godot/servers/physics/body_pair_sw.cpp
Rémi Verschelde d8223ffa75 Welcome in 2017, dear changelog reader!
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer
with state-of-the-art rendering techniques tuned to work as low as middle
end handheld devices - without compromising with the possibilities given
for higher end desktop games of course. Great times ahead for the Godot
community and the gamers that will play our games!

(cherry picked from commit c7bc44d5ad)
2017-01-12 19:15:30 +01:00

528 lines
15 KiB
C++

/*************************************************************************/
/* body_pair_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "body_pair_sw.h"
#include "collision_solver_sw.h"
#include "space_sw.h"
#include "os/os.h"
/*
#define NO_ACCUMULATE_IMPULSES
#define NO_SPLIT_IMPULSES
#define NO_FRICTION
*/
#define NO_TANGENTIALS
/* BODY PAIR */
//#define ALLOWED_PENETRATION 0.01
#define RELAXATION_TIMESTEPS 3
#define MIN_VELOCITY 0.0001
void BodyPairSW::_contact_added_callback(const Vector3& p_point_A,const Vector3& p_point_B,void *p_userdata) {
BodyPairSW* pair = (BodyPairSW*)p_userdata;
pair->contact_added_callback(p_point_A,p_point_B);
}
void BodyPairSW::contact_added_callback(const Vector3& p_point_A,const Vector3& p_point_B) {
// check if we already have the contact
//Vector3 local_A = A->get_inv_transform().xform(p_point_A);
//Vector3 local_B = B->get_inv_transform().xform(p_point_B);
Vector3 local_A = A->get_inv_transform().basis.xform(p_point_A);
Vector3 local_B = B->get_inv_transform().basis.xform(p_point_B-offset_B);
int new_index = contact_count;
ERR_FAIL_COND( new_index >= (MAX_CONTACTS+1) );
Contact contact;
contact.acc_normal_impulse=0;
contact.acc_bias_impulse=0;
contact.acc_tangent_impulse=Vector3();
contact.local_A=local_A;
contact.local_B=local_B;
contact.normal=(p_point_A-p_point_B).normalized();
// attempt to determine if the contact will be reused
real_t contact_recycle_radius=space->get_contact_recycle_radius();
for (int i=0;i<contact_count;i++) {
Contact& c = contacts[i];
if (
c.local_A.distance_squared_to( local_A ) < (contact_recycle_radius*contact_recycle_radius) &&
c.local_B.distance_squared_to( local_B ) < (contact_recycle_radius*contact_recycle_radius) ) {
contact.acc_normal_impulse=c.acc_normal_impulse;
contact.acc_bias_impulse=c.acc_bias_impulse;
contact.acc_tangent_impulse=c.acc_tangent_impulse;
new_index=i;
break;
}
}
// figure out if the contact amount must be reduced to fit the new contact
if (new_index == MAX_CONTACTS) {
// remove the contact with the minimum depth
int least_deep=-1;
float min_depth=1e10;
for (int i=0;i<=contact_count;i++) {
Contact& c = (i==contact_count)?contact:contacts[i];
Vector3 global_A = A->get_transform().basis.xform(c.local_A);
Vector3 global_B = B->get_transform().basis.xform(c.local_B)+offset_B;
Vector3 axis = global_A - global_B;
float depth = axis.dot( c.normal );
if (depth<min_depth) {
min_depth=depth;
least_deep=i;
}
}
ERR_FAIL_COND(least_deep==-1);
if (least_deep < contact_count) { //replace the last deep contact by the new one
contacts[least_deep]=contact;
}
return;
}
contacts[new_index]=contact;
if (new_index==contact_count) {
contact_count++;
}
}
void BodyPairSW::validate_contacts() {
//make sure to erase contacts that are no longer valid
