godot/drivers/gles3/shaders/scene.glsl

819 lines
18 KiB
GLSL

[vertex]
/*
from VisualServer:
ARRAY_VERTEX=0,
ARRAY_NORMAL=1,
ARRAY_TANGENT=2,
ARRAY_COLOR=3,
ARRAY_TEX_UV=4,
ARRAY_TEX_UV2=5,
ARRAY_BONES=6,
ARRAY_WEIGHTS=7,
ARRAY_INDEX=8,
*/
//hack to use uv if no uv present so it works with lightmap
/* INPUT ATTRIBS */
layout(location=0) in highp vec4 vertex_attrib;
layout(location=1) in vec3 normal_attrib;
layout(location=2) in vec4 tangent_attrib;
layout(location=3) in vec4 color_attrib;
layout(location=4) in vec2 uv_attrib;
layout(location=5) in vec2 uv2_attrib;
uniform float normal_mult;
#ifdef USE_SKELETON
layout(location=6) mediump ivec4 bone_indices; // attrib:6
layout(location=7) mediump vec4 bone_weights; // attrib:7
uniform highp sampler2D skeleton_matrices;
#endif
#ifdef USE_ATTRIBUTE_INSTANCING
layout(location=8) in highp vec4 instance_xform0;
layout(location=9) in highp vec4 instance_xform1;
layout(location=10) in highp vec4 instance_xform2;
layout(location=11) in lowp vec4 instance_color;
#endif
layout(std140) uniform SceneData { //ubo:0
highp mat4 projection_matrix;
highp mat4 camera_inverse_matrix;
highp mat4 camera_matrix;
highp vec4 time;
highp vec4 ambient_light_color;
highp vec4 bg_color;
float ambient_energy;
float bg_energy;
float shadow_z_offset;
float shadow_z_slope_scale;
float shadow_dual_paraboloid_render_zfar;
float shadow_dual_paraboloid_render_side;
vec2 shadow_atlas_pixel_size;
vec2 directional_shadow_pixel_size;
};
uniform highp mat4 world_transform;
#ifdef USE_FORWARD_LIGHTING
layout(std140) uniform LightData { //ubo:3
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
mediump vec4 light_params; //cone attenuation, specular, shadow darkening,
mediump vec4 light_clamp;
mediump vec4 shadow_split_offsets;
highp mat4 shadow_matrix1;
highp mat4 shadow_matrix2;
highp mat4 shadow_matrix3;
highp mat4 shadow_matrix4;
};
#endif
/* Varyings */
out highp vec3 vertex_interp;
out vec3 normal_interp;
#if defined(ENABLE_COLOR_INTERP)
out vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
out vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP)
out vec2 uv2_interp;
#endif
#if defined(ENABLE_TANGENT_INTERP)
out vec3 tangent_interp;
out vec3 binormal_interp;
#endif
#if !defined(USE_DEPTH_SHADOWS) && defined(USE_SHADOW_PASS)
varying vec4 position_interp;
#endif
VERTEX_SHADER_GLOBALS
#if defined(USE_MATERIAL)
layout(std140) uniform UniformData { //ubo:1
MATERIAL_UNIFORMS
};
#endif
#ifdef RENDER_SHADOW_DUAL_PARABOLOID
out highp float dp_clip;
#endif
void main() {
highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0);
highp mat4 modelview = camera_inverse_matrix * world_transform;
vec3 normal = normal_attrib * normal_mult;
#if defined(ENABLE_TANGENT_INTERP)
vec3 tangent = tangent_attrib.xyz;
tangent*=normal_mult;
float binormalf = tangent_attrib.a;
#endif
#ifdef USE_SKELETON
{
//skeleton transform
highp mat4 m=mat4(texture2D(skeleton_matrices,vec2((bone_indices.x*3.0+0.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.x*3.0+1.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.x*3.0+2.0)*skeltex_pixel_size,0.0)),vec4(0.0,0.0,0.0,1.0))*bone_weights.x;
m+=mat4(texture2D(skeleton_matrices,vec2((bone_indices.y*3.0+0.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.y*3.0+1.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.y*3.0+2.0)*skeltex_pixel_size,0.0)),vec4(0.0,0.0,0.0,1.0))*bone_weights.y;
