godot/core/io/marshalls.cpp
Rémi Verschelde b97401f304 Update copyright statements to 2020
And apply clang-format 10 to the codebase.
2020-08-13 22:58:13 +02:00

1372 lines
28 KiB
C++

/*************************************************************************/
/* marshalls.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "marshalls.h"
#include "os/keyboard.h"
#include "print_string.h"
#include <limits.h>
#include <stdio.h>
#define _S(a) ((int32_t)a)
#define ERR_FAIL_ADD_OF(a, b, err) ERR_FAIL_COND_V(_S(b) < 0 || _S(a) < 0 || _S(a) > INT_MAX - _S(b), err)
#define ERR_FAIL_MUL_OF(a, b, err) ERR_FAIL_COND_V(_S(a) < 0 || _S(b) <= 0 || _S(a) > INT_MAX / _S(b), err)
static Error _decode_string(const uint8_t *&buf, int &len, int *r_len, String &r_string) {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t strlen = decode_uint32(buf);
int32_t pad = 0;
// Handle padding
if (strlen % 4) {
pad = 4 - strlen % 4;
}
buf += 4;
len -= 4;
// Ensure buffer is big enough
ERR_FAIL_ADD_OF(strlen, pad, ERR_FILE_EOF);
ERR_FAIL_COND_V(strlen < 0 || strlen + pad > len, ERR_FILE_EOF);
String str;
ERR_FAIL_COND_V(str.parse_utf8((const char *)buf, strlen), ERR_INVALID_DATA);
r_string = str;
// Add padding
strlen += pad;
// Update buffer pos, left data count, and return size
buf += strlen;
len -= strlen;
if (r_len) {
(*r_len) += 4 + strlen;
}
return OK;
}
Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int *r_len) {
const uint8_t *buf = p_buffer;
int len = p_len;
if (len < 4) {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
}
uint32_t type = decode_uint32(buf);
ERR_FAIL_COND_V(type >= Variant::VARIANT_MAX, ERR_INVALID_DATA);
buf += 4;
len -= 4;
if (r_len)
*r_len = 4;
switch (type) {
case Variant::NIL: {
r_variant = Variant();
} break;
case Variant::BOOL: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
bool val = decode_uint32(buf);
r_variant = val;
if (r_len)
(*r_len) += 4;
} break;
case Variant::INT: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t val = decode_uint32(buf);
r_variant = val;
if (r_len)
(*r_len) += 4;
} break;
case Variant::REAL: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
float val = decode_float(buf);
r_variant = val;
if (r_len)
(*r_len) += 4;
} break;
case Variant::STRING: {
String str;
Error err = _decode_string(buf, len, r_len, str);
if (err)
return err;
r_variant = str;
} break;
// math types
case Variant::VECTOR2: {
ERR_FAIL_COND_V(len < 4 * 2, ERR_INVALID_DATA);
Vector2 val;
val.x = decode_float(&buf[0]);
val.y = decode_float(&buf[4]);
r_variant = val;
if (r_len)
(*r_len) += 4 * 2;
} break; // 5
case Variant::RECT2: {
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
Rect2 val;
val.pos.x = decode_float(&buf[0]);
val.pos.y = decode_float(&buf[4]);
val.size.x = decode_float(&buf[8]);
val.size.y = decode_float(&buf[12]);
r_variant = val;
if (r_len)
(*r_len) += 4 * 4;
} break;
case Variant::VECTOR3: {
ERR_FAIL_COND_V(len < 4 * 3, ERR_INVALID_DATA);
Vector3 val;
val.x = decode_float(&buf[0]);
val.y = decode_float(&buf[4]);
val.z = decode_float(&buf[8]);
r_variant = val;
if (r_len)
(*r_len) += 4 * 3;
} break;
case Variant::MATRIX32: {
ERR_FAIL_COND_V(len < 4 * 6, ERR_INVALID_DATA);
