0 || desired_rect.height <= 0);
desired_rect.x += p_ofs_x;
desired_rect.y += p_ofs_y;
// if the viewport is different than the actual one, change it
if (p_viewport->render_target.is_valid() || viewport_rect.x != desired_rect.x ||
viewport_rect.y != desired_rect.y ||
viewport_rect.width != desired_rect.width ||
viewport_rect.height != desired_rect.height) {
viewport_rect = desired_rect;
rasterizer->set_viewport(viewport_rect);
}
/* Camera should always be BEFORE any other 3D */
bool scenario_draw_canvas_bg = false;
int scenario_canvas_max_layer = 0;
if (!p_viewport->hide_canvas && !p_viewport->disable_environment && scenario_owner.owns(p_viewport->scenario)) {
Scenario *scenario = scenario_owner.get(p_viewport->scenario);
if (scenario->environment.is_valid()) {
if (rasterizer->is_environment(scenario->environment)) {
scenario_draw_canvas_bg = rasterizer->environment_get_background(scenario->environment) == VS::ENV_BG_CANVAS;
scenario_canvas_max_layer = rasterizer->environment_get_background_param(scenario->environment, VS::ENV_BG_PARAM_CANVAS_MAX_LAYER);
}
}
}
bool can_draw_3d = !p_viewport->hide_scenario && camera_owner.owns(p_viewport->camera) && scenario_owner.owns(p_viewport->scenario);
if (scenario_draw_canvas_bg) {
rasterizer->begin_canvas_bg();
}
if (!scenario_draw_canvas_bg && can_draw_3d) {
_draw_viewport_camera(p_viewport, false);
} else if (true /*|| !p_viewport->canvas_list.empty()*/) {
//clear the viewport black because of no camera? i seriously should..
if (p_viewport->render_target_clear_on_new_frame || p_viewport->render_target_clear) {
if (p_viewport->transparent_bg) {
rasterizer->clear_viewport(Color(0, 0, 0, 0));
} else {
Color cc = clear_color;
if (scenario_draw_canvas_bg)
cc.a = 0;
rasterizer->clear_viewport(cc);
}
p_viewport->render_target_clear = false;
}
}
if (!p_viewport->hide_canvas) {
int i = 0;
Map<Viewport::CanvasKey, Viewport::CanvasData *> canvas_map;
Rect2 clip_rect(0, 0, viewport_rect.width, viewport_rect.height);
Rasterizer::CanvasLight *lights = NULL;
Rasterizer::CanvasLight *lights_with_shadow = NULL;
Rasterizer::CanvasLight *lights_with_mask = NULL;
Rect2 shadow_rect;
int light_count = 0;
for (Map<RID, Viewport::CanvasData>::Element *E = p_viewport->canvas_map.front(); E; E = E->next()) {
Matrix32 xf = p_viewport->global_transform * E->get().transform;
//find lights in canvas
for (Set<Rasterizer::CanvasLight *>::Element *F = E->get().canvas->lights.front(); F; F = F->next()) {
Rasterizer::CanvasLight *cl = F->get();
if (cl->enabled && cl->texture.is_valid()) {
//not super efficient..