m+=mat4(texture2D(skeleton_matrices,vec2((bone_indices.z*3.0+0.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.z*3.0+1.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.z*3.0+2.0)*skeltex_pixel_size,0.0)),vec4(0.0,0.0,0.0,1.0))*bone_weights.z;
m+=mat4(texture2D(skeleton_matrices,vec2((bone_indices.w*3.0+0.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.w*3.0+1.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.w*3.0+2.0)*skeltex_pixel_size,0.0)),vec4(0.0,0.0,0.0,1.0))*bone_weights.w;
vertex = vertex_in * m;
normal = (vec4(normal,0.0) * m).xyz;
#if defined(ENABLE_TANGENT_INTERP)
tangent = (vec4(tangent,0.0) * m).xyz;
#endif
}
#endif
#if !defined(SKIP_TRANSFORM_USED)
vertex = modelview * vertex;
normal = normalize((modelview * vec4(normal,0.0)).xyz);
#endif
#if defined(ENABLE_TANGENT_INTERP)
# if !defined(SKIP_TRANSFORM_USED)
tangent=normalize((modelview * vec4(tangent,0.0)).xyz);
# endif
vec3 binormal = normalize( cross(normal,tangent) * binormalf );
#endif
#if defined(ENABLE_COLOR_INTERP)
color_interp = color_attrib;
#endif
#if defined(ENABLE_UV_INTERP)
uv_interp = uv_attrib;
#endif
#if defined(ENABLE_UV2_INTERP)
uv2_interp = uv2_attrib;
#endif
{
VERTEX_SHADER_CODE
}
vertex_interp = vertex.xyz;
normal_interp = normal;
#if defined(ENABLE_TANGENT_INTERP)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
#ifdef RENDER_SHADOW
#ifdef RENDER_SHADOW_DUAL_PARABOLOID
vertex_interp.z*= shadow_dual_paraboloid_render_side;
normal_interp.z*= shadow_dual_paraboloid_render_side;
dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
highp vec3 vtx = vertex_interp+normalize(vertex_interp)*shadow_z_offset;
highp float distance = length(vtx);
vtx = normalize(vtx);
vtx.xy/=1.0-vtx.z;
vtx.z=(distance/shadow_dual_paraboloid_render_zfar);
vtx.z=vtx.z * 2.0 - 1.0;
vertex.xyz=vtx;
vertex.w=1.0;
#else
float z_ofs = shadow_z_offset;
z_ofs += (1.0-abs(normal_interp.z))*shadow_z_slope_scale;
vertex_interp.z-=z_ofs;
#endif //RENDER_SHADOW_DUAL_PARABOLOID
#endif //RENDER_SHADOW
#if !defined(SKIP_TRANSFORM_USED) && !defined(RENDER_SHADOW_DUAL_PARABOLOID)
gl_Position = projection_matrix * vec4(vertex_interp,1.0);
#else
gl_Position = vertex;
#endif
}
[fragment]
#define M_PI 3.14159265359
/* Varyings */
#if defined(ENABLE_COLOR_INTERP)
in vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
in vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP)
in vec2 uv2_interp;
#endif
#if defined(ENABLE_TANGENT_INTERP)
in vec3 tangent_interp;
in vec3 binormal_interp;
#endif
in highp vec3 vertex_interp;
in vec3 normal_interp;
/* PBR CHANNELS */
//used on forward mainly
uniform bool no_ambient_light;
#ifdef USE_RADIANCE_CUBEMAP
uniform sampler2D brdf_texture; //texunit:-1
uniform samplerCube radiance_cube; //texunit:-2
layout(std140) uniform Radiance { //ubo:2
mat4 radiance_inverse_xform;
vec3 radiance_box_min;
vec3 radiance_box_max;
float radiance_ambient_contribution;
};
#endif
/* Material Uniforms */
FRAGMENT_SHADER_GLOBALS
#if defined(USE_MATERIAL)
layout(std140) uniform UniformData {
MATERIAL_UNIFORMS
};
#endif
layout(std140) uniform SceneData {
highp mat4 projection_matrix;
highp mat4 camera_inverse_matrix;
highp mat4 camera_matrix;
highp vec4 time;
highp vec4 ambient_light_color;
highp vec4 bg_color;
float ambient_energy;
float bg_energy;
float shadow_z_offset;
float shadow_z_slope_scale;
float shadow_dual_paraboloid_render_zfar;