Matrix32 val;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 2; j++) {
val.elements[i][j] = decode_float(&buf[(i * 2 + j) * 4]);
}
}
r_variant = val;
if (r_len)
(*r_len) += 4 * 6;
} break;
case Variant::PLANE: {
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
Plane val;
val.normal.x = decode_float(&buf[0]);
val.normal.y = decode_float(&buf[4]);
val.normal.z = decode_float(&buf[8]);
val.d = decode_float(&buf[12]);
r_variant = val;
if (r_len)
(*r_len) += 4 * 4;
} break;
case Variant::QUAT: {
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
Quat val;
val.x = decode_float(&buf[0]);
val.y = decode_float(&buf[4]);
val.z = decode_float(&buf[8]);
val.w = decode_float(&buf[12]);
r_variant = val;
if (r_len)
(*r_len) += 4 * 4;
} break;
case Variant::_AABB: {
ERR_FAIL_COND_V(len < 4 * 6, ERR_INVALID_DATA);
AABB val;
val.pos.x = decode_float(&buf[0]);
val.pos.y = decode_float(&buf[4]);
val.pos.z = decode_float(&buf[8]);
val.size.x = decode_float(&buf[12]);
val.size.y = decode_float(&buf[16]);
val.size.z = decode_float(&buf[20]);
r_variant = val;
if (r_len)
(*r_len) += 4 * 6;
} break;
case Variant::MATRIX3: {
ERR_FAIL_COND_V(len < 4 * 9, ERR_INVALID_DATA);
Matrix3 val;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
val.elements[i][j] = decode_float(&buf[(i * 3 + j) * 4]);
}
}
r_variant = val;
if (r_len)
(*r_len) += 4 * 9;
} break;
case Variant::TRANSFORM: {
ERR_FAIL_COND_V(len < 4 * 12, ERR_INVALID_DATA);
Transform val;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
val.basis.elements[i][j] = decode_float(&buf[(i * 3 + j) * 4]);
}
}
val.origin[0] = decode_float(&buf[36]);
val.origin[1] = decode_float(&buf[40]);
val.origin[2] = decode_float(&buf[44]);
r_variant = val;
if (r_len)
(*r_len) += 4 * 12;
} break;
// misc types
case Variant::COLOR: {
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
Color val;
val.r = decode_float(&buf[0]);
val.g = decode_float(&buf[4]);
val.b = decode_float(&buf[8]);
val.a = decode_float(&buf[12]);
r_variant = val;
if (r_len)
(*r_len) += 4 * 4;
} break;
case Variant::IMAGE: {
ERR_FAIL_COND_V(len < 5 * 4, ERR_INVALID_DATA);
Image::Format fmt = (Image::Format)decode_uint32(&buf[0]);
ERR_FAIL_INDEX_V(fmt, Image::FORMAT_MAX, ERR_INVALID_DATA);
uint32_t mipmaps = decode_uint32(&buf[4]);
uint32_t w = decode_uint32(&buf[8]);
uint32_t h = decode_uint32(&buf[12]);
int32_t datalen = decode_uint32(&buf[16]);
Image img;
if (datalen > 0) {
len -= 5 * 4;
ERR_FAIL_COND_V(len < datalen, ERR_INVALID_DATA);
DVector<uint8_t> data;
data.resize(datalen);
DVector<uint8_t>::Write wr = data.write();
copymem(&wr[0], &buf[20], datalen);
wr = DVector<uint8_t>::Write();
img = Image(w, h, mipmaps, fmt, data);
}
r_variant = img;
if (r_len) {
if (datalen % 4)
(*r_len) += 4 - datalen % 4;
(*r_len) += 4 * 5 + datalen;
}
} break;
case Variant::NODE_PATH: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t strlen = decode_uint32(buf);
if (strlen & 0x80000000) {
//new format
ERR_FAIL_COND_V(len < 12, ERR_INVALID_DATA);
Vector<StringName> names;
Vector<StringName> subnames;
StringName prop;
uint32_t namecount = strlen &= 0x7FFFFFFF;
uint32_t subnamecount = decode_uint32(buf + 4);
uint32_t flags = decode_uint32(buf + 8);
len -= 12;
buf += 12;
