godot/editor/import/editor_scene_importer_gltf.cpp
Juan Linietsky bc2e8d99e5 Made Vector::ptrw explicit for writing, compiler was sometimes using the wrong function,
leading to unnecesary copy on writes and reduced performance.
2017-11-25 00:09:40 -03:00

2116 lines
57 KiB
C++

#include "editor_scene_importer_gltf.h"
#include "io/json.h"
#include "math_defs.h"
#include "os/file_access.h"
#include "os/os.h"
#include "scene/3d/camera.h"
#include "scene/3d/mesh_instance.h"
#include "scene/animation/animation_player.h"
#include "scene/resources/surface_tool.h"
#include "thirdparty/misc/base64.h"
uint32_t EditorSceneImporterGLTF::get_import_flags() const {
return IMPORT_SCENE | IMPORT_ANIMATION;
}
void EditorSceneImporterGLTF::get_extensions(List<String> *r_extensions) const {
r_extensions->push_back("gltf");
r_extensions->push_back("glb");
}
Error EditorSceneImporterGLTF::_parse_json(const String &p_path, GLTFState &state) {
Error err;
FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
if (!f) {
return err;
}
Vector<uint8_t> array;
array.resize(f->get_len());
f->get_buffer(array.ptrw(), array.size());
String text;
text.parse_utf8((const char *)array.ptr(), array.size());
String err_txt;
int err_line;
Variant v;
err = JSON::parse(text, v, err_txt, err_line);
if (err != OK) {
_err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT);
return err;
}
state.json = v;
return OK;
}
Error EditorSceneImporterGLTF::_parse_glb(const String &p_path, GLTFState &state) {
Error err;
FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
if (!f) {
return err;
}
uint32_t magic = f->get_32();
ERR_FAIL_COND_V(magic != 0x46546C67, ERR_FILE_UNRECOGNIZED); //glTF
f->get_32(); // version
f->get_32(); // length
uint32_t chunk_length = f->get_32();
uint32_t chunk_type = f->get_32();
ERR_FAIL_COND_V(chunk_type != 0x4E4F534A, ERR_PARSE_ERROR); //JSON
Vector<uint8_t> json_data;
json_data.resize(chunk_length);
uint32_t len = f->get_buffer(json_data.ptrw(), chunk_length);
ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT);
String text;
text.parse_utf8((const char *)json_data.ptr(), json_data.size());
String err_txt;
int err_line;
Variant v;
err = JSON::parse(text, v, err_txt, err_line);
if (err != OK) {
_err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT);
return err;
}
state.json = v;
//data?
chunk_length = f->get_32();
chunk_type = f->get_32();
if (f->eof_reached()) {
return OK; //all good
}
ERR_FAIL_COND_V(chunk_type != 0x004E4942, ERR_PARSE_ERROR); //BIN
state.glb_data.resize(chunk_length);
len = f->get_buffer(state.glb_data.ptrw(), chunk_length);
ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT);
return OK;
}
static Vector3 _arr_to_vec3(const Array &p_array) {
ERR_FAIL_COND_V(p_array.size() != 3, Vector3());
return Vector3(p_array[0], p_array[1], p_array[2]);
}
static Quat _arr_to_quat(const Array &p_array) {
ERR_FAIL_COND_V(p_array.size() != 4, Quat());
return Quat(p_array[0], p_array[1], p_array[2], p_array[3]);
}
static Transform _arr_to_xform(const Array &p_array) {
ERR_FAIL_COND_V(p_array.size() != 16, Transform());
Transform xform;
xform.basis.set_axis(Vector3::AXIS_X, Vector3(p_array[0], p_array[1], p_array[2]));
xform.basis.set_axis(Vector3::AXIS_Y, Vector3(p_array[4], p_array[5], p_array[6]));
xform.basis.set_axis(Vector3::AXIS_Z, Vector3(p_array[8], p_array[9], p_array[10]));
xform.set_origin(Vector3(p_array[12], p_array[13], p_array[14]));
return xform;
}
String EditorSceneImporterGLTF::_gen_unique_name(GLTFState &state, const String &p_name) {
int index = 1;
String name;
while (true) {
name = p_name;
if (index > 1) {
name += " " + itos(index);
}
if (!state.unique_names.has(name)) {
break;
}
index++;
}
state.unique_names.insert(name);
return name;
}
Error EditorSceneImporterGLTF::_parse_scenes(GLTFState &state) {
ERR_FAIL_COND_V(!state.json.has("scenes"), ERR_FILE_CORRUPT);
Array scenes = state.json["scenes"];
for (int i = 0; i < 1; i++) { //only first scene is imported
Dictionary s = scenes[i];
ERR_FAIL_COND_V(!s.has("nodes"), ERR_UNAVAILABLE);
Array nodes = s["nodes"];
for (int j = 0; j < nodes.size(); j++) {
state.root_nodes.push_back(nodes[j]);
}
if (s.has("name")) {
state.scene_name = s["name"];
}
}
return OK;
}
Error EditorSceneImporterGLTF::_parse_nodes(GLTFState &state) {
ERR_FAIL_COND_V(!state.json.has("nodes"), ERR_FILE_CORRUPT);
Array nodes = state.json["nodes"];
for (int i = 0; i < nodes.size(); i++) {
GLTFNode *node = memnew(GLTFNode);
Dictionary n = nodes[i];
print_line("node " + itos(i) + ": " + String(Variant(n)));
if (n.has("name")) {
node->name = n["name"];
}
if (n.has("camera")) {
node->camera = n["camera"];
}
if (n.has("mesh")) {
node->mesh = n["mesh"];
}
if (n.has("skin")) {
node->skin = n["skin"];
if (!state.skin_users.has(node->skin)) {
state.skin_users[node->skin] = Vector<int>();
}
state.skin_users[node->skin].push_back(i);
}
if (n.has("matrix")) {
node->xform = _arr_to_xform(n["matrix"]);
} else {
if (n.has("translation")) {
node->translation = _arr_to_vec3(n["translation"]);
}
if (n.has("rotation")) {
node->rotation = _arr_to_quat(n["rotation"]);
}
if (n.has("scale")) {
node->scale = _arr_to_vec3(n["scale"]);
}
node->xform.basis = Basis(node->rotation);
node->xform.basis.scale(node->scale);
node->xform.origin = node->translation;
}
if (n.has("children")) {
Array children = n["children"];
for (int i = 0; i < children.size(); i++) {
node->children.push_back(children[i]);
}
}
state.nodes.push_back(node);
}
//build the hierarchy
for (int i = 0; i < state.nodes.size(); i++) {
for (int j = 0; j < state.nodes[i]->children.size(); j++) {
int child = state.nodes[i]->children[j];
ERR_FAIL_INDEX_V(child, state.nodes.size(), ERR_FILE_CORRUPT);
ERR_CONTINUE(state.nodes[child]->parent != -1); //node already has a parent, wtf.
