godot/scene/3d/room_manager.cpp
lawnjelly d0ba355520 Portals - add autoplace priority setting to CullInstance
The default autoplace algorithm places instances in the highest priority Room. It became apparent that there are some situations in which users will want to override this and force placement in a Room from a particular RoomGroup, especially an "outside" RoomGroup.

This setting allows the user to specify a preference for Room priority. When set to 0, the setting is ignored and the highest priority Room is chosen.
2021-07-28 17:23:20 +01:00

2170 lines
65 KiB
C++

/*************************************************************************/
/* room_manager.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "room_manager.h"
#include "core/bitfield_dynamic.h"
#include "core/engine.h"
#include "core/math/quick_hull.h"
#include "core/os/os.h"
#include "editor/editor_node.h"
#include "mesh_instance.h"
#include "multimesh_instance.h"
#include "portal.h"
#include "room_group.h"
#include "scene/3d/camera.h"
#include "scene/3d/light.h"
#include "visibility_notifier.h"
#include "modules/modules_enabled.gen.h"
#ifdef MODULE_CSG_ENABLED
#include "modules/csg/csg_shape.h"
#endif
// #define GODOT_PORTALS_USE_BULLET_CONVEX_HULL
#ifdef GODOT_PORTALS_USE_BULLET_CONVEX_HULL
#include "core/math/convex_hull.h"
#endif
#ifdef TOOLS_ENABLED
RoomManager *RoomManager::active_room_manager = nullptr;
#endif
// This needs to be static because it cannot easily be propagated to portals
// during load (as the RoomManager may be loaded before Portals enter the scene tree)
real_t RoomManager::_default_portal_margin = 1.0;
RoomManager::RoomManager() {
// some high value, we want room manager to be processed after other
// nodes because the camera should be moved first
set_process_priority(10000);
#ifdef TOOLS_ENABLED
// note this mechanism may fail to work correctly if the user creates two room managers,
// but should not create major problems as it is just used to auto update when portals etc
// are changed in the editor, and there is a check for nullptr.
active_room_manager = this;
#endif
}
RoomManager::~RoomManager() {
#ifdef TOOLS_ENABLED
active_room_manager = nullptr;
#endif
}
String RoomManager::get_configuration_warning() const {
String warning = Spatial::get_configuration_warning();
if (_settings_path_roomlist == NodePath()) {
if (!warning.empty()) {
warning += "\n\n";
}
warning += TTR("The RoomList has not been assigned.");
} else {
Spatial *roomlist = _resolve_path<Spatial>(_settings_path_roomlist);
if (!roomlist) {
// possibly also check (roomlist->get_class_name() != StringName("Spatial"))
if (!warning.empty()) {
warning += "\n\n";
}
warning += TTR("The RoomList node should be a Spatial (or derived from Spatial).");
}
}
if (_settings_portal_depth_limit == 0) {
if (!warning.empty()) {
warning += "\n\n";
}
warning += TTR("Portal Depth Limit is set to Zero.\nOnly the Room that the Camera is in will render.");
}
if (Room::detect_nodes_of_type<RoomManager>(this)) {
if (!warning.empty()) {
warning += "\n\n";
}
warning += TTR("There should only be one RoomManager in the SceneTree.");
}
return warning;
}
void RoomManager::_preview_camera_update() {
Ref<World> world = get_world();
RID scenario = world->get_scenario();
if (_godot_preview_camera_ID != (ObjectID)-1) {
Camera *cam = Object::cast_to<Camera>(ObjectDB::get_instance(_godot_preview_camera_ID));
if (!cam) {
_godot_preview_camera_ID = (ObjectID)-1;
} else {
// get camera position and direction
Vector3 camera_pos = cam->get_global_transform().origin;
Vector<Plane> planes = cam->get_frustum();
// only update the visual server when there is a change.. as it will request a screen redraw
// this is kinda silly, but the other way would be keeping track of the override camera in visual server
// and tracking the camera deletes, which might be more error prone for a debug feature...
bool changed = false;
if (camera_pos != _godot_camera_pos) {
changed = true;
// update gameplay monitor
Vector<Vector3> camera_positions;
camera_positions.push_back(camera_pos);
VisualServer::get_singleton()->rooms_update_gameplay_monitor(scenario, camera_positions);
}
// check planes
if (!changed) {
if (planes.size() != _godot_camera_planes.size()) {
changed = true;
}
}
if (!changed) {
// num of planes must be identical
for (int n = 0; n < planes.size(); n++) {
if (planes[n] != _godot_camera_planes[n]) {
changed = true;
break;
}
}
}
if (changed) {
_godot_camera_pos = camera_pos;
_godot_camera_planes = planes;
VisualServer::get_singleton()->rooms_override_camera(scenario, true, camera_pos, &planes);
}
}
}
}
void RoomManager::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
if (Engine::get_singleton()->is_editor_hint()) {
set_process_internal(_godot_preview_camera_ID != (ObjectID)-1);
} else {
if (_settings_gameplay_monitor_enabled) {
set_process_internal(true);
}
}
} break;
case NOTIFICATION_INTERNAL_PROCESS: {
// can't call visual server if not inside world
if (!is_inside_world()) {
return;
}
if (Engine::get_singleton()->is_editor_hint()) {
_preview_camera_update();
return;
}
if (_settings_gameplay_monitor_enabled) {
Ref<World> world = get_world();
RID scenario = world->get_scenario();
List<Camera *> cameras;
world->get_camera_list(&cameras);
Vector<Vector3> positions;
for (int n = 0; n < cameras.size(); n++) {
positions.push_back(cameras[n]->get_global_transform().origin);
}
VisualServer::get_singleton()->rooms_update_gameplay_monitor(scenario, positions);
}
} break;
}
}
void RoomManager::_bind_methods() {
BIND_ENUM_CONSTANT(RoomManager::PVS_MODE_DISABLED);
BIND_ENUM_CONSTANT(RoomManager::PVS_MODE_PARTIAL);
BIND_ENUM_CONSTANT(RoomManager::PVS_MODE_FULL);
// main functions
ClassDB::bind_method(D_METHOD("rooms_convert"), &RoomManager::rooms_convert);
ClassDB::bind_method(D_METHOD("rooms_clear"), &RoomManager::rooms_clear);
ClassDB::bind_method(D_METHOD("set_pvs_mode", "pvs_mode"), &RoomManager::set_pvs_mode);
ClassDB::bind_method(D_METHOD("get_pvs_mode"), &RoomManager::get_pvs_mode);
ClassDB::bind_method(D_METHOD("set_roomlist_path", "p_path"), &RoomManager::set_roomlist_path);
ClassDB::bind_method(D_METHOD("get_roomlist_path"), &RoomManager::get_roomlist_path);
// These are commented out for now, but available in case we want to cache PVS to disk, the functionality exists
// ClassDB::bind_method(D_METHOD("set_pvs_filename", "pvs_filename"), &RoomManager::set_pvs_filename);
// ClassDB::bind_method(D_METHOD("get_pvs_filename"), &RoomManager::get_pvs_filename);
// just some macros to make setting inspector values easier
#define LPORTAL_STRINGIFY(x) #x