int total = namecount + subnamecount;
if (flags & 2)
total++;
if (r_len)
(*r_len) += 12;
for (uint32_t i = 0; i < total; i++) {
String str;
Error err = _decode_string(buf, len, r_len, str);
if (err)
return err;
if (i < namecount)
names.push_back(str);
else if (i < namecount + subnamecount)
subnames.push_back(str);
else
prop = str;
}
r_variant = NodePath(names, subnames, flags & 1, prop);
} else {
//old format, just a string
ERR_FAIL_V(ERR_INVALID_DATA);
}
} break;
/*case Variant::RESOURCE: {
ERR_EXPLAIN("Can't marshallize resources");
ERR_FAIL_V(ERR_INVALID_DATA); //no, i'm sorry, no go
} break;*/
case Variant::_RID: {
r_variant = RID();
} break;
case Variant::OBJECT: {
r_variant = (Object *)NULL;
} break;
case Variant::INPUT_EVENT: {
ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
InputEvent ie;
ie.type = decode_uint32(&buf[0]);
ie.device = decode_uint32(&buf[4]);
if (r_len)
(*r_len) += 12;
switch (ie.type) {
case InputEvent::KEY: {
ERR_FAIL_COND_V(len < 20, ERR_INVALID_DATA);
uint32_t mods = decode_uint32(&buf[12]);
if (mods & KEY_MASK_SHIFT)
ie.key.mod.shift = true;
if (mods & KEY_MASK_CTRL)
ie.key.mod.control = true;
if (mods & KEY_MASK_ALT)
ie.key.mod.alt = true;
if (mods & KEY_MASK_META)
ie.key.mod.meta = true;
ie.key.scancode = decode_uint32(&buf[16]);
if (r_len)
(*r_len) += 8;
} break;
case InputEvent::MOUSE_BUTTON: {
ERR_FAIL_COND_V(len < 16, ERR_INVALID_DATA);
ie.mouse_button.button_index = decode_uint32(&buf[12]);
if (r_len)
(*r_len) += 4;
} break;
case InputEvent::JOYSTICK_BUTTON: {
ERR_FAIL_COND_V(len < 16, ERR_INVALID_DATA);
ie.joy_button.button_index = decode_uint32(&buf[12]);
if (r_len)
(*r_len) += 4;
} break;
case InputEvent::SCREEN_TOUCH: {
ERR_FAIL_COND_V(len < 16, ERR_INVALID_DATA);
ie.screen_touch.index = decode_uint32(&buf[12]);
if (r_len)
(*r_len) += 4;
} break;
case InputEvent::JOYSTICK_MOTION: {
ERR_FAIL_COND_V(len < 20, ERR_INVALID_DATA);
ie.joy_motion.axis = decode_uint32(&buf[12]);
ie.joy_motion.axis_value = decode_float(&buf[16]);
if (r_len)
(*r_len) += 8;
} break;
}
r_variant = ie;
} break;
case Variant::DICTIONARY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
bool shared = count & 0x80000000;
count &= 0x7FFFFFFF;
buf += 4;
len -= 4;
if (r_len) {
(*r_len) += 4;
}
Dictionary d(shared);
for (int i = 0; i < count; i++) {
Variant key, value;
int used;
Error err = decode_variant(key, buf, len, &used);
ERR_FAIL_COND_V(err, err);
buf += used;
len -= used;
if (r_len) {
(*r_len) += used;
}
err = decode_variant(value, buf, len, &used);
ERR_FAIL_COND_V(err, err);
buf += used;
len -= used;
if (r_len) {
(*r_len) += used;
}
d[key] = value;
}
r_variant = d;
} break;
case Variant::ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
bool shared = count & 0x80000000;
count &= 0x7FFFFFFF;
buf += 4;
len -= 4;
if (r_len) {
(*r_len) += 4;
}
Array varr(shared);
for (int i = 0; i < count; i++) {
int used = 0;
Variant v;
Error err = decode_variant(v, buf, len, &used);
ERR_FAIL_COND_V(err, err);
buf += used;
len -= used;
varr.push_back(v);
if (r_len) {
(*r_len) += used;
}
}
r_variant = varr;
} break;
// arrays
case Variant::RAW_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
ERR_FAIL_COND_V(count < 0 || count > len, ERR_INVALID_DATA);