Size2 tsize(rasterizer->texture_get_width(cl->texture), rasterizer->texture_get_height(cl->texture));
tsize *= cl->scale;
Vector2 offset = tsize / 2.0;
cl->rect_cache = Rect2(-offset + cl->texture_offset, tsize);
cl->xform_cache = xf * cl->xform;
if (clip_rect.intersects_transformed(cl->xform_cache, cl->rect_cache)) {
cl->filter_next_ptr = lights;
lights = cl;
cl->texture_cache = NULL;
Matrix32 scale;
scale.scale(cl->rect_cache.size);
scale.elements[2] = cl->rect_cache.pos;
cl->light_shader_xform = (cl->xform_cache * scale).affine_inverse();
cl->light_shader_pos = cl->xform_cache[2];
if (cl->shadow_buffer.is_valid()) {
cl->shadows_next_ptr = lights_with_shadow;
if (lights_with_shadow == NULL) {
shadow_rect = cl->xform_cache.xform(cl->rect_cache);
} else {
shadow_rect = shadow_rect.merge(cl->xform_cache.xform(cl->rect_cache));
}
lights_with_shadow = cl;
cl->radius_cache = cl->rect_cache.size.length();
}
if (cl->mode == CANVAS_LIGHT_MODE_MASK) {
cl->mask_next_ptr = lights_with_mask;
lights_with_mask = cl;
}
light_count++;
}
}
}
//print_line("lights: "+itos(light_count));
canvas_map[Viewport::CanvasKey(E->key(), E->get().layer)] = &E->get();
}
if (lights_with_shadow) {
//update shadows if any
Rasterizer::CanvasLightOccluderInstance *occluders = NULL;
//make list of occluders
for (Map<RID, Viewport::CanvasData>::Element *E = p_viewport->canvas_map.front(); E; E = E->next()) {
Matrix32 xf = p_viewport->global_transform * E->get().transform;
for (Set<Rasterizer::CanvasLightOccluderInstance *>::Element *F = E->get().canvas->occluders.front(); F; F = F->next()) {
if (!F->get()->enabled)
continue;
F->get()->xform_cache = xf * F->get()->xform;
if (shadow_rect.intersects_transformed(F->get()->xform_cache, F->get()->aabb_cache)) {
F->get()->next = occluders;
occluders = F->get();
}
}
}
//update the light shadowmaps with them
Rasterizer::CanvasLight *light = lights_with_shadow;
while (light) {
rasterizer->canvas_light_shadow_buffer_update(light->shadow_buffer, light->xform_cache.affine_inverse(), light->item_mask, light->radius_cache / 1000.0, light->radius_cache * 1.1, occluders, &light->shadow_matrix_cache);
light = light->shadows_next_ptr;
}
rasterizer->set_viewport(viewport_rect); //must reset viewport afterwards
}
if (scenario_draw_canvas_bg && canvas_map.front() && canvas_map.front()->key().layer > scenario_canvas_max_layer) {
_draw_viewport_camera(p_viewport, !can_draw_3d);
scenario_draw_canvas_bg = false;
}
for (Map<Viewport::CanvasKey, Viewport::CanvasData *>::Element *E = canvas_map.front(); E; E = E->next()) {
// print_line("canvas "+itos(i)+" size: "+itos(I->get()->canvas->child_items.size()));
//print_line("GT "+p_viewport->global_transform+". CT: "+E->get()->transform);
Matrix32 xform = p_viewport->global_transform * E->get()->transform;
Rasterizer::CanvasLight *canvas_lights = NULL;
Rasterizer::CanvasLight *ptr = lights;
while (ptr) {
if (E->get()->layer >= ptr->layer_min && E->get()->layer <= ptr->layer_max) {
ptr->next_ptr = canvas_lights;
canvas_lights = ptr;
}
ptr = ptr->filter_next_ptr;
}
_render_canvas(E->get()->canvas, xform, canvas_lights, lights_with_mask);
i++;
if (scenario_draw_canvas_bg && E->key().layer >= scenario_canvas_max_layer) {
_draw_viewport_camera(p_viewport, !can_draw_3d);
scenario_draw_canvas_bg = false;
}
}
if (scenario_draw_canvas_bg) {
_draw_viewport_camera(p_viewport, !can_draw_3d);
scenario_draw_canvas_bg = false;
}
// rasterizer->canvas_debug_viewport_shadows(lights_with_shadow);
}
//capture
if (p_viewport->queue_capture) {
rasterizer->capture_viewport(&p_viewport->capture);
p_viewport->queue_capture = false;
}
//restore
if (viewport_rect.x != old_rect.x ||
viewport_rect.y != old_rect.y ||
viewport_rect.width != old_rect.width ||
viewport_rect.height != old_rect.height) {