real_t contact_max_separation=space->get_contact_max_separation();
for (int i=0;i<contact_count;i++) {
Contact& c = contacts[i];
Vector3 global_A = A->get_transform().basis.xform(c.local_A);
Vector3 global_B = B->get_transform().basis.xform(c.local_B)+offset_B;
Vector3 axis = global_A - global_B;
float depth = axis.dot( c.normal );
if (depth < -contact_max_separation || (global_B + c.normal * depth - global_A).length() > contact_max_separation) {
// contact no longer needed, remove
if ((i+1) < contact_count) {
// swap with the last one
SWAP( contacts[i], contacts[ contact_count-1 ] );
}
i--;
contact_count--;
}
}
}
bool BodyPairSW::_test_ccd(float p_step,BodySW *p_A, int p_shape_A,const Transform& p_xform_A,BodySW *p_B, int p_shape_B,const Transform& p_xform_B) {
Vector3 motion = p_A->get_linear_velocity()*p_step;
real_t mlen = motion.length();
if (mlen<CMP_EPSILON)
return false;
Vector3 mnormal = motion / mlen;
real_t min,max;
p_A->get_shape(p_shape_A)->project_range(mnormal,p_xform_A,min,max);
bool fast_object = mlen > (max-min)*0.3; //going too fast in that direction
if (!fast_object) { //did it move enough in this direction to even attempt raycast? let's say it should move more than 1/3 the size of the object in that axis
return false;
}
//cast a segment from support in motion normal, in the same direction of motion by motion length
//support is the worst case collision point, so real collision happened before
Vector3 s=p_A->get_shape(p_shape_A)->get_support(p_xform_A.basis.xform(mnormal).normalized());
Vector3 from = p_xform_A.xform(s);
Vector3 to = from + motion;
Transform from_inv = p_xform_B.affine_inverse();
Vector3 local_from = from_inv.xform(from-mnormal*mlen*0.1); //start from a little inside the bounding box
Vector3 local_to = from_inv.xform(to);
Vector3 rpos,rnorm;
if (!p_B->get_shape(p_shape_B)->intersect_segment(local_from,local_to,rpos,rnorm)) {
return false;
}
//shorten the linear velocity so it does not hit, but gets close enough, next frame will hit softly or soft enough
Vector3 hitpos = p_xform_B.xform(rpos);
float newlen = hitpos.distance_to(from)-(max-min)*0.01;
p_A->set_linear_velocity((mnormal*newlen)/p_step);
return true;
}
bool BodyPairSW::setup(float p_step) {
//cannot collide
if (!A->test_collision_mask(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self()) || (A->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC && B->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC && A->get_max_contacts_reported()==0 && B->get_max_contacts_reported()==0)) {
collided=false;
return false;
}
offset_B = B->get_transform().get_origin() - A->get_transform().get_origin();
validate_contacts();
Vector3 offset_A = A->get_transform().get_origin();
Transform xform_Au = Transform(A->get_transform().basis,Vector3());
Transform xform_A = xform_Au * A->get_shape_transform(shape_A);
Transform xform_Bu = B->get_transform();
xform_Bu.origin-=offset_A;
Transform xform_B = xform_Bu * B->get_shape_transform(shape_B);
ShapeSW *shape_A_ptr=A->get_shape(shape_A);
ShapeSW *shape_B_ptr=B->get_shape(shape_B);
bool collided = CollisionSolverSW::solve_static(shape_A_ptr,xform_A,shape_B_ptr,xform_B,_contact_added_callback,this,&sep_axis);
this->collided=collided;
if (!collided) {
//test ccd (currently just a raycast)