DVector<uint8_t> data;
if (count) {
data.resize(count);
DVector<uint8_t>::Write w = data.write();
for (int32_t i = 0; i < count; i++) {
w[i] = buf[i];
}
w = DVector<uint8_t>::Write();
}
r_variant = data;
if (r_len) {
if (count % 4)
(*r_len) += 4 - count % 4;
(*r_len) += 4 + count;
}
} break;
case Variant::INT_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
DVector<int> data;
if (count) {
//const int*rbuf=(const int*)buf;
data.resize(count);
DVector<int>::Write w = data.write();
for (int32_t i = 0; i < count; i++) {
w[i] = decode_uint32(&buf[i * 4]);
}
w = DVector<int>::Write();
}
r_variant = Variant(data);
if (r_len) {
(*r_len) += 4 + count * sizeof(int);
}
} break;
case Variant::REAL_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
DVector<float> data;
if (count) {
//const float*rbuf=(const float*)buf;
data.resize(count);
DVector<float>::Write w = data.write();
for (int32_t i = 0; i < count; i++) {
w[i] = decode_float(&buf[i * 4]);
}
w = DVector<float>::Write();
}
r_variant = data;
if (r_len) {
(*r_len) += 4 + count * sizeof(float);
}
} break;
case Variant::STRING_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
DVector<String> strings;
buf += 4;
len -= 4;
if (r_len)
(*r_len) += 4;
//printf("string count: %i\n",count);
for (int32_t i = 0; i < count; i++) {
String str;
Error err = _decode_string(buf, len, r_len, str);
if (err)
return err;
strings.push_back(str);
}
r_variant = strings;
} break;
case Variant::VECTOR2_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
ERR_FAIL_MUL_OF(count, 4 * 2, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * 4 * 2 > len, ERR_INVALID_DATA);
DVector<Vector2> varray;
if (r_len) {
(*r_len) += 4;
}
if (count) {
varray.resize(count);
DVector<Vector2>::Write w = varray.write();
for (int32_t i = 0; i < count; i++) {
w[i].x = decode_float(buf + i * 4 * 2 + 4 * 0);
w[i].y = decode_float(buf + i * 4 * 2 + 4 * 1);
}
int adv = 4 * 2 * count;
if (r_len)
(*r_len) += adv;
len -= adv;
buf += adv;
}
r_variant = varray;
} break;
case Variant::VECTOR3_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
ERR_FAIL_MUL_OF(count, 4 * 3, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * 4 * 3 > len, ERR_INVALID_DATA);
DVector<Vector3> varray;
if (r_len) {
(*r_len) += 4;
}
if (count) {
varray.resize(count);
DVector<Vector3>::Write w = varray.write();
for (int32_t i = 0; i < count; i++) {
w[i].x = decode_float(buf + i * 4 * 3 + 4 * 0);
w[i].y = decode_float(buf + i * 4 * 3 + 4 * 1);
w[i].z = decode_float(buf + i * 4 * 3 + 4 * 2);
}
int adv = 4 * 3 * count;
if (r_len)
(*r_len) += adv;
len -= adv;
buf += adv;
}
r_variant = varray;
} break;
case Variant::COLOR_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
ERR_FAIL_MUL_OF(count, 4 * 4, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * 4 * 4 > len, ERR_INVALID_DATA);
DVector<Color> carray;
if (r_len) {
(*r_len) += 4;
}
if (count) {
carray.resize(count);
DVector<Color>::Write w = carray.write();
for (int32_t i = 0; i < count; i++) {
w[i].r = decode_float(buf + i * 4 * 4 + 4 * 0);
w[i].g = decode_float(buf + i * 4 * 4 + 4 * 1);
w[i].b = decode_float(buf + i * 4 * 4 + 4 * 2);
w[i].a = decode_float(buf + i * 4 * 4 + 4 * 3);
}
int adv = 4 * 4 * count;