#define LPORTAL_TOSTRING(x) LPORTAL_STRINGIFY(x)
#define LIMPL_PROPERTY(P_TYPE, P_NAME, P_SET, P_GET) \
ClassDB::bind_method(D_METHOD(LPORTAL_TOSTRING(P_SET), LPORTAL_TOSTRING(P_NAME)), &RoomManager::P_SET); \
ClassDB::bind_method(D_METHOD(LPORTAL_TOSTRING(P_GET)), &RoomManager::P_GET); \
ADD_PROPERTY(PropertyInfo(P_TYPE, LPORTAL_TOSTRING(P_NAME)), LPORTAL_TOSTRING(P_SET), LPORTAL_TOSTRING(P_GET));
#define LIMPL_PROPERTY_RANGE(P_TYPE, P_NAME, P_SET, P_GET, P_RANGE_STRING) \
ClassDB::bind_method(D_METHOD(LPORTAL_TOSTRING(P_SET), LPORTAL_TOSTRING(P_NAME)), &RoomManager::P_SET); \
ClassDB::bind_method(D_METHOD(LPORTAL_TOSTRING(P_GET)), &RoomManager::P_GET); \
ADD_PROPERTY(PropertyInfo(P_TYPE, LPORTAL_TOSTRING(P_NAME), PROPERTY_HINT_RANGE, P_RANGE_STRING), LPORTAL_TOSTRING(P_SET), LPORTAL_TOSTRING(P_GET));
ADD_GROUP("Main", "");
LIMPL_PROPERTY(Variant::BOOL, active, rooms_set_active, rooms_get_active);
ADD_PROPERTY(PropertyInfo(Variant::NODE_PATH, "roomlist", PROPERTY_HINT_NODE_PATH_VALID_TYPES, "Spatial"), "set_roomlist_path", "get_roomlist_path");
ADD_GROUP("PVS", "");
ADD_PROPERTY(PropertyInfo(Variant::INT, "pvs_mode", PROPERTY_HINT_ENUM, "Disabled,Partial,Full"), "set_pvs_mode", "get_pvs_mode");
// ADD_PROPERTY(PropertyInfo(Variant::STRING, "pvs_filename", PROPERTY_HINT_FILE, "*.pvs"), "set_pvs_filename", "get_pvs_filename");
ADD_GROUP("Gameplay", "");
LIMPL_PROPERTY(Variant::BOOL, gameplay_monitor, set_gameplay_monitor_enabled, get_gameplay_monitor_enabled);
LIMPL_PROPERTY(Variant::BOOL, use_secondary_pvs, set_use_secondary_pvs, get_use_secondary_pvs);
LIMPL_PROPERTY(Variant::BOOL, use_signals, set_use_signals, get_use_signals);
ADD_GROUP("Optimize", "");
LIMPL_PROPERTY(Variant::BOOL, merge_meshes, set_merge_meshes, get_merge_meshes);
LIMPL_PROPERTY(Variant::BOOL, remove_danglers, set_remove_danglers, get_remove_danglers);
ADD_GROUP("Debug", "");
LIMPL_PROPERTY(Variant::BOOL, show_debug, set_show_debug, get_show_debug);
LIMPL_PROPERTY(Variant::BOOL, show_margins, set_show_margins, get_show_margins);
LIMPL_PROPERTY(Variant::BOOL, debug_sprawl, set_debug_sprawl, get_debug_sprawl);
LIMPL_PROPERTY_RANGE(Variant::INT, overlap_warning_threshold, set_overlap_warning_threshold, get_overlap_warning_threshold, "1,1000,1");
LIMPL_PROPERTY(Variant::NODE_PATH, preview_camera, set_preview_camera_path, get_preview_camera_path);
ADD_GROUP("Advanced", "");
LIMPL_PROPERTY(Variant::BOOL, flip_portal_meshes, set_flip_portal_meshes, get_flip_portal_meshes);
LIMPL_PROPERTY_RANGE(Variant::INT, portal_depth_limit, set_portal_depth_limit, get_portal_depth_limit, "0,255,1");
LIMPL_PROPERTY_RANGE(Variant::REAL, room_simplify, set_room_simplify, get_room_simplify, "0.0,1.0,0.005");
LIMPL_PROPERTY_RANGE(Variant::REAL, default_portal_margin, set_default_portal_margin, get_default_portal_margin, "0.0, 10.0, 0.01");
#undef LIMPL_PROPERTY
#undef LIMPL_PROPERTY_RANGE
#undef LPORTAL_STRINGIFY
#undef LPORTAL_TOSTRING
}
void RoomManager::set_roomlist_path(const NodePath &p_path) {
_settings_path_roomlist = p_path;
update_configuration_warning();
}
void RoomManager::set_preview_camera_path(const NodePath &p_path) {
_settings_path_preview_camera = p_path;
resolve_preview_camera_path();
bool camera_on = _godot_preview_camera_ID != (ObjectID)-1;
// make sure the cached camera planes are invalid, this will
// force an update to the visual server on the next internal_process
_godot_camera_planes.clear();
// if in the editor, turn processing on or off
// according to whether the camera is overridden
if (Engine::get_singleton()->is_editor_hint()) {
if (is_inside_tree()) {
set_process_internal(camera_on);
}
}
// if we are turning camera override off, must inform visual server
if (!camera_on && is_inside_world() && get_world().is_valid() && get_world()->get_scenario().is_valid()) {
VisualServer::get_singleton()->rooms_override_camera(get_world()->get_scenario(), false, Vector3(), nullptr);
}
// we couldn't resolve the path, let's set it to null
if (!camera_on) {
_settings_path_preview_camera = NodePath();
}
}
void RoomManager::set_room_simplify(real_t p_value) {
_room_simplify_info.set_simplify(p_value);
}
real_t RoomManager::get_room_simplify() const {
return _room_simplify_info._plane_simplify;
}
void RoomManager::set_flip_portal_meshes(bool p_flip) {
Portal::_portal_plane_convention = p_flip;
}
bool RoomManager::get_flip_portal_meshes() const {
return Portal::_portal_plane_convention;
}
void RoomManager::set_portal_depth_limit(int p_limit) {
_settings_portal_depth_limit = p_limit;
if (is_inside_world() && get_world().is_valid()) {
VisualServer::get_singleton()->rooms_set_params(get_world()->get_scenario(), p_limit);
}
}
void RoomManager::set_default_portal_margin(real_t p_dist) {
_default_portal_margin = p_dist;
// send to portals
Spatial *roomlist = _resolve_path<Spatial>(_settings_path_roomlist);
if (!roomlist) {
return;
}
_update_portal_gizmos(roomlist);
}
void RoomManager::_update_portal_gizmos(Spatial *p_node) {
Portal *portal = Object::cast_to<Portal>(p_node);
if (portal) {
portal->update_gizmo();
}
// recurse
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_update_portal_gizmos(child);
}
}
}
real_t RoomManager::get_default_portal_margin() const {
return _default_portal_margin;
}
void RoomManager::set_show_margins(bool p_show) {
Portal::_settings_gizmo_show_margins = p_show;
Spatial *roomlist = _resolve_path<Spatial>(_settings_path_roomlist);
if (!roomlist) {
return;
}
_update_gizmos_recursive(roomlist);
}
bool RoomManager::get_show_margins() const {
return Portal::_settings_gizmo_show_margins;
}
void RoomManager::set_show_debug(bool p_show) {
// force not to show when not in editor
if (!Engine::get_singleton()->is_editor_hint()) {
p_show = false;
}
_show_debug = p_show;
}
bool RoomManager::get_show_debug() const {
return _show_debug;
}
void RoomManager::set_debug_sprawl(bool p_enable) {
if (is_inside_world() && get_world().is_valid()) {
VisualServer::get_singleton()->rooms_set_debug_feature(get_world()->get_scenario(), VisualServer::ROOMS_DEBUG_SPRAWL, p_enable);
_debug_sprawl = p_enable;
}
}
bool RoomManager::get_debug_sprawl() const {
return _debug_sprawl;
}
void RoomManager::set_merge_meshes(bool p_enable) {
_settings_merge_meshes = p_enable;
}
bool RoomManager::get_merge_meshes() const {
return _settings_merge_meshes;
}
void RoomManager::set_remove_danglers(bool p_enable) {
_settings_remove_danglers = p_enable;
}
bool RoomManager::get_remove_danglers() const {
return _settings_remove_danglers;
}
void RoomManager::show_warning(const String &p_string, const String &p_extra_string, bool p_alert) {
if (p_extra_string != "") {