float shadow_dual_paraboloid_render_side;
vec2 shadow_atlas_pixel_size;
vec2 directional_shadow_pixel_size;
};
#ifdef USE_FORWARD_LIGHTING
layout(std140) uniform LightData {
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
mediump vec4 light_params; //cone attenuation, specular, shadow darkening, shadow enabled
mediump vec4 light_clamp;
mediump vec4 shadow_split_offsets;
highp mat4 shadow_matrix1;
highp mat4 shadow_matrix2;
highp mat4 shadow_matrix3;
highp mat4 shadow_matrix4;
};
#endif
uniform highp sampler2DShadow directional_shadow; //texunit:-4
uniform highp sampler2DShadow shadow_atlas; //texunit:-3
#ifdef USE_MULTIPLE_RENDER_TARGETS
layout(location=0) out vec4 diffuse_buffer;
layout(location=1) out vec4 specular_buffer;
layout(location=2) out vec4 normal_mr_buffer;
#else
layout(location=0) out vec4 frag_color;
#endif
// GGX Specular
// Source: http://www.filmicworlds.com/images/ggx-opt/optimized-ggx.hlsl
float G1V(float dotNV, float k)
{
return 1.0 / (dotNV * (1.0 - k) + k);
}
float specularGGX(vec3 N, vec3 V, vec3 L, float roughness, float F0)
{
float alpha = roughness * roughness;
vec3 H = normalize(V + L);
float dotNL = max(dot(N,L), 0.0 );
float dotNV = max(dot(N,V), 0.0 );
float dotNH = max(dot(N,H), 0.0 );
float dotLH = max(dot(L,H), 0.0 );
// D
float alphaSqr = alpha * alpha;
float pi = M_PI;
float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0;
float D = alphaSqr / (pi * denom * denom);
// F
float dotLH5 = pow(1.0 - dotLH, 5.0);
float F = F0 + (1.0 - F0) * (dotLH5);
// V
float k = alpha / 2.0f;
float vis = G1V(dotNL, k) * G1V(dotNV, k);
return dotNL * D * F * vis;
}
void light_compute(vec3 normal, vec3 light_vec,vec3 eye_vec,vec3 diffuse_color, vec3 specular_color, float roughness, float attenuation, inout vec3 diffuse, inout vec3 specular) {
diffuse += max(0.0,dot(normal,light_vec)) * diffuse_color * attenuation;
//specular += specular_ggx( roughness, max(0.0,dot(normal,eye_vec)) ) * specular_color * attenuation;
float s = roughness > 0.0 ? specularGGX(normal,eye_vec,light_vec,roughness,1.0) : 0.0;
specular += s * specular_color * attenuation;
}
float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) {
return textureProj(shadow,vec4(pos,depth,1.0));
}
#ifdef RENDER_SHADOW_DUAL_PARABOLOID
in highp float dp_clip;
#endif
void main() {
#ifdef RENDER_SHADOW_DUAL_PARABOLOID
if (dp_clip>0.0)
discard;
#endif
//lay out everything, whathever is unused is optimized away anyway
highp vec3 vertex = vertex_interp;
vec3 albedo = vec3(0.8,0.8,0.8);
vec3 specular = vec3(0.2,0.2,0.2);
float roughness = 1.0;
float alpha = 1.0;
#ifdef METERIAL_DOUBLESIDED
float side=float(gl_FrontFacing)*2.0-1.0;
#else
float side=1.0;
#endif
#if defined(ENABLE_TANGENT_INTERP)
vec3 binormal = normalize(binormal_interp)*side;
vec3 tangent = normalize(tangent_interp)*side;
#endif
vec3 normal = normalize(normal_interp)*side;
#if defined(ENABLE_UV_INTERP)
vec2 uv = uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP)
vec2 uv2 = uv2_interp;
#endif
#if defined(ENABLE_COLOR_INTERP)
vec4 color = color_interp;
#endif
#if defined(ENABLE_NORMALMAP)
vec3 normalmap = vec3(0.0);
#endif
float normaldepth=1.0;
#if defined(ENABLE_DISCARD)
bool discard_=false;
#endif
{
FRAGMENT_SHADER_CODE
}
#if defined(ENABLE_NORMALMAP)
normal = normalize( mix(normal_interp,tangent_interp * normalmap.x + binormal_interp * normalmap.y + normal_interp * normalmap.z,normaldepth) ) * side;