state.nodes[child]->parent = i;
}
}
return OK;
}
static Vector<uint8_t> _parse_base64_uri(const String &uri) {
int start = uri.find(",");
ERR_FAIL_COND_V(start == -1, Vector<uint8_t>());
CharString substr = uri.right(start + 1).ascii();
int strlen = substr.length();
Vector<uint8_t> buf;
buf.resize(strlen / 4 * 3 + 1 + 1);
int len = base64_decode((char *)buf.ptr(), (char *)substr.get_data(), strlen);
buf.resize(len);
return buf;
}
Error EditorSceneImporterGLTF::_parse_buffers(GLTFState &state, const String &p_base_path) {
if (!state.json.has("buffers"))
return OK;
Array buffers = state.json["buffers"];
for (int i = 0; i < buffers.size(); i++) {
if (i == 0 && state.glb_data.size()) {
state.buffers.push_back(state.glb_data);
} else {
Dictionary buffer = buffers[i];
if (buffer.has("uri")) {
Vector<uint8_t> buffer_data;
String uri = buffer["uri"];
if (uri.findn("data:application/octet-stream;base64") == 0) {
//embedded data
buffer_data = _parse_base64_uri(uri);
} else {
uri = p_base_path.plus_file(uri).replace("\\", "/"); //fix for windows
buffer_data = FileAccess::get_file_as_array(uri);
ERR_FAIL_COND_V(buffer.size() == 0, ERR_PARSE_ERROR);
}
ERR_FAIL_COND_V(!buffer.has("byteLength"), ERR_PARSE_ERROR);
int byteLength = buffer["byteLength"];
ERR_FAIL_COND_V(byteLength < buffer_data.size(), ERR_PARSE_ERROR);
state.buffers.push_back(buffer_data);
}
}
}
print_line("total buffers: " + itos(state.buffers.size()));
return OK;
}
Error EditorSceneImporterGLTF::_parse_buffer_views(GLTFState &state) {
ERR_FAIL_COND_V(!state.json.has("bufferViews"), ERR_FILE_CORRUPT);
Array buffers = state.json["bufferViews"];
for (int i = 0; i < buffers.size(); i++) {
Dictionary d = buffers[i];
GLTFBufferView buffer_view;
ERR_FAIL_COND_V(!d.has("buffer"), ERR_PARSE_ERROR);
buffer_view.buffer = d["buffer"];
ERR_FAIL_COND_V(!d.has("byteLength"), ERR_PARSE_ERROR);
buffer_view.byte_length = d["byteLength"];
if (d.has("byteOffset")) {
buffer_view.byte_offset = d["byteOffset"];
}
if (d.has("byteStride")) {
buffer_view.byte_stride = d["byteStride"];
}
if (d.has("target")) {
int target = d["target"];
buffer_view.indices = target == ELEMENT_ARRAY_BUFFER;
}
state.buffer_views.push_back(buffer_view);
}
print_line("total buffer views: " + itos(state.buffer_views.size()));
return OK;
}
EditorSceneImporterGLTF::GLTFType EditorSceneImporterGLTF::_get_type_from_str(const String &p_string) {
if (p_string == "SCALAR")
return TYPE_SCALAR;
if (p_string == "VEC2")
return TYPE_VEC2;
if (p_string == "VEC3")
return TYPE_VEC3;
if (p_string == "VEC4")
return TYPE_VEC4;
if (p_string == "MAT2")
return TYPE_MAT2;
if (p_string == "MAT3")
return TYPE_MAT3;
if (p_string == "MAT4")
return TYPE_MAT4;
ERR_FAIL_V(TYPE_SCALAR);
}
Error EditorSceneImporterGLTF::_parse_accessors(GLTFState &state) {
ERR_FAIL_COND_V(!state.json.has("accessors"), ERR_FILE_CORRUPT);
Array accessors = state.json["accessors"];
for (int i = 0; i < accessors.size(); i++) {
Dictionary d = accessors[i];
GLTFAccessor accessor;
ERR_FAIL_COND_V(!d.has("componentType"), ERR_PARSE_ERROR);
accessor.component_type = d["componentType"];
ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR);
accessor.count = d["count"];
ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
accessor.type = _get_type_from_str(d["type"]);
if (d.has("bufferView")) {
accessor.buffer_view = d["bufferView"]; //optional because it may be sparse...
}
if (d.has("byteOffset")) {
accessor.byte_offset = d["byteOffset"];
}
if (d.has("max")) {
accessor.max = d["max"];
}
if (d.has("min")) {
accessor.min = d["min"];
}
if (d.has("sparse")) {
//eeh..
Dictionary s = d["sparse"];
ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR);
accessor.sparse_count = d["count"];
ERR_FAIL_COND_V(!d.has("indices"), ERR_PARSE_ERROR);
Dictionary si = d["indices"];
ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR);
accessor.sparse_indices_buffer_view = si["bufferView"];
ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR);
accessor.sparse_indices_component_type = si["componentType"];
if (si.has("byteOffset")) {
accessor.sparse_indices_byte_offset = si["byteOffset"];
}
ERR_FAIL_COND_V(!d.has("values"), ERR_PARSE_ERROR);
Dictionary sv = d["values"];
ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR);
accessor.sparse_values_buffer_view = sv["bufferView"];
if (sv.has("byteOffset")) {
accessor.sparse_values_byte_offset = sv["byteOffset"];
}
}
state.accessors.push_back(accessor);
}
print_line("total accessors: " + itos(state.accessors.size()));
return OK;
}
String EditorSceneImporterGLTF::_get_component_type_name(uint32_t p_component) {
switch (p_component) {
case COMPONENT_TYPE_BYTE: return "Byte";
case COMPONENT_TYPE_UNSIGNED_BYTE: return "UByte";
case COMPONENT_TYPE_SHORT: return "Short";
case COMPONENT_TYPE_UNSIGNED_SHORT: return "UShort";
case COMPONENT_TYPE_INT: return "Int";
case COMPONENT_TYPE_FLOAT: return "Float";
}
return "<Error>";
}
String EditorSceneImporterGLTF::_get_type_name(GLTFType p_component) {
static const char *names[] = {
"float",
"vec2",
"vec3",
"vec4",
"mat2",
"mat3",
"mat4"
};
return names[p_component];
}
Error EditorSceneImporterGLTF::_decode_buffer_view(GLTFState &state, int p_buffer_view, double *dst, int skip_every, int skip_bytes, int element_size, int count, GLTFType type, int component_count, int component_type, int component_size, bool normalized, int byte_offset, bool for_vertex) {
const GLTFBufferView &bv = state.buffer_views[p_buffer_view];
int stride = bv.byte_stride ? bv.byte_stride : element_size;
if (for_vertex && stride % 4) {
stride += 4 - (stride % 4); //according to spec must be multiple of 4
}
ERR_FAIL_INDEX_V(bv.buffer, state.buffers.size(), ERR_PARSE_ERROR);
uint32_t offset = bv.byte_offset + byte_offset;
Vector<uint8_t> buffer = state.buffers[bv.buffer]; //copy on write, so no performance hit
const uint8_t *bufptr = buffer.ptr();
//use to debug
//print_line("type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count));
print_line("accessor offset" + itos(byte_offset) + " view offset: " + itos(bv.byte_offset) + " total buffer len: " + itos(buffer.size()) + " view len " + itos(bv.byte_length));
int buffer_end = (stride * (count - 1)) + element_size;
ERR_FAIL_COND_V(buffer_end > bv.byte_length, ERR_PARSE_ERROR);
ERR_FAIL_COND_V((int)(offset + buffer_end) > buffer.size(), ERR_PARSE_ERROR);
//fill everything as doubles
for (int i = 0; i < count; i++) {
const uint8_t *src = &bufptr[offset + i * stride];
for (int j = 0; j < component_count; j++) {
if (skip_every && j > 0 && (j % skip_every) == 0) {
src += skip_bytes;
}
double d = 0;
switch (component_type) {
case COMPONENT_TYPE_BYTE: {
int8_t b = int8_t(*src);
if (normalized) {
d = (double(b) / 128.0);
} else {
d = double(b);
}
} break;
case COMPONENT_TYPE_UNSIGNED_BYTE: {
uint8_t b = *src;
if (normalized) {
d = (double(b) / 255.0);
} else {
d = double(b);
}
} break;
case COMPONENT_TYPE_SHORT: {
int16_t s = *(int16_t *)src;
if (normalized) {
d = (double(s) / 32768.0);
} else {
d = double(s);
}
} break;
case COMPONENT_TYPE_UNSIGNED_SHORT: {
uint16_t s = *(uint16_t *)src;
if (normalized) {
d = (double(s) / 65535.0);
} else {
d = double(s);
}
} break;
case COMPONENT_TYPE_INT: {
d = *(int *)src;
} break;
case COMPONENT_TYPE_FLOAT: {
d = *(float *)src;
} break;
}
*dst++ = d;
src += component_size;
}
}
return OK;
}
int EditorSceneImporterGLTF::_get_component_type_size(int component_type) {
switch (component_type) {
case COMPONENT_TYPE_BYTE: return 1; break;
case COMPONENT_TYPE_UNSIGNED_BYTE: return 1; break;
case COMPONENT_TYPE_SHORT: return 2; break;
case COMPONENT_TYPE_UNSIGNED_SHORT: return 2; break;
case COMPONENT_TYPE_INT: return 4; break;
case COMPONENT_TYPE_FLOAT: return 4; break;
default: { ERR_FAIL_V(0); }
}
return 0;
}
Vector<double> EditorSceneImporterGLTF::_decode_accessor(GLTFState &state, int p_accessor, bool p_for_vertex) {
//spec, for reference:
//https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment
ERR_FAIL_INDEX_V(p_accessor, state.accessors.size(), Vector<double>());
const GLTFAccessor &a = state.accessors[p_accessor];
int component_count_for_type[7] = {
1, 2, 3, 4, 4, 9, 16
};
int component_count = component_count_for_type[a.type];
int component_size = _get_component_type_size(a.component_type);
ERR_FAIL_COND_V(component_size == 0, Vector<double>());
int element_size = component_count * component_size;
int skip_every = 0;
int skip_bytes = 0;
//special case of alignments, as described in spec
switch (a.component_type) {
case COMPONENT_TYPE_BYTE:
case COMPONENT_TYPE_UNSIGNED_BYTE: {
if (a.type == TYPE_MAT2) {
skip_every = 2;
skip_bytes = 2;
element_size = 8; //override for this case
}
if (a.type == TYPE_MAT3) {
skip_every = 3;
skip_bytes = 1;
element_size = 12; //override for this case
}
} break;
case COMPONENT_TYPE_SHORT:
case COMPONENT_TYPE_UNSIGNED_SHORT: {
if (a.type == TYPE_MAT3) {
skip_every = 6;
skip_bytes = 4;
element_size = 16; //override for this case
}
} break;
default: {}
}
Vector<double> dst_buffer;
dst_buffer.resize(component_count * a.count);
double *dst = dst_buffer.ptrw();
if (a.buffer_view >= 0) {
ERR_FAIL_INDEX_V(a.buffer_view, state.buffer_views.size(), Vector<double>());
Error err = _decode_buffer_view(state, a.buffer_view, dst, skip_every, skip_bytes, element_size, a.count, a.type, component_count, a.component_type, component_size, a.normalized, a.byte_offset, p_for_vertex);
if (err != OK)
return Vector<double>();
} else {
//fill with zeros, as bufferview is not defined.