WARN_PRINT(p_string + " " + p_extra_string);
#ifdef TOOLS_ENABLED
if (p_alert && Engine::get_singleton()->is_editor_hint()) {
EditorNode::get_singleton()->show_warning(TTR(p_string + "\n" + p_extra_string));
}
#endif
} else {
WARN_PRINT(p_string);
// OS::get_singleton()->alert(p_string, p_title);
#ifdef TOOLS_ENABLED
if (p_alert && Engine::get_singleton()->is_editor_hint()) {
EditorNode::get_singleton()->show_warning(TTR(p_string));
}
#endif
}
}
void RoomManager::debug_print_line(String p_string, int p_priority) {
if (_show_debug) {
if (!p_priority) {
print_verbose(p_string);
} else {
print_line(p_string);
}
}
}
void RoomManager::rooms_set_active(bool p_active) {
if (is_inside_world() && get_world().is_valid()) {
VisualServer::get_singleton()->rooms_set_active(get_world()->get_scenario(), p_active);
_active = p_active;
}
}
bool RoomManager::rooms_get_active() const {
return _active;
}
void RoomManager::set_pvs_mode(PVSMode p_mode) {
_pvs_mode = p_mode;
}
RoomManager::PVSMode RoomManager::get_pvs_mode() const {
return _pvs_mode;
}
void RoomManager::set_pvs_filename(String p_filename) {
_pvs_filename = p_filename;
}
String RoomManager::get_pvs_filename() const {
return _pvs_filename;
}
void RoomManager::_rooms_changed() {
_rooms.clear();
if (is_inside_world() && get_world().is_valid()) {
VisualServer::get_singleton()->rooms_unload(get_world()->get_scenario());
}
}
void RoomManager::rooms_clear() {
_rooms.clear();
if (is_inside_world() && get_world().is_valid()) {
VisualServer::get_singleton()->rooms_and_portals_clear(get_world()->get_scenario());
}
}
void RoomManager::rooms_flip_portals() {
// this is a helper emergency function to deal with situations where the user has ended up with Portal nodes
// pointing in the wrong direction (by doing initial conversion with flip_portal_meshes set incorrectly).
_roomlist = _resolve_path<Spatial>(_settings_path_roomlist);
if (!_roomlist) {
WARN_PRINT("Cannot resolve nodepath");
show_warning("RoomList path is invalid.", "Please check the RoomList branch has been assigned in the RoomManager");
return;
}
_flip_portals_recursive(_roomlist);
_rooms_changed();
}
void RoomManager::rooms_convert() {
// set all error conditions to false
_warning_misnamed_nodes_detected = false;
_warning_portal_link_room_not_found = false;
_warning_portal_autolink_failed = false;
_warning_room_overlap_detected = false;
_roomlist = _resolve_path<Spatial>(_settings_path_roomlist);
if (!_roomlist) {
WARN_PRINT("Cannot resolve nodepath");
show_warning("RoomList path is invalid.", "Please check the RoomList branch has been assigned in the RoomManager");
return;
}
ERR_FAIL_COND(!is_inside_world() || !get_world().is_valid());
// every time we run convert we increment this,
// to prevent individual rooms / portals being converted
// more than once in one run
_conversion_tick++;
rooms_clear();
// first check that the roomlist is valid, and the user hasn't made
// a silly scene tree
if (!_check_roomlist_validity(_roomlist)) {
return;
}
LocalVector<Portal *> portals;
LocalVector<RoomGroup *> roomgroups;
// find the rooms and portals
_convert_rooms_recursive(_roomlist, portals, roomgroups);
if (!_rooms.size()) {
rooms_clear();
show_warning("RoomList contains no Rooms, aborting");
return;
}
// add portal links
_second_pass_portals(_roomlist, portals);
// create the statics
_second_pass_rooms(roomgroups, portals);
// third pass
// autolink portals that are not already manually linked
// and finalize the portals
_autolink_portals(_roomlist, portals);
// Find the statics AGAIN and only this time add them to the PortalRenderer.
// We need to do this twice because the room points determine the room bound...
// but the bound is needed for autolinking,
// and the autolinking needs to be done BEFORE adding to the PortalRenderer so that
// the static objects will correctly sprawl. It is a chicken and egg situation.
// Also finalize the room hulls.
_third_pass_rooms(portals);
// now we run autoplace to place any statics that have not been explicitly placed in rooms.
// These will by definition not affect the room bounds, but is convenient for users to edit
// levels in a more freeform manner
_autoplace_recursive(_roomlist);
bool generate_pvs = false;
bool pvs_cull = false;
switch (_pvs_mode) {
default: {
} break;
case PVS_MODE_PARTIAL: {
generate_pvs = true;
} break;
case PVS_MODE_FULL: {
generate_pvs = true;
pvs_cull = true;
} break;
}
VisualServer::get_singleton()->rooms_finalize(get_world()->get_scenario(), generate_pvs, pvs_cull, _settings_use_secondary_pvs, _settings_use_signals, _pvs_filename);
// refresh whether to show portals etc
set_show_debug(_show_debug);
// refresh portal depth limit
set_portal_depth_limit(get_portal_depth_limit());
#ifdef TOOLS_ENABLED
_generate_room_overlap_zones();
#endif
// just delete any intermediate data
_cleanup_after_conversion();
// display error dialogs
if (_warning_misnamed_nodes_detected) {
show_warning("Misnamed nodes detected, check output log for details. Aborting.");
rooms_clear();
}
if (_warning_portal_link_room_not_found) {
show_warning("Portal link room not found, check output log for details.");
}
if (_warning_portal_autolink_failed) {
show_warning("Portal autolink failed, check output log for details.\nCheck the portal is facing outwards from the source room.");
}
if (_warning_room_overlap_detected) {
show_warning("Room overlap detected, cameras may work incorrectly in overlapping area.\nCheck output log for details..");
}
}
void RoomManager::_second_pass_room(Room *p_room, const LocalVector<RoomGroup *> &p_roomgroups, const LocalVector<Portal *> &p_portals) {
if (_settings_merge_meshes) {
_merge_meshes_in_room(p_room);
}
// find statics and manual bound
bool manual_bound_found = false;
// points making up the room geometry, in world space, to create the convex hull
Vector<Vector3> room_pts;
for (int n = 0; n < p_room->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_room->get_child(n));
if (child) {
if (_name_starts_with(child, "GPortal", true) || _node_is_type<Portal>(child)) {
// the adding of portal points is done after this stage, because
// we need to take into account incoming as well as outgoing portals
} else if (_name_starts_with(child, "Bound", true)) {
manual_bound_found = _convert_manual_bound(p_room, child, p_portals);
} else {
// don't add the instances to the portal renderer on the first pass of _find_statics,
// just find the geometry points in order to make sure the bound is correct.
_find_statics_recursive(p_room, child, room_pts, false);
}
}
}
// Has the bound been specified using points in the room?