if (A->is_continuous_collision_detection_enabled() && A->get_mode()>PhysicsServer::BODY_MODE_KINEMATIC && B->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC) {
_test_ccd(p_step,A,shape_A,xform_A,B,shape_B,xform_B);
}
if (B->is_continuous_collision_detection_enabled() && B->get_mode()>PhysicsServer::BODY_MODE_KINEMATIC && A->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC) {
_test_ccd(p_step,B,shape_B,xform_B,A,shape_A,xform_A);
}
return false;
}
real_t max_penetration = space->get_contact_max_allowed_penetration();
float bias = 0.3f;
if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) {
if (shape_A_ptr->get_custom_bias()==0)
bias=shape_B_ptr->get_custom_bias();
else if (shape_B_ptr->get_custom_bias()==0)
bias=shape_A_ptr->get_custom_bias();
else
bias=(shape_B_ptr->get_custom_bias()+shape_A_ptr->get_custom_bias())*0.5;
}
real_t inv_dt = 1.0/p_step;
for(int i=0;i<contact_count;i++) {
Contact &c = contacts[i];
c.active=false;
Vector3 global_A = xform_Au.xform(c.local_A);
Vector3 global_B = xform_Bu.xform(c.local_B);
real_t depth = c.normal.dot(global_A - global_B);
if (depth<=0) {
c.active=false;
continue;
}
c.active=true;
#ifdef DEBUG_ENABLED
if (space->is_debugging_contacts()) {
space->add_debug_contact(global_A+offset_A);
space->add_debug_contact(global_B+offset_A);
}
#endif
c.rA = global_A;
c.rB = global_B-offset_B;
// contact query reporting...
#if 0
if (A->get_body_type() == PhysicsServer::BODY_CHARACTER)
static_cast<CharacterBodySW*>(A)->report_character_contact( global_A, global_B, B );
if (B->get_body_type() == PhysicsServer::BODY_CHARACTER)
static_cast<CharacterBodySW*>(B)->report_character_contact( global_B, global_A, A );
if (A->has_contact_query())
A->report_contact( global_A, global_B, B );
if (B->has_contact_query())
B->report_contact( global_B, global_A, A );
#endif
if (A->can_report_contacts()) {
Vector3 crA = A->get_angular_velocity().cross( c.rA ) + A->get_linear_velocity();
A->add_contact(global_A,-c.normal,depth,shape_A,global_B,shape_B,B->get_instance_id(),B->get_self(),crA);
}
if (B->can_report_contacts()) {
Vector3 crB = B->get_angular_velocity().cross( c.rB ) + B->get_linear_velocity();
B->add_contact(global_B,c.normal,depth,shape_B,global_A,shape_A,A->get_instance_id(),A->get_self(),crB);
}
if (A->is_shape_set_as_trigger(shape_A) || B->is_shape_set_as_trigger(shape_B) || (A->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC && B->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC)) {
c.active=false;
collided=false;
continue;
}
c.active=true;
// Precompute normal mass, tangent mass, and bias.
Vector3 inertia_A = A->get_inv_inertia_tensor().xform( c.rA.cross( c.normal ) );
Vector3 inertia_B = B->get_inv_inertia_tensor().xform( c.rB.cross( c.normal ) );
real_t kNormal = A->get_inv_mass() + B->get_inv_mass();
kNormal += c.normal.dot( inertia_A.cross(c.rA ) ) + c.normal.dot( inertia_B.cross( c.rB ));
c.mass_normal = 1.0f / kNormal;
#if 1
c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
#else
if (depth > max_penetration) {
c.bias = (depth - max_penetration) * (1.0/(p_step*(1.0/RELAXATION_TIMESTEPS)));
} else {
float approach = -0.1f * (depth - max_penetration) / (CMP_EPSILON + max_penetration);
approach = CLAMP( approach, CMP_EPSILON, 1.0 );
c.bias = approach * (depth - max_penetration) * (1.0/p_step);