for (int i = 0; i < (a.count * component_count); i++) {
dst_buffer[i] = 0;
}
}
if (a.sparse_count > 0) {
// I could not find any file using this, so this code is so far untested
Vector<double> indices;
indices.resize(a.sparse_count);
int indices_component_size = _get_component_type_size(a.sparse_indices_component_type);
Error err = _decode_buffer_view(state, a.sparse_indices_buffer_view, indices.ptrw(), 0, 0, indices_component_size, a.sparse_count, TYPE_SCALAR, 1, a.sparse_indices_component_type, indices_component_size, false, a.sparse_indices_byte_offset, false);
if (err != OK)
return Vector<double>();
Vector<double> data;
data.resize(component_count * a.sparse_count);
err = _decode_buffer_view(state, a.sparse_values_buffer_view, data.ptrw(), skip_every, skip_bytes, element_size, a.sparse_count, a.type, component_count, a.component_type, component_size, a.normalized, a.sparse_values_byte_offset, p_for_vertex);
if (err != OK)
return Vector<double>();
for (int i = 0; i < indices.size(); i++) {
int write_offset = int(indices[i]) * component_count;
for (int j = 0; j < component_count; j++) {
dst[write_offset + j] = data[i * component_count + j];
}
}
}
return dst_buffer;
}
PoolVector<int> EditorSceneImporterGLTF::_decode_accessor_as_ints(GLTFState &state, int p_accessor, bool p_for_vertex) {
Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
PoolVector<int> ret;
if (attribs.size() == 0)
return ret;
const double *attribs_ptr = attribs.ptr();
int ret_size = attribs.size();
ret.resize(ret_size);
{
PoolVector<int>::Write w = ret.write();
for (int i = 0; i < ret_size; i++) {
w[i] = int(attribs_ptr[i]);
}
}
return ret;
}
PoolVector<float> EditorSceneImporterGLTF::_decode_accessor_as_floats(GLTFState &state, int p_accessor, bool p_for_vertex) {
Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
PoolVector<float> ret;
if (attribs.size() == 0)
return ret;
const double *attribs_ptr = attribs.ptr();
int ret_size = attribs.size();
ret.resize(ret_size);
{
PoolVector<float>::Write w = ret.write();
for (int i = 0; i < ret_size; i++) {
w[i] = float(attribs_ptr[i]);
}
}
return ret;
}
PoolVector<Vector2> EditorSceneImporterGLTF::_decode_accessor_as_vec2(GLTFState &state, int p_accessor, bool p_for_vertex) {
Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
PoolVector<Vector2> ret;
if (attribs.size() == 0)
return ret;
ERR_FAIL_COND_V(attribs.size() % 2 != 0, ret);
const double *attribs_ptr = attribs.ptr();
int ret_size = attribs.size() / 2;
ret.resize(ret_size);
{
PoolVector<Vector2>::Write w = ret.write();
for (int i = 0; i < ret_size; i++) {
w[i] = Vector2(attribs_ptr[i * 2 + 0], attribs_ptr[i * 2 + 1]);
}
}
return ret;
}
PoolVector<Vector3> EditorSceneImporterGLTF::_decode_accessor_as_vec3(GLTFState &state, int p_accessor, bool p_for_vertex) {
Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
PoolVector<Vector3> ret;
if (attribs.size() == 0)
return ret;
ERR_FAIL_COND_V(attribs.size() % 3 != 0, ret);
const double *attribs_ptr = attribs.ptr();
int ret_size = attribs.size() / 3;
ret.resize(ret_size);
{
PoolVector<Vector3>::Write w = ret.write();
for (int i = 0; i < ret_size; i++) {
w[i] = Vector3(attribs_ptr[i * 3 + 0], attribs_ptr[i * 3 + 1], attribs_ptr[i * 3 + 2]);
}
}
return ret;
}
PoolVector<Color> EditorSceneImporterGLTF::_decode_accessor_as_color(GLTFState &state, int p_accessor, bool p_for_vertex) {
Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
PoolVector<Color> ret;
if (attribs.size() == 0)
return ret;
ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
const double *attribs_ptr = attribs.ptr();
int ret_size = attribs.size() / 4;
ret.resize(ret_size);
{
PoolVector<Color>::Write w = ret.write();
for (int i = 0; i < ret_size; i++) {
w[i] = Color(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], attribs_ptr[i * 4 + 3]);
}
}
return ret;
}
Vector<Quat> EditorSceneImporterGLTF::_decode_accessor_as_quat(GLTFState &state, int p_accessor, bool p_for_vertex) {
Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
Vector<Quat> ret;
if (attribs.size() == 0)
return ret;
ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
const double *attribs_ptr = attribs.ptr();
int ret_size = attribs.size() / 4;
ret.resize(ret_size);
{
for (int i = 0; i < ret_size; i++) {
ret[i] = Quat(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], attribs_ptr[i * 4 + 3]);
}
}
return ret;
}
Vector<Transform2D> EditorSceneImporterGLTF::_decode_accessor_as_xform2d(GLTFState &state, int p_accessor, bool p_for_vertex) {
Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
Vector<Transform2D> ret;
if (attribs.size() == 0)
return ret;
ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
ret.resize(attribs.size() / 4);
for (int i = 0; i < ret.size(); i++) {
ret[i][0] = Vector2(attribs[i * 4 + 0], attribs[i * 4 + 1]);