// in that case, overwrite the room_pts
if (p_room->_bound_pts.size() && p_room->is_inside_tree()) {
Transform tr = p_room->get_global_transform();
room_pts.clear();
room_pts.resize(p_room->_bound_pts.size());
for (int n = 0; n < room_pts.size(); n++) {
room_pts.set(n, tr.xform(p_room->_bound_pts[n]));
}
// we override and manual bound with the room points
manual_bound_found = false;
}
if (!manual_bound_found) {
// rough aabb for checking portals for warning conditions
AABB aabb;
aabb.create_from_points(room_pts);
for (int n = 0; n < p_room->_portals.size(); n++) {
int portal_id = p_room->_portals[n];
Portal *portal = p_portals[portal_id];
// only checking portals out from source room
if (portal->_linkedroom_ID[0] != p_room->_room_ID) {
continue;
}
// don't add portals to the world bound that are internal to this room!
if (portal->is_portal_internal(p_room->_room_ID)) {
continue;
}
// check portal for suspect conditions, like a long way from the room AABB,
// or possibly flipped the wrong way
_check_portal_for_warnings(portal, aabb);
}
// create convex hull
_convert_room_hull_preliminary(p_room, room_pts, p_portals);
}
// add the room to roomgroups
for (int n = 0; n < p_room->_roomgroups.size(); n++) {
int roomgroup_id = p_room->_roomgroups[n];
p_roomgroups[roomgroup_id]->add_room(p_room);
}
}
void RoomManager::_second_pass_rooms(const LocalVector<RoomGroup *> &p_roomgroups, const LocalVector<Portal *> &p_portals) {
for (int n = 0; n < _rooms.size(); n++) {
_second_pass_room(_rooms[n], p_roomgroups, p_portals);
}
}
#ifdef TOOLS_ENABLED
void RoomManager::_generate_room_overlap_zones() {
for (int n = 0; n < _rooms.size(); n++) {
Room *room = _rooms[n];
// no planes .. no overlap
if (!room->_planes.size()) {
continue;
}
for (int c = n + 1; c < _rooms.size(); c++) {
if (c == n) {
continue;
}
Room *other = _rooms[c];
// do a quick reject AABB
if (!room->_aabb.intersects(other->_aabb) || (!other->_planes.size())) {
continue;
}
// if the room priorities are different (i.e. an internal room), they are allowed to overlap
if (room->_room_priority != other->_room_priority) {
continue;
}
// get all the planes of both rooms in a contiguous list
LocalVector<Plane, int32_t> planes;
planes.resize(room->_planes.size() + other->_planes.size());
Plane *dest = planes.ptr();
memcpy(dest, &room->_planes[0], room->_planes.size() * sizeof(Plane));
dest += room->_planes.size();
memcpy(dest, &other->_planes[0], other->_planes.size() * sizeof(Plane));
Vector<Vector3> overlap_pts = Geometry::compute_convex_mesh_points(planes.ptr(), planes.size());
if (overlap_pts.size() < 4) {
continue;
}
// there is an overlap, create a mesh from the points
Geometry::MeshData md;
Error err = _build_convex_hull(overlap_pts, md);
if (err != OK) {
WARN_PRINT("QuickHull failed building room overlap hull");
continue;
}
// only if the volume is more than some threshold
real_t volume = Geometry::calculate_convex_hull_volume(md);
if (volume > _overlap_warning_threshold) {
WARN_PRINT("Room overlap of " + String(Variant(volume)) + " detected between " + room->get_name() + " and " + other->get_name());
room->_gizmo_overlap_zones.push_back(md);
_warning_room_overlap_detected = true;
}
}
}
}
#endif
void RoomManager::_third_pass_rooms(const LocalVector<Portal *> &p_portals) {
bool found_errors = false;
for (int n = 0; n < _rooms.size(); n++) {
Room *room = _rooms[n];
String room_short_name = _find_name_after(room, "ROOM");
convert_log("ROOM\t" + room_short_name);
// log output the portals associated with this room
for (int p = 0; p < room->_portals.size(); p++) {
const Portal &portal = *p_portals[room->_portals[p]];
String in_or_out = (portal._linkedroom_ID[0] == room->_room_ID) ? "POUT" : "PIN ";
convert_log("\t\t" + in_or_out + "\t" + portal.get_name());
}
// do a second pass finding the statics, where they are
// finally added to the rooms in the portal_renderer.
Vector<Vector3> room_pts;
// the true indicates we DO want to add to the portal renderer this second time
// we call _find_statics_recursive
_find_statics_recursive(room, room, room_pts, true);
if (!_convert_room_hull_final(room, p_portals)) {
found_errors = true;
}
room->update_gizmo();
room->update_configuration_warning();
}
if (found_errors) {
show_warning("ERROR calculating room bounds.", "Ensure all rooms contain geometry or manual bounds.");
}
}
void RoomManager::_second_pass_portals(Spatial *p_roomlist, LocalVector<Portal *> &r_portals) {
convert_log("_second_pass_portals");
for (unsigned int n = 0; n < r_portals.size(); n++) {
Portal *portal = r_portals[n];
String string_link_room_shortname = _find_name_after(portal, "Portal");
String string_link_room = "Room" + GODOT_PORTAL_DELINEATOR + string_link_room_shortname;
if (string_link_room_shortname != "") {
Room *linked_room = Object::cast_to<Room>(p_roomlist->find_node(string_link_room, true, false));
if (linked_room) {
NodePath path = portal->get_path_to(linked_room);
portal->set_linked_room_internal(path);
} else {
WARN_PRINT("Portal link room : " + string_link_room + " not found.");
_warning_portal_link_room_not_found = true;
}
}
// get the room we are linking from
int room_from_id = portal->_linkedroom_ID[0];
if (room_from_id != -1) {
Room *room_from = _rooms[room_from_id];
portal->resolve_links(_rooms, room_from->_room_rid);
// add the portal id to the room from and the room to.
// These are used so we can later add the portal geometry to the room bounds.
room_from->_portals.push_back(n);
int room_to_id = portal->_linkedroom_ID[1];
if (room_to_id != -1) {
Room *room_to = _rooms[room_to_id];
room_to->_portals.push_back(n);
// make the portal internal if necessary
portal->_internal = room_from->_room_priority > room_to->_room_priority;
}
}
}
}
void RoomManager::_autolink_portals(Spatial *p_roomlist, LocalVector<Portal *> &r_portals) {
convert_log("_autolink_portals");
for (unsigned int n = 0; n < r_portals.size(); n++) {
Portal *portal = r_portals[n];
// all portals should have a source room
DEV_ASSERT(portal->_linkedroom_ID[0] != -1);
const Room *source_room = _rooms[portal->_linkedroom_ID[0]];
if (portal->_linkedroom_ID[1] != -1) {
// already manually linked
continue;
}
bool autolink_found = false;
// try to autolink
// try points iteratively out from the portal center and find the first that is in a room that isn't the source room
for (int attempt = 0; attempt < 4; attempt++) {
// found
if (portal->_linkedroom_ID[1] != -1) {
break;
}
// these numbers are arbitrary .. we could alternatively reuse the portal margins for this?
real_t dist = 0.01;
switch (attempt) {
default: {
dist = 0.01;
} break;
case 1: {
dist = 0.1;
} break;
case 2: {
dist = 1.0;
} break;
case 3: {
dist = 2.0;
} break;
}
Vector3 test_pos = portal->_pt_center_world + (dist * portal->_plane.normal);
for (int r = 0; r < _rooms.size(); r++) {
Room *room = _rooms[r];
if (room->_room_ID == portal->_linkedroom_ID[0]) {
// can't link back to the source room
continue;
}
// first do a rough aabb check
if (!room->_aabb.has_point(test_pos)) {
continue;
}
bool outside = false;
for (int p = 0; p < room->_preliminary_planes.size(); p++) {
const Plane &plane = room->_preliminary_planes[p];
if (plane.distance_to(test_pos) > 0.0) {
outside = true;
break;
}
} // for through planes
if (!outside) {
// great, we found a linked room!
convert_log("\t\tAUTOLINK OK from " + source_room->get_name() + " to " + room->get_name(), 1);
portal->_linkedroom_ID[1] = r;
// add the portal to the portals list for the receiving room
room->_portals.push_back(n);
// send complete link to visual server so the portal will be active in the visual server room system
VisualServer::get_singleton()->portal_link(portal->_portal_rid, source_room->_room_rid, room->_room_rid, portal->_settings_two_way);
// make the portal internal if necessary
// (this prevents the portal plane clipping the room bound)
portal->_internal = source_room->_room_priority > room->_room_priority;
autolink_found = true;
break;
}
} // for through rooms
} // for attempt
// error condition
if (!autolink_found) {
WARN_PRINT("Portal AUTOLINK failed for " + portal->get_name() + " from " + source_room->get_name());
_warning_portal_autolink_failed = true;
#ifdef TOOLS_ENABLED
portal->_warning_autolink_failed = true;
portal->update_gizmo();
#endif
}
} // for portal
}
// to prevent users creating mistakes for themselves, we limit what can be put into the room list branch.