}
#endif
c.depth=depth;
Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse;
A->apply_impulse( c.rA, -j_vec );
B->apply_impulse( c.rB, j_vec );
c.acc_bias_impulse=0;
Vector3 jb_vec = c.normal * c.acc_bias_impulse;
A->apply_bias_impulse( c.rA, -jb_vec );
B->apply_bias_impulse( c.rB, jb_vec );
c.bounce = MAX(A->get_bounce(),B->get_bounce());
if (c.bounce) {
Vector3 crA = A->get_angular_velocity().cross( c.rA );
Vector3 crB = B->get_angular_velocity().cross( c.rB );
Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;
//normal impule
c.bounce = c.bounce * dv.dot(c.normal);
}
}
return true;
}
void BodyPairSW::solve(float p_step) {
if (!collided)
return;
for(int i=0;i<contact_count;i++) {
Contact &c = contacts[i];
if (!c.active)
continue;
c.active=false; //try to deactivate, will activate itself if still needed
//bias impule
Vector3 crbA = A->get_biased_angular_velocity().cross( c.rA );
Vector3 crbB = B->get_biased_angular_velocity().cross( c.rB );
Vector3 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;
real_t vbn = dbv.dot(c.normal);
if (Math::abs(-vbn+c.bias)>MIN_VELOCITY) {
real_t jbn = (-vbn + c.bias)*c.mass_normal;
real_t jbnOld = c.acc_bias_impulse;
c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);
Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld);
A->apply_bias_impulse(c.rA,-jb);
B->apply_bias_impulse(c.rB, jb);
c.active=true;
}
Vector3 crA = A->get_angular_velocity().cross( c.rA );
Vector3 crB = B->get_angular_velocity().cross( c.rB );
Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;
//normal impule
real_t vn = dv.dot(c.normal);
if (Math::abs(vn)>MIN_VELOCITY) {
real_t jn = -(c.bounce + vn)*c.mass_normal;
real_t jnOld = c.acc_normal_impulse;
c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);
Vector3 j =c.normal * (c.acc_normal_impulse - jnOld);
A->apply_impulse(c.rA,-j);
B->apply_impulse(c.rB, j);
c.active=true;
}
//friction impule
real_t friction = A->get_friction() * B->get_friction();
Vector3 lvA = A->get_linear_velocity() + A->get_angular_velocity().cross( c.rA );
Vector3 lvB = B->get_linear_velocity() + B->get_angular_velocity().cross( c.rB );
Vector3 dtv = lvB - lvA;
real_t tn = c.normal.dot(dtv);
// tangential velocity
Vector3 tv = dtv - c.normal * tn;
real_t tvl = tv.length();
if (tvl > MIN_VELOCITY) {
tv /= tvl;
Vector3 temp1 = A->get_inv_inertia_tensor().xform( c.rA.cross( tv ) );
Vector3 temp2 = B->get_inv_inertia_tensor().xform( c.rB.cross( tv ) );
real_t t = -tvl /
(A->get_inv_mass() + B->get_inv_mass() + tv.dot(temp1.cross(c.rA) + temp2.cross(c.rB)));
Vector3 jt = t * tv;
Vector3 jtOld = c.acc_tangent_impulse;
c.acc_tangent_impulse += jt;
real_t fi_len = c.acc_tangent_impulse.length();
real_t jtMax = c.acc_normal_impulse * friction;
if (fi_len > CMP_EPSILON && fi_len > jtMax) {
c.acc_tangent_impulse*=jtMax / fi_len;
}
jt = c.acc_tangent_impulse - jtOld;
A->apply_impulse( c.rA, -jt );
B->apply_impulse( c.rB, jt );
c.active=true;
}
}
}
BodyPairSW::BodyPairSW(BodySW *p_A, int p_shape_A,BodySW *p_B, int p_shape_B) : ConstraintSW(_arr,2) {
A=p_A;
B=p_B;
shape_A=p_shape_A;
shape_B=p_shape_B;
space=A->get_space();
A->add_constraint(this,0);
B->add_constraint(this,1);
contact_count=0;
collided=false;
}
BodyPairSW::~BodyPairSW() {
A->remove_constraint(this);
B->remove_constraint(this);
}