ret[i][1] = Vector2(attribs[i * 4 + 2], attribs[i * 4 + 3]);
}
return ret;
}
Vector<Basis> EditorSceneImporterGLTF::_decode_accessor_as_basis(GLTFState &state, int p_accessor, bool p_for_vertex) {
Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
Vector<Basis> ret;
if (attribs.size() == 0)
return ret;
ERR_FAIL_COND_V(attribs.size() % 9 != 0, ret);
ret.resize(attribs.size() / 9);
for (int i = 0; i < ret.size(); i++) {
ret[i].set_axis(0, Vector3(attribs[i * 9 + 0], attribs[i * 9 + 1], attribs[i * 9 + 2]));
ret[i].set_axis(1, Vector3(attribs[i * 9 + 3], attribs[i * 9 + 4], attribs[i * 9 + 5]));
ret[i].set_axis(2, Vector3(attribs[i * 9 + 6], attribs[i * 9 + 7], attribs[i * 9 + 8]));
}
return ret;
}
Vector<Transform> EditorSceneImporterGLTF::_decode_accessor_as_xform(GLTFState &state, int p_accessor, bool p_for_vertex) {
Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
Vector<Transform> ret;
if (attribs.size() == 0)
return ret;
ERR_FAIL_COND_V(attribs.size() % 16 != 0, ret);
ret.resize(attribs.size() / 16);
for (int i = 0; i < ret.size(); i++) {
ret[i].basis.set_axis(0, Vector3(attribs[i * 16 + 0], attribs[i * 16 + 1], attribs[i * 16 + 2]));
ret[i].basis.set_axis(1, Vector3(attribs[i * 16 + 4], attribs[i * 16 + 5], attribs[i * 16 + 6]));
ret[i].basis.set_axis(2, Vector3(attribs[i * 16 + 8], attribs[i * 16 + 9], attribs[i * 16 + 10]));
ret[i].set_origin(Vector3(attribs[i * 16 + 12], attribs[i * 16 + 13], attribs[i * 16 + 14]));
}
return ret;
}
Error EditorSceneImporterGLTF::_parse_meshes(GLTFState &state) {
if (!state.json.has("meshes"))
return OK;
Array meshes = state.json["meshes"];
for (int i = 0; i < meshes.size(); i++) {
print_line("on mesh: " + itos(i));
Dictionary d = meshes[i];
GLTFMesh mesh;
mesh.mesh.instance();
ERR_FAIL_COND_V(!d.has("primitives"), ERR_PARSE_ERROR);
Array primitives = d["primitives"];
for (int j = 0; j < primitives.size(); j++) {
Dictionary p = primitives[j];
Array array;
array.resize(Mesh::ARRAY_MAX);
ERR_FAIL_COND_V(!p.has("attributes"), ERR_PARSE_ERROR);
Dictionary a = p["attributes"];
Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES;
if (p.has("mode")) {
int mode = p["mode"];
ERR_FAIL_INDEX_V(mode, 7, ERR_FILE_CORRUPT);
static const Mesh::PrimitiveType primitives[7] = {
Mesh::PRIMITIVE_POINTS,
Mesh::PRIMITIVE_LINES,
Mesh::PRIMITIVE_LINE_LOOP,
Mesh::PRIMITIVE_LINE_STRIP,
Mesh::PRIMITIVE_TRIANGLES,
Mesh::PRIMITIVE_TRIANGLE_STRIP,
Mesh::PRIMITIVE_TRIANGLE_FAN,
};
primitive = primitives[mode];
}
if (a.has("POSITION")) {
array[Mesh::ARRAY_VERTEX] = _decode_accessor_as_vec3(state, a["POSITION"], true);
}
if (a.has("NORMAL")) {
array[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(state, a["NORMAL"], true);
}
if (a.has("TANGENT")) {
array[Mesh::ARRAY_TANGENT] = _decode_accessor_as_floats(state, a["TANGENT"], true);
}
if (a.has("TEXCOORD_0")) {
array[Mesh::ARRAY_TEX_UV] = _decode_accessor_as_vec2(state, a["TEXCOORD_0"], true);
}
if (a.has("TEXCOORD_1")) {
array[Mesh::ARRAY_TEX_UV2] = _decode_accessor_as_vec2(state, a["TEXCOORD_1"], true);
}
if (a.has("COLOR_0")) {
array[Mesh::ARRAY_COLOR] = _decode_accessor_as_color(state, a["COLOR_0"], true);
}
if (a.has("JOINTS_0")) {
array[Mesh::ARRAY_BONES] = _decode_accessor_as_ints(state, a["JOINTS_0"], true);
}
if (a.has("WEIGHTS_0")) {
PoolVector<float> weights = _decode_accessor_as_floats(state, a["WEIGHTS_0"], true);
{ //gltf does not seem to normalize the weights for some reason..
int wc = weights.size();
PoolVector<float>::Write w = weights.write();
for (int i = 0; i < wc; i += 4) {
float total = 0.0;
total += w[i + 0];
total += w[i + 1];
total += w[i + 2];
total += w[i + 3];
if (total > 0.0) {
w[i + 0] /= total;
w[i + 1] /= total;
w[i + 2] /= total;
w[i + 3] /= total;
}
}
}
array[Mesh::ARRAY_WEIGHTS] = weights;
}
if (p.has("indices")) {
PoolVector<int> indices = _decode_accessor_as_ints(state, p["indices"], false);
if (primitive == Mesh::PRIMITIVE_TRIANGLES) {
//swap around indices, convert ccw to cw for front face
int is = indices.size();
PoolVector<int>::Write w = indices.write();
for (int i = 0; i < is; i += 3) {
SWAP(w[i + 1], w[i + 2]);
}
}
array[Mesh::ARRAY_INDEX] = indices;
} else if (primitive == Mesh::PRIMITIVE_TRIANGLES) {
//generate indices because they need to be swapped for CW/CCW
PoolVector<Vector3> vertices = array[Mesh::ARRAY_VERTEX];
ERR_FAIL_COND_V(vertices.size() == 0, ERR_PARSE_ERROR);
PoolVector<int> indices;
int vs = vertices.size();
indices.resize(vs);
{
PoolVector<int>::Write w = indices.write();
for (int i = 0; i < vs; i += 3) {
w[i] = i;
w[i + 1] = i + 2;
w[i + 2] = i + 1;
}
}
array[Mesh::ARRAY_INDEX] = indices;
}
bool generated_tangents = false;
Variant erased_indices;
if (primitive == Mesh::PRIMITIVE_TRIANGLES && !a.has("TANGENT") && a.has("TEXCOORD_0") && a.has("NORMAL")) {
//must generate mikktspace tangents.. ergh..