if (r_len)
(*r_len) += adv;
len -= adv;
buf += adv;
}
r_variant = carray;
} break;
default: {
ERR_FAIL_V(ERR_BUG);
}
}
return OK;
}
Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len) {
uint8_t *buf = r_buffer;
r_len = 0;
if (buf) {
encode_uint32(p_variant.get_type(), buf);
buf += 4;
}
r_len += 4;
switch (p_variant.get_type()) {
case Variant::NIL: {
//nothing to do
} break;
case Variant::BOOL: {
if (buf) {
encode_uint32(p_variant.operator bool(), buf);
}
r_len += 4;
} break;
case Variant::INT: {
if (buf) {
encode_uint32(p_variant.operator int(), buf);
}
r_len += 4;
} break;
case Variant::REAL: {
if (buf) {
encode_float(p_variant.operator float(), buf);
}
r_len += 4;
} break;
case Variant::NODE_PATH: {
NodePath np = p_variant;
if (buf) {
encode_uint32(uint32_t(np.get_name_count()) | 0x80000000, buf); //for compatibility with the old format
encode_uint32(np.get_subname_count(), buf + 4);
uint32_t flags = 0;
if (np.is_absolute())
flags |= 1;
if (np.get_property() != StringName())
flags |= 2;
encode_uint32(flags, buf + 8);
buf += 12;
}
r_len += 12;
int total = np.get_name_count() + np.get_subname_count();
if (np.get_property() != StringName())
total++;
for (int i = 0; i < total; i++) {
String str;
if (i < np.get_name_count())
str = np.get_name(i);
else if (i < np.get_name_count() + np.get_subname_count())
str = np.get_subname(i - np.get_subname_count());
else
str = np.get_property();
CharString utf8 = str.utf8();
int pad = 0;
if (utf8.length() % 4)
pad = 4 - utf8.length() % 4;
if (buf) {
encode_uint32(utf8.length(), buf);
buf += 4;
copymem(buf, utf8.get_data(), utf8.length());
buf += pad + utf8.length();
}
r_len += 4 + utf8.length() + pad;
}
} break;
case Variant::STRING: {
CharString utf8 = p_variant.operator String().utf8();
if (buf) {
encode_uint32(utf8.length(), buf);
buf += 4;
copymem(buf, utf8.get_data(), utf8.length());
}
r_len += 4 + utf8.length();
while (r_len % 4)
r_len++; //pad
} break;
// math types
case Variant::VECTOR2: {
if (buf) {
Vector2 v2 = p_variant;
encode_float(v2.x, &buf[0]);
encode_float(v2.y, &buf[4]);
}
r_len += 2 * 4;
} break; // 5
case Variant::RECT2: {
if (buf) {
Rect2 r2 = p_variant;
encode_float(r2.pos.x, &buf[0]);
encode_float(r2.pos.y, &buf[4]);
encode_float(r2.size.x, &buf[8]);
encode_float(r2.size.y, &buf[12]);
}
r_len += 4 * 4;
} break;
case Variant::VECTOR3: {
if (buf) {
Vector3 v3 = p_variant;
encode_float(v3.x, &buf[0]);
encode_float(v3.y, &buf[4]);
encode_float(v3.z, &buf[8]);
}
r_len += 3 * 4;
} break;
case Variant::MATRIX32: {
if (buf) {
Matrix32 val = p_variant;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 2; j++) {
copymem(&buf[(i * 2 + j) * 4], &val.elements[i][j], sizeof(float));
}
}
}
r_len += 6 * 4;
} break;
case Variant::PLANE: {
if (buf) {
Plane p = p_variant;
encode_float(p.normal.x, &buf[0]);
encode_float(p.normal.y, &buf[4]);
encode_float(p.normal.z, &buf[8]);
encode_float(p.d, &buf[12]);
}
r_len += 4 * 4;
} break;
case Variant::QUAT: {
if (buf) {
Quat q = p_variant;
encode_float(q.x, &buf[0]);
encode_float(q.y, &buf[4]);
encode_float(q.z, &buf[8]);
encode_float(q.w, &buf[12]);
}
r_len += 4 * 4;
} break;
case Variant::_AABB: {
if (buf) {
AABB aabb = p_variant;
encode_float(aabb.pos.x, &buf[0]);