viewport_rect = old_rect;
rasterizer->set_viewport(viewport_rect);
}
}
void VisualServerRaster::_draw_viewports() {
//draw viewports for render targets
List<Viewport *> to_blit;
List<Viewport *> to_disable;
for (SelfList<Viewport> *E = viewport_update_list.first(); E; E = E->next()) {
Viewport *vp = E->self();
ERR_CONTINUE(!vp);
if (
vp->render_target_update_mode == RENDER_TARGET_UPDATE_WHEN_VISIBLE &&
!vp->rendered_in_prev_frame &&
!vp->queue_capture) {
continue;
}
if (vp->rt_to_screen_rect != Rect2())
to_blit.push_back(vp);
rasterizer->set_render_target(vp->render_target, vp->transparent_bg, vp->render_target_vflip);
_draw_viewport(vp, 0, 0, vp->rect.width, vp->rect.height);
if ((vp->queue_capture && vp->render_target_update_mode == RENDER_TARGET_UPDATE_DISABLED) || vp->render_target_update_mode == RENDER_TARGET_UPDATE_ONCE) {
//was only enabled for capture
to_disable.push_back(vp);
vp->render_target_update_mode = RENDER_TARGET_UPDATE_DISABLED;
}
}
rasterizer->set_render_target(RID());
while (to_disable.size()) {
//disable again because it was only for capture
viewport_update_list.remove(&to_disable.front()->get()->update_list);
to_disable.pop_front();
}
//draw RTs directly to screen when requested
for (List<Viewport *>::Element *E = to_blit.front(); E; E = E->next()) {
int window_w = OS::get_singleton()->get_video_mode().width;
int window_h = OS::get_singleton()->get_video_mode().height;
ViewportRect desired_rect;
desired_rect.x = desired_rect.y = 0;
desired_rect.width = window_w;
desired_rect.height = window_h;
if (viewport_rect.x != desired_rect.x ||
viewport_rect.y != desired_rect.y ||
viewport_rect.width != desired_rect.width ||
viewport_rect.height != desired_rect.height) {
viewport_rect = desired_rect;
rasterizer->set_viewport(viewport_rect);
}
rasterizer->canvas_begin();
rasterizer->canvas_disable_blending();
rasterizer->canvas_begin_rect(Matrix32());
rasterizer->canvas_draw_rect(E->get()->rt_to_screen_rect, 0, Rect2(Point2(), E->get()->rt_to_screen_rect.size), E->get()->render_target_texture, Color(1, 1, 1));
}
//draw viewports attached to screen
for (Map<RID, int>::Element *E = screen_viewports.front(); E; E = E->next()) {
Viewport *vp = viewport_owner.get(E->key());
ERR_CONTINUE(!vp);
int window_w = OS::get_singleton()->get_video_mode(E->get()).width;
int window_h = OS::get_singleton()->get_video_mode(E->get()).height;
Rect2 r(0, 0, vp->rect.width, vp->rect.height);
if (r.size.width == 0)
r.size.width = window_w;
if (r.size.height == 0)
r.size.height = window_h;
_draw_viewport(vp, r.pos.x, r.pos.y, r.size.width, r.size.height);
}
//check when a viewport associated to a render target was drawn
for (SelfList<Viewport> *E = viewport_update_list.first(); E; E = E->next()) {
Viewport *vp = E->self();
ERR_CONTINUE(!vp);
if (vp->render_target_update_mode != RENDER_TARGET_UPDATE_WHEN_VISIBLE)
continue;
vp->rendered_in_prev_frame = rasterizer->render_target_renedered_in_frame(vp->render_target);
}
}
void VisualServerRaster::_draw_cursors_and_margins() {
int window_w = OS::get_singleton()->get_video_mode().width;
int window_h = OS::get_singleton()->get_video_mode().height;
ViewportRect desired_rect;
desired_rect.x = desired_rect.y = 0;
desired_rect.width = window_w;
desired_rect.height = window_h;
if (viewport_rect.x != desired_rect.x ||
viewport_rect.y != desired_rect.y ||
viewport_rect.width != desired_rect.width ||
viewport_rect.height != desired_rect.height) {
viewport_rect = desired_rect;
rasterizer->set_viewport(viewport_rect);
}
rasterizer->canvas_begin();
rasterizer->canvas_begin_rect(Matrix32());
for (int i = 0; i < MAX_CURSORS; i++) {
if (!cursors[i].visible) {
continue;
};
RID tex = cursors[i].texture ? cursors[i].texture : default_cursor_texture;
ERR_CONTINUE(!tex);