Ref<SurfaceTool> st;
st.instance();
st->create_from_triangle_arrays(array);
if (p.has("targets")) {
//morph targets should not be reindexed, as array size might differ
//removing indices is the best bet here
st->deindex();
erased_indices = a[Mesh::ARRAY_INDEX];
a[Mesh::ARRAY_INDEX] = Variant();
}
st->generate_tangents();
array = st->commit_to_arrays();
generated_tangents = true;
}
Array morphs;
//blend shapes
if (p.has("targets")) {
print_line("has targets!");
Array targets = p["targets"];
if (j == 0) {
for (int k = 0; k < targets.size(); k++) {
mesh.mesh->add_blend_shape(String("morph_") + itos(k));
}
}
for (int k = 0; k < targets.size(); k++) {
Dictionary t = targets[k];
Array array_copy;
array_copy.resize(Mesh::ARRAY_MAX);
for (int l = 0; l < Mesh::ARRAY_MAX; l++) {
array_copy[l] = array[l];
}
array_copy[Mesh::ARRAY_INDEX] = Variant();
if (t.has("POSITION")) {
array_copy[Mesh::ARRAY_VERTEX] = _decode_accessor_as_vec3(state, t["POSITION"], true);
}
if (t.has("NORMAL")) {
array_copy[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(state, t["NORMAL"], true);
}
if (t.has("TANGENT")) {
PoolVector<Vector3> tangents_v3 = _decode_accessor_as_vec3(state, t["TANGENT"], true);
PoolVector<float> tangents_v4;
PoolVector<float> src_tangents = array[Mesh::ARRAY_TANGENT];
ERR_FAIL_COND_V(src_tangents.size() == 0, ERR_PARSE_ERROR);
{
int size4 = src_tangents.size();
tangents_v4.resize(size4);
PoolVector<float>::Write w4 = tangents_v4.write();
PoolVector<Vector3>::Read r3 = tangents_v3.read();
PoolVector<float>::Read r4 = src_tangents.read();
for (int l = 0; l < size4 / 4; l++) {
w4[l * 4 + 0] = r3[l].x;
w4[l * 4 + 1] = r3[l].y;
w4[l * 4 + 2] = r3[l].z;
w4[l * 4 + 3] = r4[l * 4 + 3]; //copy flip value
}
}
array_copy[Mesh::ARRAY_TANGENT] = tangents_v4;
}
if (generated_tangents) {
Ref<SurfaceTool> st;
st.instance();
array_copy[Mesh::ARRAY_INDEX] = erased_indices; //needed for tangent generation, erased by deindex
st->create_from_triangle_arrays(array_copy);
st->deindex();
st->generate_tangents();
array_copy = st->commit_to_arrays();
}
morphs.push_back(array_copy);
}
}
//just add it
mesh.mesh->add_surface_from_arrays(primitive, array, morphs);
if (p.has("material")) {
int material = p["material"];
ERR_FAIL_INDEX_V(material, state.materials.size(), ERR_FILE_CORRUPT);
Ref<Material> mat = state.materials[material];
mesh.mesh->surface_set_material(mesh.mesh->get_surface_count() - 1, mat);
}
}
if (d.has("weights")) {
Array weights = d["weights"];
ERR_FAIL_COND_V(mesh.mesh->get_blend_shape_count() != weights.size(), ERR_PARSE_ERROR);
mesh.blend_weights.resize(weights.size());
for (int j = 0; j < weights.size(); j++) {
mesh.blend_weights[j] = weights[j];
}
}
state.meshes.push_back(mesh);
}
print_line("total meshes: " + itos(state.meshes.size()));
return OK;
}
Error EditorSceneImporterGLTF::_parse_images(GLTFState &state, const String &p_base_path) {
if (!state.json.has("images"))
return OK;
Array images = state.json["images"];
for (int i = 0; i < images.size(); i++) {
Dictionary d = images[i];
String mimetype;
if (d.has("mimeType")) {
mimetype = d["mimeType"];
}
Vector<uint8_t> data;
const uint8_t *data_ptr = NULL;
int data_size = 0;
if (d.has("uri")) {
String uri = d["uri"];
if (uri.findn("data:application/octet-stream;base64") == 0) {
//embedded data
data = _parse_base64_uri(uri);
data_ptr = data.ptr();
data_size = data.size();
} else {
uri = p_base_path.plus_file(uri).replace("\\", "/"); //fix for windows
Ref<Texture> texture = ResourceLoader::load(uri);
state.images.push_back(texture);
continue;
}
}
if (d.has("bufferView")) {
int bvi = d["bufferView"];
ERR_FAIL_INDEX_V(bvi, state.buffer_views.size(), ERR_PARAMETER_RANGE_ERROR);
GLTFBufferView &bv = state.buffer_views[bvi];
int bi = bv.buffer;
ERR_FAIL_INDEX_V(bi, state.buffers.size(), ERR_PARAMETER_RANGE_ERROR);
ERR_FAIL_COND_V(bv.byte_offset + bv.byte_length > state.buffers[bi].size(), ERR_FILE_CORRUPT);
data_ptr = &state.buffers[bi][bv.byte_offset];
data_size = bv.byte_length;
}
ERR_FAIL_COND_V(mimetype == "", ERR_FILE_CORRUPT);
if (mimetype.findn("png") != -1) {
//is a png
Ref<Image> img = Image::_png_mem_loader_func(data_ptr, data_size);
ERR_FAIL_COND_V(img.is_null(), ERR_FILE_CORRUPT);
Ref<ImageTexture> t;
t.instance();
t->create_from_image(img);
state.images.push_back(t);
continue;
}
if (mimetype.findn("jpg") != -1) {
//is a jpg
Ref<Image> img = Image::_jpg_mem_loader_func(data_ptr, data_size);
ERR_FAIL_COND_V(img.is_null(), ERR_FILE_CORRUPT);
Ref<ImageTexture> t;
t.instance();
t->create_from_image(img);
state.images.push_back(t);
continue;
}
ERR_FAIL_V(ERR_FILE_CORRUPT);
}
print_line("total images: " + itos(state.images.size()));
return OK;
}
Error EditorSceneImporterGLTF::_parse_textures(GLTFState &state) {
if (!state.json.has("textures"))
return OK;
Array textures = state.json["textures"];
for (int i = 0; i < textures.size(); i++) {
Dictionary d = textures[i];
ERR_FAIL_COND_V(!d.has("source"), ERR_PARSE_ERROR);
GLTFTexture t;
t.src_image = d["source"];
state.textures.push_back(t);
}
return OK;
}
Ref<Texture> EditorSceneImporterGLTF::_get_texture(GLTFState &state, int p_texture) {
ERR_FAIL_INDEX_V(p_texture, state.textures.size(), Ref<Texture>());
int image = state.textures[p_texture].src_image;
ERR_FAIL_INDEX_V(image, state.images.size(), Ref<Texture>());
return state.images[image];
}
Error EditorSceneImporterGLTF::_parse_materials(GLTFState &state) {
if (!state.json.has("materials"))
return OK;
Array materials = state.json["materials"];
for (int i = 0; i < materials.size(); i++) {
Dictionary d = materials[i];
Ref<SpatialMaterial> material;
material.instance();
if (d.has("name")) {
material->set_name(d["name"]);
}
if (d.has("pbrMetallicRoughness")) {
Dictionary mr = d["pbrMetallicRoughness"];
if (mr.has("baseColorFactor")) {
Array arr = mr["baseColorFactor"];
ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR);
Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb();
material->set_albedo(c);
}
if (mr.has("baseColorTexture")) {
Dictionary bct = mr["baseColorTexture"];
if (bct.has("index")) {
material->set_texture(SpatialMaterial::TEXTURE_ALBEDO, _get_texture(state, bct["index"]));
}
if (!mr.has("baseColorFactor")) {
material->set_albedo(Color(1, 1, 1));
}
}
if (mr.has("metallicFactor")) {
material->set_metallic(mr["metallicFactor"]);
}
if (mr.has("roughnessFactor")) {
material->set_roughness(mr["roughnessFactor"]);
}
if (mr.has("metallicRoughnessTexture")) {
Dictionary bct = mr["metallicRoughnessTexture"];
if (bct.has("index")) {
Ref<Texture> t = _get_texture(state, bct["index"]);
material->set_texture(SpatialMaterial::TEXTURE_METALLIC, t);
material->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_BLUE);
material->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, t);
material->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GREEN);
if (!mr.has("metallicFactor")) {
material->set_metallic(1);
}
if (!mr.has("roughnessFactor")) {
material->set_roughness(1);
}
}
}
}
if (d.has("normalTexture")) {
Dictionary bct = d["normalTexture"];
if (bct.has("index")) {
material->set_texture(SpatialMaterial::TEXTURE_NORMAL, _get_texture(state, bct["index"]));