// returns invalid node, or NULL
bool RoomManager::_check_roomlist_validity(Node *p_node) {
// restrictions lifted here, but we can add more if required
return true;
}
void RoomManager::_convert_rooms_recursive(Spatial *p_node, LocalVector<Portal *> &r_portals, LocalVector<RoomGroup *> &r_roomgroups, int p_roomgroup) {
// is this a room?
if (_name_starts_with(p_node, "Room") || _node_is_type<Room>(p_node)) {
_convert_room(p_node, r_portals, r_roomgroups, p_roomgroup);
}
// is this a roomgroup?
if (_name_starts_with(p_node, "RoomGroup") || _node_is_type<RoomGroup>(p_node)) {
p_roomgroup = _convert_roomgroup(p_node, r_roomgroups);
}
// recurse through children
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_convert_rooms_recursive(child, r_portals, r_roomgroups, p_roomgroup);
}
}
}
int RoomManager::_convert_roomgroup(Spatial *p_node, LocalVector<RoomGroup *> &r_roomgroups) {
String string_full_name = p_node->get_name();
// is it already a roomgroup?
RoomGroup *roomgroup = Object::cast_to<RoomGroup>(p_node);
// if not already a RoomGroup, convert the node and move all children
if (!roomgroup) {
// create a RoomGroup
roomgroup = _change_node_type<RoomGroup>(p_node, "G");
} else {
// already hit this tick?
if (roomgroup->_conversion_tick == _conversion_tick) {
return roomgroup->_roomgroup_ID;
}
}
convert_log("convert_roomgroup : " + string_full_name, 1);
// make sure the roomgroup is blank, especially if already created
roomgroup->clear();
// make sure the object ID is sent to the visual server
VisualServer::get_singleton()->roomgroup_prepare(roomgroup->_room_group_rid, roomgroup->get_instance_id());
// mark so as only to convert once
roomgroup->_conversion_tick = _conversion_tick;
roomgroup->_roomgroup_ID = r_roomgroups.size();
r_roomgroups.push_back(roomgroup);
return r_roomgroups.size() - 1;
}
void RoomManager::_convert_room(Spatial *p_node, LocalVector<Portal *> &r_portals, const LocalVector<RoomGroup *> &p_roomgroups, int p_roomgroup) {
String string_full_name = p_node->get_name();
// is it already an lroom?
Room *room = Object::cast_to<Room>(p_node);
// if not already a Room, convert the node and move all children
if (!room) {
// create a Room
room = _change_node_type<Room>(p_node, "G");
} else {
// already hit this tick?
if (room->_conversion_tick == _conversion_tick) {
return;
}
}
// make sure the room is blank, especially if already created
room->clear();
// mark so as only to convert once
room->_conversion_tick = _conversion_tick;
// set roomgroup
if (p_roomgroup != -1) {
room->_roomgroups.push_back(p_roomgroup);
room->_room_priority = p_roomgroups[p_roomgroup]->_settings_priority;
VisualServer::get_singleton()->room_prepare(room->_room_rid, room->_room_priority);
}
// add to the list of rooms
room->_room_ID = _rooms.size();
_rooms.push_back(room);
_find_portals_recursive(room, room, r_portals);
}
void RoomManager::_find_portals_recursive(Spatial *p_node, Room *p_room, LocalVector<Portal *> &r_portals) {
MeshInstance *mi = Object::cast_to<MeshInstance>(p_node);
if ((mi && _name_starts_with(mi, "Portal", true)) || _node_is_type<Portal>(p_node)) {
_convert_portal(p_room, p_node, r_portals);
}
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_find_portals_recursive(child, p_room, r_portals);
}
}
}
void RoomManager::_check_portal_for_warnings(Portal *p_portal, const AABB &p_room_aabb_without_portals) {
#ifdef TOOLS_ENABLED
AABB bb = p_room_aabb_without_portals;
bb = bb.grow(bb.get_longest_axis_size() * 0.5);
bool changed = false;
// far outside the room?
const Vector3 &pos = p_portal->get_global_transform().origin;
bool old_outside = p_portal->_warning_outside_room_aabb;
p_portal->_warning_outside_room_aabb = !bb.has_point(pos);
if (p_portal->_warning_outside_room_aabb != old_outside) {
changed = true;
}
if (p_portal->_warning_outside_room_aabb) {
WARN_PRINT(String(p_portal->get_name()) + " possibly in the wrong room.");
}
// facing wrong way?
Vector3 offset = pos - bb.get_center();
real_t dot = offset.dot(p_portal->_plane.normal);
bool old_facing = p_portal->_warning_facing_wrong_way;
p_portal->_warning_facing_wrong_way = dot < 0.0;
if (p_portal->_warning_facing_wrong_way != old_facing) {
changed = true;
}
if (p_portal->_warning_facing_wrong_way) {
WARN_PRINT(String(p_portal->get_name()) + " possibly facing the wrong way.");
}
// handled later
p_portal->_warning_autolink_failed = false;
if (changed) {
p_portal->update_gizmo();
}
#endif
}
bool RoomManager::_autoplace_object(VisualInstance *p_vi) {
// note we could alternatively use the portal_renderer to do this more efficiently
// (as it has a BSP) but at a cost of returning result from the visual server
AABB bb = p_vi->get_transformed_aabb();
Vector3 centre = bb.get_center();
// in order to deal with internal rooms, we can't just stop at the first
// room the point is within, as there could be later rooms with a higher priority
int best_priority = -INT32_MAX;
Room *best_room = nullptr;
// if not set to zero (no preference) this can override a preference
// for a certain RoomGroup priority to ensure the instance gets placed in the correct
// RoomGroup (e.g. outside, for building exteriors)
int preferred_priority = p_vi->get_portal_autoplace_priority();
for (int n = 0; n < _rooms.size(); n++) {
Room *room = _rooms[n];
if (room->contains_point(centre)) {
// the standard routine autoplaces in the highest priority room
if (room->_room_priority > best_priority) {
best_priority = room->_room_priority;
best_room = room;
}
// if we override the preferred priority we always choose this
if (preferred_priority && (room->_room_priority == preferred_priority)) {
best_room = room;
break;
}
}
}
if (best_room) {
// just dummies, we won't use these this time
Vector<Vector3> room_pts;
// we can reuse this function
_process_static(best_room, p_vi, room_pts, true);
return true;
}
return false;
}
void RoomManager::_autoplace_recursive(Spatial *p_node) {
if (p_node->is_queued_for_deletion()) {
return;
}
// as soon as we hit a room, quit the recursion as the objects
// will already have been added inside rooms
if (Object::cast_to<Room>(p_node)) {
return;
}
VisualInstance *vi = Object::cast_to<VisualInstance>(p_node);
// we are only interested in VIs with static or dynamic mode
if (vi) {
switch (vi->get_portal_mode()) {
default: {
} break;
case CullInstance::PORTAL_MODE_DYNAMIC:
case CullInstance::PORTAL_MODE_STATIC: {
_autoplace_object(vi);
} break;
}
}
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_autoplace_recursive(child);
}
}
}
void RoomManager::_process_static(Room *p_room, Spatial *p_node, Vector<Vector3> &r_room_pts, bool p_add_to_portal_renderer) {
bool ignore = false;
VisualInstance *vi = Object::cast_to<VisualInstance>(p_node);
// we are only interested in VIs with static or dynamic mode
if (vi) {
switch (vi->get_portal_mode()) {
default: {
ignore = true;
} break;
case CullInstance::PORTAL_MODE_DYNAMIC:
case CullInstance::PORTAL_MODE_STATIC:
break;
}
}
if (!ignore) {
// We'll have a done flag. This isn't strictly speaking necessary
// because the types should be mutually exclusive, but this would
// break if something changes the inheritance hierarchy of the nodes
// at a later date, so having a done flag makes it more robust.