if (cursors[i].region.has_no_area()) {
Point2 size(texture_get_width(tex), texture_get_height(tex));
rasterizer->canvas_draw_rect(Rect2(cursors[i].pos - cursors[i].center, size), 0, Rect2(), tex, Color(1, 1, 1, 1));
} else {
Point2 size = cursors[i].region.size;
rasterizer->canvas_draw_rect(Rect2(cursors[i].pos - cursors[i].center, size), Rasterizer::CANVAS_RECT_REGION, cursors[i].region, tex, Color(1, 1, 1, 1));
}
};
if (black_image[MARGIN_LEFT].is_valid()) {
Size2 sz(rasterizer->texture_get_width(black_image[MARGIN_LEFT]), rasterizer->texture_get_height(black_image[MARGIN_LEFT]));
rasterizer->canvas_draw_rect(Rect2(0, 0, black_margin[MARGIN_LEFT], window_h), 0, Rect2(0, 0, sz.x, sz.y), black_image[MARGIN_LEFT], Color(1, 1, 1));
} else if (black_margin[MARGIN_LEFT])
rasterizer->canvas_draw_rect(Rect2(0, 0, black_margin[MARGIN_LEFT], window_h), 0, Rect2(0, 0, 1, 1), RID(), Color(0, 0, 0));
if (black_image[MARGIN_RIGHT].is_valid()) {
Size2 sz(rasterizer->texture_get_width(black_image[MARGIN_RIGHT]), rasterizer->texture_get_height(black_image[MARGIN_RIGHT]));
rasterizer->canvas_draw_rect(Rect2(window_w - black_margin[MARGIN_RIGHT], 0, black_margin[MARGIN_RIGHT], window_h), 0, Rect2(0, 0, sz.x, sz.y), black_image[MARGIN_RIGHT], Color(1, 1, 1));
} else if (black_margin[MARGIN_RIGHT])
rasterizer->canvas_draw_rect(Rect2(window_w - black_margin[MARGIN_RIGHT], 0, black_margin[MARGIN_RIGHT], window_h), 0, Rect2(0, 0, 1, 1), RID(), Color(0, 0, 0));
if (black_image[MARGIN_TOP].is_valid()) {
Size2 sz(rasterizer->texture_get_width(black_image[MARGIN_TOP]), rasterizer->texture_get_height(black_image[MARGIN_TOP]));
rasterizer->canvas_draw_rect(Rect2(0, 0, window_w, black_margin[MARGIN_TOP]), 0, Rect2(0, 0, sz.x, sz.y), black_image[MARGIN_TOP], Color(1, 1, 1));
} else if (black_margin[MARGIN_TOP]) {
rasterizer->canvas_draw_rect(Rect2(0, 0, window_w, black_margin[MARGIN_TOP]), 0, Rect2(0, 0, 1, 1), RID(), Color(0, 0, 0));
}
if (black_image[MARGIN_BOTTOM].is_valid()) {
Size2 sz(rasterizer->texture_get_width(black_image[MARGIN_BOTTOM]), rasterizer->texture_get_height(black_image[MARGIN_BOTTOM]));
rasterizer->canvas_draw_rect(Rect2(0, window_h - black_margin[MARGIN_BOTTOM], window_w, black_margin[MARGIN_BOTTOM]), 0, Rect2(0, 0, sz.x, sz.y), black_image[MARGIN_BOTTOM], Color(1, 1, 1));
} else if (black_margin[MARGIN_BOTTOM]) {
rasterizer->canvas_draw_rect(Rect2(0, window_h - black_margin[MARGIN_BOTTOM], window_w, black_margin[MARGIN_BOTTOM]), 0, Rect2(0, 0, 1, 1), RID(), Color(0, 0, 0));
}
rasterizer->canvas_end_rect();
};
void VisualServerRaster::sync() {
//do none
}
void VisualServerRaster::draw() {
//if (changes)
// print_line("changes: "+itos(changes));
changes = 0;
shadows_enabled = GLOBAL_DEF("render/shadows_enabled", true);
room_cull_enabled = GLOBAL_DEF("render/room_cull_enabled", true);
light_discard_enabled = GLOBAL_DEF("render/light_discard_enabled", true);
rasterizer->begin_frame();
_draw_viewports();
_draw_cursors_and_margins();
rasterizer->end_frame();
draw_extra_frame = rasterizer->needs_to_draw_next_frame();
}
bool VisualServerRaster::has_changed() const {
return changes > 0 || draw_extra_frame;
}
int VisualServerRaster::get_render_info(RenderInfo p_info) {
return rasterizer->get_render_info(p_info);
}
bool VisualServerRaster::has_feature(Features p_feature) const {
return rasterizer->has_feature(p_feature); // lies for now
}
void VisualServerRaster::set_default_clear_color(const Color &p_color) {
clear_color = p_color;
}
Color VisualServerRaster::get_default_clear_color() const {
return clear_color;
}
void VisualServerRaster::set_time_scale(float p_scale) {
rasterizer->set_time_scale(p_scale);
}
void VisualServerRaster::set_boot_image(const Image &p_image, const Color &p_color, bool p_scale) {
if (p_image.empty())