material->set_feature(SpatialMaterial::FEATURE_NORMAL_MAPPING, true);
}
if (bct.has("scale")) {
material->set_normal_scale(bct["scale"]);
}
}
if (d.has("occlusionTexture")) {
Dictionary bct = d["occlusionTexture"];
if (bct.has("index")) {
material->set_texture(SpatialMaterial::TEXTURE_AMBIENT_OCCLUSION, _get_texture(state, bct["index"]));
material->set_ao_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_RED);
material->set_feature(SpatialMaterial::FEATURE_AMBIENT_OCCLUSION, true);
}
}
if (d.has("emissiveFactor")) {
Array arr = d["emissiveFactor"];
ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
Color c = Color(arr[0], arr[1], arr[2]).to_srgb();
material->set_feature(SpatialMaterial::FEATURE_EMISSION, true);
material->set_emission(c);
}
if (d.has("emissiveTexture")) {
Dictionary bct = d["emissiveTexture"];
if (bct.has("index")) {
material->set_texture(SpatialMaterial::TEXTURE_EMISSION, _get_texture(state, bct["index"]));
material->set_feature(SpatialMaterial::FEATURE_EMISSION, true);
material->set_emission(Color(0, 0, 0));
}
}
if (d.has("doubleSided")) {
bool ds = d["doubleSided"];
if (ds) {
material->set_cull_mode(SpatialMaterial::CULL_DISABLED);
}
}
if (d.has("alphaMode")) {
String am = d["alphaMode"];
if (am != "OPAQUE") {
material->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
}
}
state.materials.push_back(material);
}
print_line("total materials: " + itos(state.materials.size()));
return OK;
}
Error EditorSceneImporterGLTF::_parse_skins(GLTFState &state) {
if (!state.json.has("skins"))
return OK;
Array skins = state.json["skins"];
for (int i = 0; i < skins.size(); i++) {
Dictionary d = skins[i];
GLTFSkin skin;
ERR_FAIL_COND_V(!d.has("joints"), ERR_PARSE_ERROR);
Array joints = d["joints"];
Vector<Transform> bind_matrices;
if (d.has("inverseBindMatrices")) {
bind_matrices = _decode_accessor_as_xform(state, d["inverseBindMatrices"], false);
ERR_FAIL_COND_V(bind_matrices.size() != joints.size(), ERR_PARSE_ERROR);
}
for (int j = 0; j < joints.size(); j++) {
int index = joints[j];
ERR_FAIL_INDEX_V(index, state.nodes.size(), ERR_PARSE_ERROR);
state.nodes[index]->joint_skin = state.skins.size();
state.nodes[index]->joint_bone = j;
GLTFSkin::Bone bone;
bone.node = index;
if (bind_matrices.size()) {
bone.inverse_bind = bind_matrices[j];
}
skin.bones.push_back(bone);
}
print_line("skin has skeleton? " + itos(d.has("skeleton")));
if (d.has("skeleton")) {
int skeleton = d["skeleton"];
ERR_FAIL_INDEX_V(skeleton, state.nodes.size(), ERR_PARSE_ERROR);
state.nodes[skeleton]->skeleton_skin = state.skins.size();
print_line("setting skeleton skin to" + itos(skeleton));
skin.skeleton = skeleton;
}
if (d.has("name")) {
skin.name = d["name"];
}
//locate the right place to put a Skeleton node
if (state.skin_users.has(i)) {
Vector<int> users = state.skin_users[i];
int skin_node = -1;
for (int j = 0; j < users.size(); j++) {
int user = state.nodes[users[j]]->parent; //always go from parent
if (j == 0) {
skin_node = user;
} else if (skin_node != -1) {
bool found = false;
while (skin_node >= 0) {
int cuser = user;
while (cuser != -1) {
if (cuser == skin_node) {
found = true;
break;
}
cuser = state.nodes[skin_node]->parent;
}
if (found)
break;
skin_node = state.nodes[skin_node]->parent;
}
if (!found) {
skin_node = -1; //just leave where it is
}
//find a common parent
}
}
if (skin_node != -1) {
for (int j = 0; j < users.size(); j++) {
state.nodes[users[j]]->child_of_skeleton = i;
}
state.nodes[skin_node]->skeleton_children.push_back(i);
}
}
state.skins.push_back(skin);
}
print_line("total skins: " + itos(state.skins.size()));
//now
return OK;
}
Error EditorSceneImporterGLTF::_parse_cameras(GLTFState &state) {
if (!state.json.has("cameras"))
return OK;
Array cameras = state.json["cameras"];
for (int i = 0; i < cameras.size(); i++) {
Dictionary d = cameras[i];
GLTFCamera camera;
ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
String type = d["type"];
if (type == "orthographic") {
camera.perspective = false;
if (d.has("orthographic")) {
Dictionary og = d["orthographic"];
camera.fov_size = og["ymag"];
camera.zfar = og["zfar"];
camera.znear = og["znear"];
} else {
camera.fov_size = 10;
}
} else if (type == "perspective") {
camera.perspective = true;
if (d.has("perspective")) {
Dictionary ppt = d["perspective"];
// GLTF spec is in radians, Godot's camera is in degrees.
camera.fov_size = (double)ppt["yfov"] * 180.0 / Math_PI;
camera.zfar = ppt["zfar"];
camera.znear = ppt["znear"];
} else {
camera.fov_size = 10;
}
} else {
ERR_EXPLAIN("Camera should be in 'orthographic' or 'perspective'");
ERR_FAIL_V(ERR_PARSE_ERROR);
}
state.cameras.push_back(camera);
}
print_line("total cameras: " + itos(state.cameras.size()));
return OK;
}
Error EditorSceneImporterGLTF::_parse_animations(GLTFState &state) {
if (!state.json.has("animations"))
return OK;
Array animations = state.json["animations"];
for (int i = 0; i < animations.size(); i++) {
Dictionary d = animations[i];
GLTFAnimation animation;
if (!d.has("channels") || !d.has("samplers"))
continue;
Array channels = d["channels"];
Array samplers = d["samplers"];
if (d.has("name")) {
animation.name = d["name"];
}
for (int j = 0; j < channels.size(); j++) {
Dictionary c = channels[j];
if (!c.has("target"))
continue;
Dictionary t = c["target"];
if (!t.has("node") || !t.has("path")) {
continue;
}
ERR_FAIL_COND_V(!c.has("sampler"), ERR_PARSE_ERROR);
int sampler = c["sampler"];
ERR_FAIL_INDEX_V(sampler, samplers.size(), ERR_PARSE_ERROR);
int node = t["node"];
String path = t["path"];
ERR_FAIL_INDEX_V(node, state.nodes.size(), ERR_PARSE_ERROR);
GLTFAnimation::Track *track = NULL;
if (!animation.tracks.has(node)) {
animation.tracks[node] = GLTFAnimation::Track();
}
track = &animation.tracks[node];
Dictionary s = samplers[sampler];
ERR_FAIL_COND_V(!s.has("input"), ERR_PARSE_ERROR);
ERR_FAIL_COND_V(!s.has("output"), ERR_PARSE_ERROR);
int input = s["input"];
int output = s["output"];
GLTFAnimation::Interpolation interp = GLTFAnimation::INTERP_LINEAR;
if (s.has("interpolation")) {
String in = s["interpolation"];
if (in == "STEP") {
interp = GLTFAnimation::INTERP_STEP;
} else if (in == "LINEAR") {
interp = GLTFAnimation::INTERP_LINEAR;
} else if (in == "CATMULLROMSPLINE") {
interp = GLTFAnimation::INTERP_CATMULLROMSPLINE;
} else if (in == "CUBICSPLINE") {
interp = GLTFAnimation::INTERP_CUBIC_SPLINE;
}
}
print_line("path: " + path);
PoolVector<float> times = _decode_accessor_as_floats(state, input, false);
if (path == "translation") {
PoolVector<Vector3> translations = _decode_accessor_as_vec3(state, output, false);
track->translation_track.interpolation = interp;
track->translation_track.times = Variant(times); //convert via variant
track->translation_track.values = Variant(translations); //convert via variant
} else if (path == "rotation") {
Vector<Quat> rotations = _decode_accessor_as_quat(state, output, false);
track->rotation_track.interpolation = interp;
track->rotation_track.times = Variant(times); //convert via variant
track->rotation_track.values = rotations; //convert via variant
} else if (path == "scale") {
PoolVector<Vector3> scales = _decode_accessor_as_vec3(state, output, false);