encode_float(aabb.pos.y, &buf[4]);
encode_float(aabb.pos.z, &buf[8]);
encode_float(aabb.size.x, &buf[12]);
encode_float(aabb.size.y, &buf[16]);
encode_float(aabb.size.z, &buf[20]);
}
r_len += 6 * 4;
} break;
case Variant::MATRIX3: {
if (buf) {
Matrix3 val = p_variant;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
copymem(&buf[(i * 3 + j) * 4], &val.elements[i][j], sizeof(float));
}
}
}
r_len += 9 * 4;
} break;
case Variant::TRANSFORM: {
if (buf) {
Transform val = p_variant;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
copymem(&buf[(i * 3 + j) * 4], &val.basis.elements[i][j], sizeof(float));
}
}
encode_float(val.origin.x, &buf[36]);
encode_float(val.origin.y, &buf[40]);
encode_float(val.origin.z, &buf[44]);
}
r_len += 12 * 4;
} break;
// misc types
case Variant::COLOR: {
if (buf) {
Color c = p_variant;
encode_float(c.r, &buf[0]);
encode_float(c.g, &buf[4]);
encode_float(c.b, &buf[8]);
encode_float(c.a, &buf[12]);
}
r_len += 4 * 4;
} break;
case Variant::IMAGE: {
Image image = p_variant;
DVector<uint8_t> data = image.get_data();
if (buf) {
encode_uint32(image.get_format(), &buf[0]);
encode_uint32(image.get_mipmaps(), &buf[4]);
encode_uint32(image.get_width(), &buf[8]);
encode_uint32(image.get_height(), &buf[12]);
int ds = data.size();
encode_uint32(ds, &buf[16]);
DVector<uint8_t>::Read r = data.read();
copymem(&buf[20], &r[0], ds);
}
int pad = 0;
if (data.size() % 4)
pad = 4 - data.size() % 4;
r_len += data.size() + 5 * 4 + pad;
} break;
/*case Variant::RESOURCE: {
ERR_EXPLAIN("Can't marshallize resources");
ERR_FAIL_V(ERR_INVALID_DATA); //no, i'm sorry, no go
} break;*/
case Variant::_RID:
case Variant::OBJECT: {
} break;
case Variant::INPUT_EVENT: {
InputEvent ie = p_variant;
if (buf) {
encode_uint32(ie.type, &buf[0]);
encode_uint32(ie.device, &buf[4]);
encode_uint32(0, &buf[8]);
}
int llen = 12;
switch (ie.type) {
case InputEvent::KEY: {
if (buf) {
uint32_t mods = 0;
if (ie.key.mod.shift)
mods |= KEY_MASK_SHIFT;
if (ie.key.mod.control)
mods |= KEY_MASK_CTRL;
if (ie.key.mod.alt)
mods |= KEY_MASK_ALT;
if (ie.key.mod.meta)
mods |= KEY_MASK_META;
encode_uint32(mods, &buf[llen]);
encode_uint32(ie.key.scancode, &buf[llen + 4]);
}
llen += 8;
} break;
case InputEvent::MOUSE_BUTTON: {
if (buf) {
encode_uint32(ie.mouse_button.button_index, &buf[llen]);
}
llen += 4;
} break;
case InputEvent::JOYSTICK_BUTTON: {
if (buf) {
encode_uint32(ie.joy_button.button_index, &buf[llen]);
}
llen += 4;
} break;
case InputEvent::SCREEN_TOUCH: {
if (buf) {
encode_uint32(ie.screen_touch.index, &buf[llen]);
}
llen += 4;
} break;
case InputEvent::JOYSTICK_MOTION: {
if (buf) {
int axis = ie.joy_motion.axis;
encode_uint32(axis, &buf[llen]);
encode_float(ie.joy_motion.axis_value, &buf[llen + 4]);
}
llen += 8;
} break;
}
if (buf)
encode_uint32(llen, &buf[8]);
r_len += llen;
// not supported
} break;
case Variant::DICTIONARY: {
Dictionary d = p_variant;
if (buf) {
encode_uint32(uint32_t(d.size()) | (d.is_shared() ? 0x80000000 : 0), buf);
buf += 4;
}
r_len += 4;
List<Variant> keys;
d.get_key_list(&keys);
for (List<Variant>::Element *E = keys.front(); E; E = E->next()) {
/*
CharString utf8 = E->->utf8();
if (buf) {
encode_uint32(utf8.length()+1,buf);