#endif
#if defined(ENABLE_DISCARD)
if (discard_) {
//easy to eliminate dead code
discard;
}
#endif
#ifdef ENABLE_CLIP_ALPHA
if (diffuse.a<0.99) {
//used for doublepass and shadowmapping
discard;
}
#endif
/////////////////////// LIGHTING //////////////////////////////
vec3 specular_light = vec3(0.0,0.0,0.0);
vec3 ambient_light;
vec3 diffuse_light = vec3(0.0,0.0,0.0);
vec3 eye_vec = -normalize( vertex_interp );
#ifdef USE_RADIANCE_CUBEMAP
if (no_ambient_light) {
ambient_light=vec3(0.0,0.0,0.0);
} else {
{
float ndotv = clamp(dot(normal,eye_vec),0.0,1.0);
vec2 brdf = texture(brdf_texture, vec2(roughness, ndotv)).xy;
float lod = roughness * 5.0;
vec3 r = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n);
r=normalize((radiance_inverse_xform * vec4(r,0.0)).xyz);
vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y);
specular_light=mix(albedo,radiance,specular);
}
{
vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz);
vec3 env_ambient=textureLod(radiance_cube, ambient_dir, 5.0).xyz;
ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution);
}
}
#else
if (no_ambient_light){
ambient_light=vec3(0.0,0.0,0.0);
} else {
ambient_light=ambient_light_color.rgb;
}
#endif
#ifdef USE_FORWARD_DIRECTIONAL
float light_attenuation=1.0;
#ifdef LIGHT_DIRECTIONAL_SHADOW
if (gl_FragCoord.w > shadow_split_offsets.w) {
vec3 pssm_coord;
#ifdef LIGHT_USE_PSSM_BLEND
float pssm_blend;
vec3 pssm_coord2;
bool use_blend=true;
vec3 light_pssm_split_inv = 1.0/shadow_split_offsets.xyz;
float w_inv = 1.0/gl_FragCoord.w;
#endif
#ifdef LIGHT_USE_PSSM4
if (gl_FragCoord.w > shadow_split_offsets.y) {
if (gl_FragCoord.w > shadow_split_offsets.x) {
highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
ambient_light=vec3(1.0,0.4,0.4);
#if defined(LIGHT_USE_PSSM_BLEND)
splane=(shadow_matrix2 * vec4(vertex,1.0));
pssm_coord2=splane.xyz/splane.w;
pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv);
#endif
} else {
highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
ambient_light=vec3(0.4,1.0,0.4);
#if defined(LIGHT_USE_PSSM_BLEND)
splane=(shadow_matrix3 * vec4(vertex,1.0));
pssm_coord2=splane.xyz/splane.w;
pssm_blend=smoothstep(light_pssm_split_inv.x,light_pssm_split_inv.y,w_inv);
#endif
}
} else {
if (gl_FragCoord.w > shadow_split_offsets.z) {
highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
ambient_light=vec3(0.4,0.4,1.0);
#if defined(LIGHT_USE_PSSM_BLEND)
splane=(shadow_matrix4 * vec4(vertex,1.0));
pssm_coord2=splane.xyz/splane.w;
pssm_blend=smoothstep(light_pssm_split_inv.y,light_pssm_split_inv.z,w_inv);
#endif
} else {
highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
diffuse_light*=vec3(1.0,0.4,1.0);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend=false;
#endif
}
}
#endif //LIGHT_USE_PSSM4
#ifdef LIGHT_USE_PSSM2
if (gl_FragCoord.w > shadow_split_offsets.x) {
highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane=(shadow_matrix2 * vec4(vertex,1.0));
pssm_coord2=splane.xyz/splane.w;
pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv);
#endif
} else {
highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend=false;
#endif
}
#endif //LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
{ //regular orthogonal
highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
}
#endif
//one one sample
light_attenuation=sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp);
#if defined(LIGHT_USE_PSSM_BLEND)