track->scale_track.interpolation = interp;
track->scale_track.times = Variant(times); //convert via variant
track->scale_track.values = Variant(scales); //convert via variant
} else if (path == "weights") {
PoolVector<float> weights = _decode_accessor_as_floats(state, output, false);
ERR_FAIL_INDEX_V(state.nodes[node]->mesh, state.meshes.size(), ERR_PARSE_ERROR);
GLTFMesh *mesh = &state.meshes[state.nodes[node]->mesh];
ERR_FAIL_COND_V(mesh->blend_weights.size() == 0, ERR_PARSE_ERROR);
int wc = mesh->blend_weights.size();
track->weight_tracks.resize(wc);
int wlen = weights.size() / wc;
PoolVector<float>::Read r = weights.read();
for (int k = 0; k < wc; k++) { //separate tracks, having them together is not such a good idea
GLTFAnimation::Channel<float> cf;
cf.interpolation = interp;
cf.times = Variant(times);
Vector<float> wdata;
wdata.resize(wlen);
for (int l = 0; l < wlen; l++) {
wdata[l] = r[l * wc + k];
}
cf.values = wdata;
track->weight_tracks[k] = cf;
}
} else {
WARN_PRINTS("Invalid path: " + path);
}
}
state.animations.push_back(animation);
}
print_line("total animations: " + itos(state.animations.size()));
return OK;
}
void EditorSceneImporterGLTF::_assign_scene_names(GLTFState &state) {
for (int i = 0; i < state.nodes.size(); i++) {
GLTFNode *n = state.nodes[i];
if (n->name == "") {
if (n->mesh >= 0) {
n->name = "Mesh";
} else if (n->joint_skin >= 0) {
n->name = "Bone";
} else {
n->name = "Node";
}
}
n->name = _gen_unique_name(state, n->name);
}
}
void EditorSceneImporterGLTF::_generate_node(GLTFState &state, int p_node, Node *p_parent, Node *p_owner, Vector<Skeleton *> &skeletons) {
ERR_FAIL_INDEX(p_node, state.nodes.size());
GLTFNode *n = state.nodes[p_node];
Spatial *node;
if (n->mesh >= 0) {
ERR_FAIL_INDEX(n->mesh, state.meshes.size());
MeshInstance *mi = memnew(MeshInstance);
const GLTFMesh &mesh = state.meshes[n->mesh];
mi->set_mesh(mesh.mesh);
for (int i = 0; i < mesh.blend_weights.size(); i++) {
mi->set("blend_shapes/" + mesh.mesh->get_blend_shape_name(i), mesh.blend_weights[i]);
}
node = mi;
} else if (n->camera >= 0) {
ERR_FAIL_INDEX(n->camera, state.cameras.size());
Camera *camera = memnew(Camera);
const GLTFCamera &c = state.cameras[n->camera];
if (c.perspective) {
camera->set_perspective(c.fov_size, c.znear, c.znear);
} else {
camera->set_orthogonal(c.fov_size, c.znear, c.znear);
}
node = camera;
} else {
node = memnew(Spatial);
}
node->set_name(n->name);
if (n->child_of_skeleton >= 0) {
//move skeleton around and place it on node, as the node _is_ a skeleton.
Skeleton *s = skeletons[n->child_of_skeleton];
p_parent = s;
}
p_parent->add_child(node);
node->set_owner(p_owner);
node->set_transform(n->xform);
n->godot_node = node;
for (int i = 0; i < n->skeleton_children.size(); i++) {
Skeleton *s = skeletons[n->skeleton_children[i]];
s->get_parent()->remove_child(s);
node->add_child(s);
s->set_owner(p_owner);
}
for (int i = 0; i < n->children.size(); i++) {
if (state.nodes[n->children[i]]->joint_skin >= 0) {
_generate_bone(state, n->children[i], skeletons, -1);
} else {
_generate_node(state, n->children[i], node, p_owner, skeletons);
}
}
}
void EditorSceneImporterGLTF::_generate_bone(GLTFState &state, int p_node, Vector<Skeleton *> &skeletons, int p_parent_bone) {
ERR_FAIL_INDEX(p_node, state.nodes.size());
GLTFNode *n = state.nodes[p_node];
ERR_FAIL_COND(n->joint_skin < 0);
int bone_index = skeletons[n->joint_skin]->get_bone_count();
skeletons[n->joint_skin]->add_bone(n->name);
if (p_parent_bone >= 0) {
skeletons[n->joint_skin]->set_bone_parent(bone_index, p_parent_bone);
}
skeletons[n->joint_skin]->set_bone_rest(bone_index, state.skins[n->joint_skin].bones[n->joint_bone].inverse_bind.affine_inverse());
n->godot_node = skeletons[n->joint_skin];
n->godot_bone_index = bone_index;
for (int i = 0; i < n->children.size(); i++) {
ERR_CONTINUE(state.nodes[n->children[i]]->joint_skin < 0);
_generate_bone(state, n->children[i], skeletons, bone_index);
}
}
template <class T>
struct EditorSceneImporterGLTFInterpolate {
T lerp(const T &a, const T &b, float c) const {
return a + (b - a) * c;
}
T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) {
float t2 = t * t;
float t3 = t2 * t;
return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
}
T bezier(T start, T control_1, T control_2, T end, float t) {
/* Formula from Wikipedia article on Bezier curves. */
real_t omt = (1.0 - t);
real_t omt2 = omt * omt;
real_t omt3 = omt2 * omt;
real_t t2 = t * t;
real_t t3 = t2 * t;
return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3;
}
};
//thank you for existing, partial specialization
template <>
struct EditorSceneImporterGLTFInterpolate<Quat> {
Quat lerp(const Quat &a, const Quat &b, float c) const {
return a.slerp(b, c);
}
Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, float c) {
return p1.slerp(p2, c);
}
Quat bezier(Quat start, Quat control_1, Quat control_2, Quat end, float t) {
return start.slerp(end, t);
}
};
template <class T>
T EditorSceneImporterGLTF::_interpolate_track(const Vector<float> &p_times, const Vector<T> &p_values, float p_time, GLTFAnimation::Interpolation p_interp) {
//could use binary search, worth it?
int idx = -1;
for (int i = 0; i < p_times.size(); i++) {
if (p_times[i] > p_time)
break;
idx++;
}
EditorSceneImporterGLTFInterpolate<T> interp;
switch (p_interp) {
case GLTFAnimation::INTERP_LINEAR: {
if (idx == -1) {
return p_values[0];
} else if (idx >= p_times.size() - 1) {
return p_values[p_times.size() - 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
return interp.lerp(p_values[idx], p_values[idx + 1], c);
} break;
case GLTFAnimation::INTERP_STEP: {
if (idx == -1) {
return p_values[0];
} else if (idx >= p_times.size() - 1) {
return p_values[p_times.size() - 1];
}
return p_values[idx];
} break;
case GLTFAnimation::INTERP_CATMULLROMSPLINE: {
if (idx == -1) {
return p_values[1];
} else if (idx >= p_times.size() - 1) {
return p_values[1 + p_times.size() - 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c);
} break;
case GLTFAnimation::INTERP_CUBIC_SPLINE: {
if (idx == -1) {
return p_values[1];
} else if (idx >= p_times.size() - 1) {
return p_values[(p_times.size() - 1) * 3 + 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
T from = p_values[idx * 3 + 1];
T c1 = from + p_values[idx * 3 + 0];
T to = p_values[idx * 3 + 3];
T c2 = to + p_values[idx * 3 + 2];
return interp.bezier(from, c1, c2, to, c);
} break;
}
ERR_FAIL_V(p_values[0]);
}
void EditorSceneImporterGLTF::_import_animation(GLTFState &state, AnimationPlayer *ap, int index, int bake_fps, Vector<Skeleton *> skeletons) {
const GLTFAnimation &anim = state.animations[index];
String name = anim.name;
if (name == "") {
name = _gen_unique_name(state, "Animation");
}
Ref<Animation> animation;
animation.instance();
animation->set_name(name);
for (Map<int, GLTFAnimation::Track>::Element *E = anim.tracks.front(); E; E = E->next()) {
const GLTFAnimation::Track &track = E->get();
//need to find the path
NodePath node_path;
GLTFNode *node = state.nodes[E->key()];
ERR_CONTINUE(!node->godot_node);
if (node->godot_bone_index >= 0) {
Skeleton *sk = (Skeleton *)node->godot_node;