buf+=4;
copymem(buf,utf8.get_data(),utf8.length()+1);
}
r_len+=4+utf8.length()+1;
while (r_len%4)
r_len++; //pad
*/
int len;
encode_variant(E->get(), buf, len);
ERR_FAIL_COND_V(len % 4, ERR_BUG);
r_len += len;
if (buf)
buf += len;
encode_variant(d[E->get()], buf, len);
ERR_FAIL_COND_V(len % 4, ERR_BUG);
r_len += len;
if (buf)
buf += len;
}
} break;
case Variant::ARRAY: {
Array v = p_variant;
if (buf) {
encode_uint32(uint32_t(v.size()) | (v.is_shared() ? 0x80000000 : 0), buf);
buf += 4;
}
r_len += 4;
for (int i = 0; i < v.size(); i++) {
int len;
encode_variant(v.get(i), buf, len);
ERR_FAIL_COND_V(len % 4, ERR_BUG);
r_len += len;
if (buf)
buf += len;
}
} break;
// arrays
case Variant::RAW_ARRAY: {
DVector<uint8_t> data = p_variant;
int datalen = data.size();
int datasize = sizeof(uint8_t);
if (buf) {
encode_uint32(datalen, buf);
buf += 4;
DVector<uint8_t>::Read r = data.read();
copymem(buf, &r[0], datalen * datasize);
}
r_len += 4 + datalen * datasize;
while (r_len % 4)
r_len++;
} break;
case Variant::INT_ARRAY: {
DVector<int> data = p_variant;
int datalen = data.size();
int datasize = sizeof(int32_t);
if (buf) {
encode_uint32(datalen, buf);
buf += 4;
DVector<int>::Read r = data.read();
for (int i = 0; i < datalen; i++)
encode_uint32(r[i], &buf[i * datasize]);
}
r_len += 4 + datalen * datasize;
} break;
case Variant::REAL_ARRAY: {
DVector<real_t> data = p_variant;
int datalen = data.size();
int datasize = sizeof(real_t);
if (buf) {
encode_uint32(datalen, buf);
buf += 4;
DVector<real_t>::Read r = data.read();
for (int i = 0; i < datalen; i++)
encode_float(r[i], &buf[i * datasize]);
}
r_len += 4 + datalen * datasize;
} break;
case Variant::STRING_ARRAY: {
DVector<String> data = p_variant;
int len = data.size();
if (buf) {
encode_uint32(len, buf);
buf += 4;
}
r_len += 4;
for (int i = 0; i < len; i++) {
CharString utf8 = data.get(i).utf8();
if (buf) {
encode_uint32(utf8.length() + 1, buf);
buf += 4;
copymem(buf, utf8.get_data(), utf8.length() + 1);
buf += utf8.length() + 1;
}
r_len += 4 + utf8.length() + 1;
while (r_len % 4) {
r_len++; //pad
if (buf)
*(buf++) = 0;
}
}
} break;
case Variant::VECTOR2_ARRAY: {
DVector<Vector2> data = p_variant;
int len = data.size();
if (buf) {
encode_uint32(len, buf);
buf += 4;
}
r_len += 4;
if (buf) {
for (int i = 0; i < len; i++) {
Vector2 v = data.get(i);
encode_float(v.x, &buf[0]);
encode_float(v.y, &buf[4]);
buf += 4 * 2;
}
}
r_len += 4 * 2 * len;
} break;
case Variant::VECTOR3_ARRAY: {
DVector<Vector3> data = p_variant;
int len = data.size();
if (buf) {
encode_uint32(len, buf);
buf += 4;
}
r_len += 4;
if (buf) {
for (int i = 0; i < len; i++) {
Vector3 v = data.get(i);
encode_float(v.x, &buf[0]);
encode_float(v.y, &buf[4]);
encode_float(v.z, &buf[8]);
buf += 4 * 3;
}
}
r_len += 4 * 3 * len;
} break;
case Variant::COLOR_ARRAY: {
DVector<Color> data = p_variant;
int len = data.size();
if (buf) {
encode_uint32(len, buf);
buf += 4;
}
r_len += 4;
if (buf) {
for (int i = 0; i < len; i++) {
Color c = data.get(i);
encode_float(c.r, &buf[0]);
encode_float(c.g, &buf[4]);
encode_float(c.b, &buf[8]);
encode_float(c.a, &buf[12]);
buf += 4 * 4;
}
}
r_len += 4 * 4 * len;
} break;
default: {
ERR_FAIL_V(ERR_BUG);
}
}
return OK;
}