return;
rasterizer->restore_framebuffer();
rasterizer->begin_frame();
int window_w = OS::get_singleton()->get_video_mode(0).width;
int window_h = OS::get_singleton()->get_video_mode(0).height;
ViewportRect vr;
vr.x = 0;
vr.y = 0;
vr.width = OS::get_singleton()->get_video_mode(0).width;
vr.height = OS::get_singleton()->get_video_mode(0).height;
rasterizer->set_viewport(vr);
rasterizer->clear_viewport(p_color);
rasterizer->canvas_begin();
RID texture = texture_create();
texture_allocate(texture, p_image.get_width(), p_image.get_height(), p_image.get_format(), TEXTURE_FLAG_FILTER);
texture_set_data(texture, p_image);
rasterizer->canvas_begin_rect(Matrix32());
Rect2 imgrect(0, 0, p_image.get_width(), p_image.get_height());
Rect2 screenrect;
if (p_scale) {
if (window_w > window_h) {
//scale horizontally
screenrect.size.y = window_h;
screenrect.size.x = imgrect.size.x * window_h / imgrect.size.y;
screenrect.pos.x = (window_w - screenrect.size.x) / 2;
} else {
//scale vertically
screenrect.size.x = window_w;
screenrect.size.y = imgrect.size.y * window_w / imgrect.size.x;
screenrect.pos.y = (window_h - screenrect.size.y) / 2;
}
} else {
screenrect = imgrect;
screenrect.pos += ((Size2(vr.width, vr.height) - screenrect.size) / 2.0).floor();
}
rasterizer->canvas_draw_rect(screenrect, 0, imgrect, texture, Color(1, 1, 1, 1));
rasterizer->canvas_end_rect();
rasterizer->end_frame();
rasterizer->flush_frame();
free(texture); // free since it's only one frame that stays there
}
void VisualServerRaster::init() {
rasterizer->init();
shadows_enabled = GLOBAL_DEF("render/shadows_enabled", true);
//default_scenario = scenario_create();
//default_viewport = viewport_create();
for (int i = 0; i < 4; i++)
black_margin[i] = 0;
Image img;
img.create(default_mouse_cursor_xpm);
//img.convert(Image::FORMAT_RGB);
default_cursor_texture = texture_create_from_image(img, 0);
aabb_random_points.resize(GLOBAL_DEF("render/aabb_random_points", 16));
for (int i = 0; i < aabb_random_points.size(); i++)
aabb_random_points[i] = Vector3(Math::random(0, 1), Math::random(0, 1), Math::random(0, 1));
transformed_aabb_random_points.resize(aabb_random_points.size());
changes = 0;
}
void VisualServerRaster::_clean_up_owner(RID_OwnerBase *p_owner, String p_type) {
List<RID> rids;
p_owner->get_owned_list(&rids);
int lost = 0;
for (List<RID>::Element *I = rids.front(); I; I = I->next()) {
if (OS::get_singleton()->is_stdout_verbose()) {
lost++;
}
free(I->get());
}
if (lost)
print_line("VisualServerRaster: WARNING: Lost " + itos(lost) + " RIDs of type " + p_type);
}
void VisualServerRaster::finish() {
free(default_cursor_texture);
if (test_cube.is_valid())
free(test_cube);
_free_internal_rids();
_clean_up_owner(&room_owner, "Room");
_clean_up_owner(&portal_owner, "Portal");
_clean_up_owner(&camera_owner, "Camera");
_clean_up_owner(&viewport_owner, "Viewport");
_clean_up_owner(&scenario_owner, "Scenario");
_clean_up_owner(&instance_owner, "Instance");
_clean_up_owner(&canvas_owner, "Canvas");
_clean_up_owner(&canvas_item_owner, "CanvasItem");
rasterizer->finish();
octree_allocator.clear();
if (instance_dependency_map.size()) {
print_line("Base resources missing amount: " + itos(instance_dependency_map.size()));
}
ERR_FAIL_COND(instance_dependency_map.size());
}
RID VisualServerRaster::get_test_cube() {
if (test_cube.is_valid())
return test_cube;
test_cube = _make_test_cube();
return test_cube;
}
VisualServerRaster::VisualServerRaster(Rasterizer *p_rasterizer) {
rasterizer = p_rasterizer;
rasterizer->draw_viewport_func = _render_canvas_item_viewport;
instance_update_list = NULL;
render_pass = 0;
clear_color = Color(0.3, 0.3, 0.3, 1.0);
OctreeAllocator::allocator = &octree_allocator;
draw_extra_frame = false;
}
VisualServerRaster::~VisualServerRaster() {
}