String path = ap->get_parent()->get_path_to(sk);
String bone = sk->get_bone_name(node->godot_bone_index);
node_path = path + ":" + bone;
} else {
node_path = ap->get_parent()->get_path_to(node->godot_node);
}
float length = 0;
for (int i = 0; i < track.rotation_track.times.size(); i++) {
length = MAX(length, track.rotation_track.times[i]);
}
for (int i = 0; i < track.translation_track.times.size(); i++) {
length = MAX(length, track.translation_track.times[i]);
}
for (int i = 0; i < track.scale_track.times.size(); i++) {
length = MAX(length, track.scale_track.times[i]);
}
for (int i = 0; i < track.weight_tracks.size(); i++) {
for (int j = 0; j < track.weight_tracks[i].times.size(); j++) {
length = MAX(length, track.weight_tracks[i].times[j]);
}
}
animation->set_length(length);
if (track.rotation_track.values.size() || track.translation_track.values.size() || track.scale_track.values.size()) {
//make transform track
int track_idx = animation->get_track_count();
animation->add_track(Animation::TYPE_TRANSFORM);
animation->track_set_path(track_idx, node_path);
//first determine animation length
float increment = 1.0 / float(bake_fps);
float time = 0.0;
Vector3 base_pos;
Quat base_rot;
Vector3 base_scale = Vector3(1, 1, 1);
if (!track.rotation_track.values.size()) {
base_rot = state.nodes[E->key()]->rotation;
}
if (!track.translation_track.values.size()) {
base_pos = state.nodes[E->key()]->translation;
}
if (!track.scale_track.values.size()) {
base_scale = state.nodes[E->key()]->scale;
}
bool last = false;
while (true) {
Vector3 pos = base_pos;
Quat rot = base_rot;
Vector3 scale = base_scale;
if (track.translation_track.times.size()) {
pos = _interpolate_track<Vector3>(track.translation_track.times, track.translation_track.values, time, track.translation_track.interpolation);
}
if (track.rotation_track.times.size()) {
rot = _interpolate_track<Quat>(track.rotation_track.times, track.rotation_track.values, time, track.rotation_track.interpolation);
}
if (track.scale_track.times.size()) {
scale = _interpolate_track<Vector3>(track.scale_track.times, track.scale_track.values, time, track.scale_track.interpolation);
}
if (node->godot_bone_index >= 0) {
Transform xform;
xform.basis = Basis(rot);
xform.basis.scale(scale);
xform.origin = pos;
Skeleton *skeleton = skeletons[node->joint_skin];
int bone = node->godot_bone_index;
xform = skeleton->get_bone_rest(bone).affine_inverse() * xform;
rot = xform.basis;
rot.normalize();
scale = xform.basis.get_scale();
pos = xform.origin;
}
animation->transform_track_insert_key(track_idx, time, pos, rot, scale);
if (last) {
break;
}
time += increment;
if (time >= length) {
last = true;
time = length;
}
}
}
for (int i = 0; i < track.weight_tracks.size(); i++) {
ERR_CONTINUE(node->mesh < 0 || node->mesh >= state.meshes.size());
const GLTFMesh &mesh = state.meshes[node->mesh];
String prop = "blend_shapes/" + mesh.mesh->get_blend_shape_name(i);
node_path = String(node_path) + ":" + prop;
int track_idx = animation->get_track_count();
animation->add_track(Animation::TYPE_VALUE);
animation->track_set_path(track_idx, node_path);
if (track.weight_tracks[i].interpolation <= GLTFAnimation::INTERP_STEP) {
animation->track_set_interpolation_type(track_idx, track.weight_tracks[i].interpolation == GLTFAnimation::INTERP_STEP ? Animation::INTERPOLATION_NEAREST : Animation::INTERPOLATION_NEAREST);
for (int j = 0; j < track.weight_tracks[i].times.size(); j++) {
float t = track.weight_tracks[i].times[j];
float w = track.weight_tracks[i].values[j];
animation->track_insert_key(track_idx, t, w);
}
} else {
//must bake, apologies.
float increment = 1.0 / float(bake_fps);
float time = 0.0;
bool last = false;
while (true) {
_interpolate_track<float>(track.weight_tracks[i].times, track.weight_tracks[i].values, time, track.weight_tracks[i].interpolation);
if (last) {
break;
}
time += increment;
if (time >= length) {
last = true;
time = length;
}
}
}
}
}
ap->add_animation(name, animation);
}
Spatial *EditorSceneImporterGLTF::_generate_scene(GLTFState &state, int p_bake_fps) {
Spatial *root = memnew(Spatial);
root->set_name(state.scene_name);
//generate skeletons
Vector<Skeleton *> skeletons;
for (int i = 0; i < state.skins.size(); i++) {
Skeleton *s = memnew(Skeleton);
String name = state.skins[i].name;
if (name == "") {
name = _gen_unique_name(state, "Skeleton");
}
s->set_name(name);
root->add_child(s);
s->set_owner(root);
skeletons.push_back(s);
}
for (int i = 0; i < state.root_nodes.size(); i++) {
if (state.nodes[state.root_nodes[i]]->joint_skin >= 0) {
_generate_bone(state, state.root_nodes[i], skeletons, -1);
} else {
_generate_node(state, state.root_nodes[i], root, root, skeletons);
}
}
for (int i = 0; i < skeletons.size(); i++) {
skeletons[i]->localize_rests();
}
if (state.animations.size()) {
AnimationPlayer *ap = memnew(AnimationPlayer);
ap->set_name("AnimationPlayer");
root->add_child(ap);
ap->set_owner(root);
for (int i = 0; i < state.animations.size(); i++) {
_import_animation(state, ap, i, p_bake_fps, skeletons);
}
}
return root;
}
Node *EditorSceneImporterGLTF::import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps, List<String> *r_missing_deps, Error *r_err) {
GLTFState state;
if (p_path.to_lower().ends_with("glb")) {
//binary file
//text file
Error err = _parse_glb(p_path, state);
if (err)
return NULL;
} else {
//text file
Error err = _parse_json(p_path, state);
if (err)
return NULL;
}
ERR_FAIL_COND_V(!state.json.has("asset"), NULL);
Dictionary asset = state.json["asset"];
ERR_FAIL_COND_V(!asset.has("version"), NULL);
String version = asset["version"];
state.major_version = version.get_slice(".", 0).to_int();
state.minor_version = version.get_slice(".", 1).to_int();
/* STEP 0 PARSE SCENE */
Error err = _parse_scenes(state);
if (err != OK)
return NULL;
/* STEP 1 PARSE NODES */
err = _parse_nodes(state);
if (err != OK)
return NULL;
/* STEP 2 PARSE BUFFERS */
err = _parse_buffers(state, p_path.get_base_dir());
if (err != OK)
return NULL;
/* STEP 3 PARSE BUFFER VIEWS */
err = _parse_buffer_views(state);
if (err != OK)
return NULL;
/* STEP 4 PARSE ACCESSORS */
err = _parse_accessors(state);
if (err != OK)
return NULL;
/* STEP 5 PARSE IMAGES */
err = _parse_images(state, p_path.get_base_dir());
if (err != OK)
return NULL;
/* STEP 6 PARSE TEXTURES */
err = _parse_textures(state);
if (err != OK)
return NULL;
/* STEP 7 PARSE TEXTURES */
err = _parse_materials(state);
if (err != OK)
return NULL;
/* STEP 8 PARSE MESHES (we have enough info now) */
err = _parse_meshes(state);
if (err != OK)
return NULL;
/* STEP 9 PARSE SKINS */
err = _parse_skins(state);
if (err != OK)
return NULL;
/* STEP 10 PARSE CAMERAS */
err = _parse_cameras(state);
if (err != OK)
return NULL;
/* STEP 11 PARSE ANIMATIONS */
err = _parse_animations(state);
if (err != OK)
return NULL;
/* STEP 12 ASSIGN SCENE NAMES */
_assign_scene_names(state);
/* STEP 13 MAKE SCENE! */
Spatial *scene = _generate_scene(state, p_bake_fps);
return scene;
}
Ref<Animation> EditorSceneImporterGLTF::import_animation(const String &p_path, uint32_t p_flags) {
return Ref<Animation>();
}
EditorSceneImporterGLTF::EditorSceneImporterGLTF() {
}