if (use_blend) {
float light_attenuation2=sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp);
light_attenuation=mix(light_attenuation,light_attenuation2,pssm_blend);
}
#endif
}
#endif //LIGHT_DIRECTIONAL_SHADOW
light_compute(normal,-light_direction_attenuation.xyz,eye_vec,albedo,specular,roughness,light_attenuation,diffuse_light,specular_light);
#endif //USE_FORWARD_DIRECTIONAL
#ifdef USE_FORWARD_OMNI
vec3 light_rel_vec = light_pos_inv_radius.xyz-vertex;
float normalized_distance = length( light_rel_vec )*light_pos_inv_radius.w;
float light_attenuation = pow( max(1.0 - normalized_distance, 0.0), light_direction_attenuation.w );
if (light_params.w>0.5) {
//there is a shadowmap
highp vec3 splane=(shadow_matrix1 * vec4(vertex,1.0)).xyz;
float shadow_len=length(splane);
splane=normalize(splane);
vec4 clamp_rect=light_clamp;
if (splane.z>=0.0) {
splane.z+=1.0;
clamp_rect.y+=clamp_rect.w;
} else {
splane.z=1.0 - splane.z;
//if (clamp_rect.z<clamp_rect.w) {
// clamp_rect.x+=clamp_rect.z;
//} else {
// clamp_rect.y+=clamp_rect.w;
//}
}
splane.xy/=splane.z;
splane.xy=splane.xy * 0.5 + 0.5;
splane.z = shadow_len * light_pos_inv_radius.w;
splane.xy = clamp_rect.xy+splane.xy*clamp_rect.zw;
light_attenuation*=sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,clamp_rect);
}
light_compute(normal,normalize(light_rel_vec),eye_vec,albedo,specular,roughness,light_attenuation,diffuse_light,specular_light);
#endif //USE_FORWARD_OMNI
#ifdef USE_FORWARD_SPOT
vec3 light_rel_vec = light_pos_inv_radius.xyz-vertex;
float normalized_distance = length( light_rel_vec )*light_pos_inv_radius.w;
float light_attenuation = pow( max(1.0 - normalized_distance, 0.0), light_direction_attenuation.w );
vec3 spot_dir = light_direction_attenuation.xyz;
float spot_cutoff=light_params.y;
float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff);
float rim = (1.0 - scos) / (1.0 - spot_cutoff);
light_attenuation *= 1.0 - pow( rim, light_params.x);
if (light_params.w>0.5) {
//there is a shadowmap
highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
splane.xyz/=splane.w;
// splane.xy=splane.xy*0.5+0.5;
//splane.xy=light_clamp.xy+splane.xy*light_clamp.zw;
light_attenuation*=sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,light_clamp);
}
light_compute(normal,normalize(light_rel_vec),eye_vec,albedo,specular,roughness,light_attenuation,diffuse_light,specular_light);
#endif //USE_FORWARD_SPOT
#if defined(USE_LIGHT_SHADER_CODE)
//light is written by the light shader
{
LIGHT_SHADER_CODE
}
#endif
#ifdef RENDER_SHADOW
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else
#ifdef USE_MULTIPLE_RENDER_TARGETS
//approximate ambient scale for SSAO, since we will lack full ambient
float max_ambient=max(ambient_light.r,max(ambient_light.g,ambient_light.b));
float max_diffuse=max(diffuse_light.r,max(diffuse_light.g,diffuse_light.b));
float total_ambient = max_ambient+max_diffuse;
float ambient_scale = (total_ambient>0.0) ? max_ambient/total_ambient : 0.0;
diffuse_buffer=vec4(diffuse_light+ambient_light,ambient_scale);
specular_buffer=vec4(specular_light,0.0);
normal_mr_buffer=vec4(normal.x,normal.y,max(specular.r,max(specular.g,specular.b)),roughness);
#else
#ifdef SHADELESS
frag_color=vec4(albedo,alpha);
#else
frag_color=vec4(ambient_light+diffuse_light+specular_light,alpha);
#endif //SHADELESS
#endif //USE_MULTIPLE_RENDER_TARGETS
#endif //RENDER_SHADOW
}