bool done = false;
Light *light = Object::cast_to<Light>(p_node);
if (!done && light) {
done = true;
// lights (don't affect bound, so aren't added in first pass)
if (p_add_to_portal_renderer) {
Vector<Vector3> dummy_pts;
VisualServer::get_singleton()->room_add_instance(p_room->_room_rid, light->get_instance(), light->get_transformed_aabb(), dummy_pts);
convert_log("\t\t\tLIGT\t" + light->get_name());
}
}
GeometryInstance *gi = Object::cast_to<GeometryInstance>(p_node);
if (!done && gi) {
done = true;
// MeshInstance is the most interesting type for portalling, so we handle this explicitly
MeshInstance *mi = Object::cast_to<MeshInstance>(p_node);
if (mi) {
if (p_add_to_portal_renderer) {
convert_log("\t\t\tMESH\t" + mi->get_name());
}
Vector<Vector3> object_pts;
AABB aabb;
// get the object points and don't immediately add to the room
// points, as we want to use these points for sprawling algorithm in
// the visual server.
if (_bound_findpoints_mesh_instance(mi, object_pts, aabb)) {
// need to keep track of room bound
// NOTE the is_visible check MAY cause problems if conversion run on nodes that
// aren't properly in the tree. It can optionally be removed. Certainly calling is_visible_in_tree
// DID cause problems.
if (mi->get_include_in_bound() && mi->is_visible()) {
r_room_pts.append_array(object_pts);
}
if (p_add_to_portal_renderer) {
VisualServer::get_singleton()->room_add_instance(p_room->_room_rid, mi->get_instance(), mi->get_transformed_aabb(), object_pts);
}
} // if bound found points
} else {
// geometry instance but not a mesh instance ..
if (p_add_to_portal_renderer) {
convert_log("\t\t\tGEOM\t" + gi->get_name());
}
Vector<Vector3> object_pts;
AABB aabb;
// attempt to recognise this GeometryInstance and read back the geometry
if (_bound_findpoints_geom_instance(gi, object_pts, aabb)) {
// need to keep track of room bound
// NOTE the is_visible check MAY cause problems if conversion run on nodes that
// aren't properly in the tree. It can optionally be removed. Certainly calling is_visible_in_tree
// DID cause problems.
if (gi->get_include_in_bound() && gi->is_visible()) {
r_room_pts.append_array(object_pts);
}
if (p_add_to_portal_renderer) {
VisualServer::get_singleton()->room_add_instance(p_room->_room_rid, gi->get_instance(), gi->get_transformed_aabb(), object_pts);
}
} // if bound found points
}
} // if gi
VisibilityNotifier *vn = Object::cast_to<VisibilityNotifier>(p_node);
if (!done && vn && ((vn->get_portal_mode() == CullInstance::PORTAL_MODE_DYNAMIC) || (vn->get_portal_mode() == CullInstance::PORTAL_MODE_STATIC))) {
done = true;
if (p_add_to_portal_renderer) {
AABB world_aabb = vn->get_global_transform().xform(vn->get_aabb());
VisualServer::get_singleton()->room_add_ghost(p_room->_room_rid, vn->get_instance_id(), world_aabb);
convert_log("\t\t\tVIS \t" + vn->get_name());
}
}
} // if not ignore
}
void RoomManager::_find_statics_recursive(Room *p_room, Spatial *p_node, Vector<Vector3> &r_room_pts, bool p_add_to_portal_renderer) {
// don't process portal MeshInstances that are being deleted
// (and replaced by proper Portal nodes)
if (p_node->is_queued_for_deletion()) {
return;
}
_process_static(p_room, p_node, r_room_pts, p_add_to_portal_renderer);
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_find_statics_recursive(p_room, child, r_room_pts, p_add_to_portal_renderer);
}
}
}
bool RoomManager::_convert_manual_bound(Room *p_room, Spatial *p_node, const LocalVector<Portal *> &p_portals) {
MeshInstance *mi = Object::cast_to<MeshInstance>(p_node);
if (!mi) {
return false;
}
Vector<Vector3> points;
AABB aabb;
if (!_bound_findpoints_mesh_instance(mi, points, aabb)) {
return false;
}
mi->set_portal_mode(CullInstance::PORTAL_MODE_IGNORE);
// hide bounds after conversion
// set to portal mode ignore?
mi->hide();
return _convert_room_hull_preliminary(p_room, points, p_portals);
}
bool RoomManager::_convert_room_hull_preliminary(Room *p_room, const Vector<Vector3> &p_room_pts, const LocalVector<Portal *> &p_portals) {
if (p_room_pts.size() <= 3) {
return false;
}
Geometry::MeshData md;
Error err = OK;
// if there are too many room points, quickhull will fail or freeze etc, so we will revert
// to a bounding rect and send an error message
if (p_room_pts.size() > 100000) {
WARN_PRINT(String(p_room->get_name()) + " contains too many vertices to find convex hull, use a manual bound instead.");
AABB aabb;
aabb.create_from_points(p_room_pts);
LocalVector<Vector3> pts;
Vector3 mins = aabb.position;
Vector3 maxs = mins + aabb.size;
pts.push_back(Vector3(mins.x, mins.y, mins.z));
pts.push_back(Vector3(mins.x, maxs.y, mins.z));
pts.push_back(Vector3(maxs.x, maxs.y, mins.z));
pts.push_back(Vector3(maxs.x, mins.y, mins.z));
pts.push_back(Vector3(mins.x, mins.y, maxs.z));
pts.push_back(Vector3(mins.x, maxs.y, maxs.z));
pts.push_back(Vector3(maxs.x, maxs.y, maxs.z));
pts.push_back(Vector3(maxs.x, mins.y, maxs.z));
err = _build_convex_hull(pts, md);
} else {
err = _build_room_convex_hull(p_room, p_room_pts, md);
}
if (err != OK) {
return false;
}
// add any existing portals planes first, as these will trump any other existing planes further out
for (int n = 0; n < p_room->_portals.size(); n++) {
int portal_id = p_room->_portals[n];
Portal *portal = p_portals[portal_id];
// don't add portals to the hull that are internal to this room!
if (portal->is_portal_internal(p_room->_room_ID)) {
continue;
}
Plane plane = portal->_plane;
// does it need to be reversed? (i.e. is the portal incoming rather than outgoing)
if (portal->_linkedroom_ID[1] == p_room->_room_ID) {
plane = -plane;
}
_add_plane_if_unique(p_room, p_room->_preliminary_planes, plane);
}
// add the planes from the geometry or manual bound
for (int n = 0; n < md.faces.size(); n++) {
const Plane &p = md.faces[n].plane;
_add_plane_if_unique(p_room, p_room->_preliminary_planes, p);
}
// temporary copy of mesh data for the boundary points
// to form a new hull in _convert_room_hull_final
p_room->_bound_mesh_data = md;
// aabb (should later include portals too, these are added in _convert_room_hull_final)
p_room->_aabb.create_from_points(md.vertices);
return true;
}
bool RoomManager::_convert_room_hull_final(Room *p_room, const LocalVector<Portal *> &p_portals) {
Vector<Vector3> vertices_including_portals = p_room->_bound_mesh_data.vertices;
// add the portals planes first, as these will trump any other existing planes further out
int num_portals_added = 0;
for (int n = 0; n < p_room->_portals.size(); n++) {
int portal_id = p_room->_portals[n];
Portal *portal = p_portals[portal_id];
// don't add portals to the world bound that are internal to this room!
if (portal->is_portal_internal(p_room->_room_ID)) {
continue;
}
Plane plane = portal->_plane;
// does it need to be reversed? (i.e. is the portal incoming rather than outgoing)
if (portal->_linkedroom_ID[1] == p_room->_room_ID) {
plane = -plane;
}
if (_add_plane_if_unique(p_room, p_room->_planes, plane)) {
num_portals_added++;
}
// add any new portals to the aabb of the room
for (int p = 0; p < portal->_pts_world.size(); p++) {
const Vector3 &pt = portal->_pts_world[p];
vertices_including_portals.push_back(pt);
p_room->_aabb.expand_to(pt);
}
}
// create new convex hull
Geometry::MeshData md;
Error err = _build_room_convex_hull(p_room, vertices_including_portals, md);
if (err != OK) {
return false;
}
// add the planes from the new hull
for (int n = 0; n < md.faces.size(); n++) {
const Plane &p = md.faces[n].plane;
_add_plane_if_unique(p_room, p_room->_planes, p);
}
// recreate the points within the new simplified bound, and then recreate the convex hull
// by running quickhull a second time... (this enables the gizmo to accurately show the simplified hull)
int num_planes_before_simplification = p_room->_planes.size();
Geometry::MeshData md_simplified;
_build_simplified_bound(p_room, md_simplified, p_room->_planes, num_portals_added);
if (num_planes_before_simplification != p_room->_planes.size()) {
convert_log("\t\t\tcontained " + itos(num_planes_before_simplification) + " planes before simplification, " + itos(p_room->_planes.size()) + " planes after.");
}
// make a copy of the mesh data for debugging
// note this could be avoided in release builds? NYI
p_room->_bound_mesh_data = md_simplified;
// send bound to visual server
VisualServer::get_singleton()->room_set_bound(p_room->_room_rid, p_room->get_instance_id(), p_room->_planes, p_room->_aabb, md_simplified.vertices);
return true;
}
#ifdef TOOLS_ENABLED
bool RoomManager::_room_regenerate_bound(Room *p_room) {
// for a preview, we allow the editor to change the bound
ERR_FAIL_COND_V(!p_room, false);
if (!p_room->_bound_pts.size()) {
return false;
}
// can't do yet if not in the tree
if (!p_room->is_inside_tree()) {
return false;
}
Transform tr = p_room->get_global_transform();
Vector<Vector3> pts;
pts.resize(p_room->_bound_pts.size());
for (int n = 0; n < pts.size(); n++) {
pts.set(n, tr.xform(p_room->_bound_pts[n]));
}
Geometry::MeshData md;
Error err = _build_room_convex_hull(p_room, pts, md);
if (err != OK) {
return false;
}
p_room->_bound_mesh_data = md;
p_room->update_gizmo();
return true;
}
#endif
void RoomManager::_build_simplified_bound(const Room *p_room, Geometry::MeshData &r_md, LocalVector<Plane, int32_t> &r_planes, int p_num_portal_planes) {
if (!r_planes.size()) {
return;
}
Vector<Vector3> pts = Geometry::compute_convex_mesh_points(&r_planes[0], r_planes.size(), 0.001);
Error err = _build_room_convex_hull(p_room, pts, r_md);
if (err != OK) {
WARN_PRINT("QuickHull failed building simplified bound");
return;
}
// if the number of faces is less than the number of planes, we can use this simplified version to reduce the number of planes
if (r_md.faces.size() < r_planes.size()) {
// always include the portal planes
r_planes.resize(p_num_portal_planes);
for (int n = 0; n < r_md.faces.size(); n++) {
_add_plane_if_unique(p_room, r_planes, r_md.faces[n].plane);
}
}
}
Error RoomManager::_build_room_convex_hull(const Room *p_room, const Vector<Vector3> &p_points, Geometry::MeshData &r_mesh) {
// calculate an epsilon based on the simplify value, and use this to build the hull
real_t s = 0.0;
DEV_ASSERT(p_room);
if (p_room->_use_default_simplify) {
s = _room_simplify_info._plane_simplify;
} else {
s = p_room->_simplify_info._plane_simplify;
}
// value between 0.3 (accurate) and 10.0 (very rough)
// * UNIT_EPSILON
s *= s;
s *= 40.0;
s += 0.3; // minimum
s *= UNIT_EPSILON;
return _build_convex_hull(p_points, r_mesh, s);
}
bool RoomManager::_add_plane_if_unique(const Room *p_room, LocalVector<Plane, int32_t> &r_planes, const Plane &p) {
DEV_ASSERT(p_room);
if (p_room->_use_default_simplify) {
return _room_simplify_info.add_plane_if_unique(r_planes, p);
}
return p_room->_simplify_info.add_plane_if_unique(r_planes, p);
}
void RoomManager::_convert_portal(Room *p_room, Spatial *p_node, LocalVector<Portal *> &portals) {
Portal *portal = Object::cast_to<Portal>(p_node);
// if not a gportal already, convert the node type
if (!portal) {
portal = _change_node_type<Portal>(p_node, "G", false);
portal->create_from_mesh_instance(Object::cast_to<MeshInstance>(p_node));
p_node->queue_delete();
} else {
// only allow converting once
if (portal->_conversion_tick == _conversion_tick) {
return;
}
}
// make sure to start with fresh internal data each time (for linked rooms etc)
portal->clear();
// mark so as only to convert once
portal->_conversion_tick = _conversion_tick;
// link rooms
portal->portal_update();
// keep a list of portals for second pass
portals.push_back(portal);
// the portal is linking from this first room it is added to
portal->_linkedroom_ID[0] = p_room->_room_ID;
}
bool RoomManager::_bound_findpoints_geom_instance(GeometryInstance *p_gi, Vector<Vector3> &r_room_pts, AABB &r_aabb) {
// max opposite extents .. note AABB storing size is rubbish in this aspect
// it can fail once mesh min is larger than FLT_MAX / 2.
r_aabb.position = Vector3(FLT_MAX / 2, FLT_MAX / 2, FLT_MAX / 2);
r_aabb.size = Vector3(-FLT_MAX, -FLT_MAX, -FLT_MAX);
#ifdef MODULE_CSG_ENABLED
CSGShape *shape = Object::cast_to<CSGShape>(p_gi);
if (shape) {
Array arr = shape->get_meshes();
if (!arr.size()) {
return false;
}
Ref<ArrayMesh> arr_mesh = arr[1];
if (!arr_mesh.is_valid()) {
return false;
}
if (arr_mesh->get_surface_count() == 0) {
return false;
}
// for converting meshes to world space
Transform trans = p_gi->get_global_transform();
for (int surf = 0; surf < arr_mesh->get_surface_count(); surf++) {
Array arrays = arr_mesh->surface_get_arrays(surf);
if (!arrays.size()) {
continue;
}
PoolVector<Vector3> vertices = arrays[VS::ARRAY_VERTEX];
// convert to world space
for (int n = 0; n < vertices.size(); n++) {
Vector3 ptWorld = trans.xform(vertices[n]);
r_room_pts.push_back(ptWorld);
// keep the bound up to date
r_aabb.expand_to(ptWorld);
}
} // for through the surfaces
return true;
} // if csg shape
#endif
// multimesh
MultiMeshInstance *mmi = Object::cast_to<MultiMeshInstance>(p_gi);
if (mmi) {
Ref<MultiMesh> rmm = mmi->get_multimesh();
if (!rmm.is_valid()) {
return false;
}
// first get the mesh verts in local space
LocalVector<Vector3, int32_t> local_verts;
Ref<Mesh> rmesh = rmm->get_mesh();
if (rmesh->get_surface_count() == 0) {
String string;
string = "MultiMeshInstance '" + mmi->get_name() + "' has no surfaces, ignoring";
WARN_PRINT(string);
return false;
}
for (int surf = 0; surf < rmesh->get_surface_count(); surf++) {
Array arrays = rmesh->surface_get_arrays(surf);
if (!arrays.size()) {
WARN_PRINT_ONCE("MultiMesh mesh surface with no mesh, ignoring");
continue;
}
const PoolVector<Vector3> &vertices = arrays[VS::ARRAY_VERTEX];
int count = local_verts.size();
local_verts.resize(local_verts.size() + vertices.size());
for (int n = 0; n < vertices.size(); n++) {
local_verts[count++] = vertices[n];
}
}
if (!local_verts.size()) {
return false;
}
// now we have the local space verts, add a bunch for each instance, and find the AABB
for (int i = 0; i < rmm->get_instance_count(); i++) {
Transform trans = rmm->get_instance_transform(i);
trans = mmi->get_global_transform() * trans;
for (int n = 0; n < local_verts.size(); n++) {
Vector3 ptWorld = trans.xform(local_verts[n]);
r_room_pts.push_back(ptWorld);
// keep the bound up to date
r_aabb.expand_to(ptWorld);
}
}
return true;
}
return false;
}
bool RoomManager::_bound_findpoints_mesh_instance(MeshInstance *p_mi, Vector<Vector3> &r_room_pts, AABB &r_aabb) {
// max opposite extents .. note AABB storing size is rubbish in this aspect
// it can fail once mesh min is larger than FLT_MAX / 2.
r_aabb.position = Vector3(FLT_MAX / 2, FLT_MAX / 2, FLT_MAX / 2);
r_aabb.size = Vector3(-FLT_MAX, -FLT_MAX, -FLT_MAX);
// some godot jiggery pokery to get the mesh verts in local space
Ref<Mesh> rmesh = p_mi->get_mesh();
ERR_FAIL_COND_V(!rmesh.is_valid(), false);
if (rmesh->get_surface_count() == 0) {
String string;
string = "MeshInstance '" + p_mi->get_name() + "' has no surfaces, ignoring";
WARN_PRINT(string);
return false;
}
bool success = false;
// for converting meshes to world space
Transform trans = p_mi->get_global_transform();
for (int surf = 0; surf < rmesh->get_surface_count(); surf++) {
Array arrays = rmesh->surface_get_arrays(surf);
// possible to have a meshinstance with no geometry .. don't want to crash
if (!arrays.size()) {
WARN_PRINT_ONCE("MeshInstance surface with no mesh, ignoring");
continue;
}
success = true;
PoolVector<Vector3> vertices = arrays[VS::ARRAY_VERTEX];
// convert to world space
for (int n = 0; n < vertices.size(); n++) {
Vector3 ptWorld = trans.xform(vertices[n]);
r_room_pts.push_back(ptWorld);
// keep the bound up to date
r_aabb.expand_to(ptWorld);
}
} // for through the surfaces
return success;
}
void RoomManager::_cleanup_after_conversion() {
for (int n = 0; n < _rooms.size(); n++) {
Room *room = _rooms[n];
room->_portals.reset();
room->_preliminary_planes.reset();
// outside the editor, there's no need to keep the data for the convex hull
// drawing, as it is only used for gizmos.
if (!Engine::get_singleton()->is_editor_hint()) {
room->_bound_mesh_data = Geometry::MeshData();
}
}
}
bool RoomManager::resolve_preview_camera_path() {
Camera *camera = _resolve_path<Camera>(_settings_path_preview_camera);
if (camera) {
_godot_preview_camera_ID = camera->get_instance_id();
return true;
}
_godot_preview_camera_ID = -1;
return false;
}
template <class NODE_TYPE>
NODE_TYPE *RoomManager::_resolve_path(NodePath p_path) const {
if (has_node(p_path)) {
NODE_TYPE *node = Object::cast_to<NODE_TYPE>(get_node(p_path));
if (node) {
return node;
} else {
WARN_PRINT("node is incorrect type");
}
}
return nullptr;
}
template <class NODE_TYPE>
bool RoomManager::_node_is_type(Node *p_node) const {
NODE_TYPE *node = Object::cast_to<NODE_TYPE>(p_node);
return node != nullptr;
}
template <class T>
T *RoomManager::_change_node_type(Spatial *p_node, String p_prefix, bool p_delete) {
String string_full_name = p_node->get_name();
Node *parent = p_node->get_parent();
if (!parent) {
return nullptr;
}
// owner should normally be root
Node *owner = p_node->get_owner();
// change the name of the node to be deleted
p_node->set_name(p_prefix + string_full_name);
// create the new class T object
T *pNew = memnew(T);
pNew->set_name(string_full_name);
// add the child at the same position as the old node
// (this is more convenient for users)
parent->add_child_below_node(p_node, pNew);
// new lroom should have same transform
pNew->set_transform(p_node->get_transform());
// move each child
while (p_node->get_child_count()) {
Node *child = p_node->get_child(0);
p_node->remove_child(child);
// needs to set owner to appear in IDE
pNew->add_child(child);
}
// needs to set owner to appear in IDE
_set_owner_recursive(pNew, owner);
// delete old node
if (p_delete) {
p_node->queue_delete();
}
return pNew;
}
void RoomManager::_update_gizmos_recursive(Node *p_node) {
Portal *portal = Object::cast_to<Portal>(p_node);
if (portal) {
portal->update_gizmo();
}
for (int n = 0; n < p_node->get_child_count(); n++) {
_update_gizmos_recursive(p_node->get_child(n));
}
}
Error RoomManager::_build_convex_hull(const Vector<Vector3> &p_points, Geometry::MeshData &r_mesh, real_t p_epsilon) {
#ifdef GODOT_PORTALS_USE_BULLET_CONVEX_HULL
return ConvexHullComputer::convex_hull(p_points, r_mesh);
#if 0
// test comparison of methods
QuickHull::build(p_points, r_mesh, p_epsilon);
int qh_faces = r_mesh.faces.size();
int qh_verts = r_mesh.vertices.size();
r_mesh.vertices.clear();
r_mesh.faces.clear();
r_mesh.edges.clear();
Error err = ConvexHullComputer::convex_hull(p_points, r_mesh);
int bh_faces = r_mesh.faces.size();
int bh_verts = r_mesh.vertices.size();
if (qh_faces != bh_faces) {
print_line("qh_faces : " + itos(qh_faces) + ", bh_faces : " + itos(bh_faces));
}
if (qh_verts != bh_verts) {
print_line("qh_verts : " + itos(qh_verts) + ", bh_verts : " + itos(bh_verts));
}
return err;
#endif
#else
QuickHull::_flag_warnings = false;
Error err = QuickHull::build(p_points, r_mesh, p_epsilon);
QuickHull::_flag_warnings = true;
return err;
#endif
}
void RoomManager::_flip_portals_recursive(Spatial *p_node) {
Portal *portal = Object::cast_to<Portal>(p_node);
if (portal) {
portal->flip();
}
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_flip_portals_recursive(child);
}
}
}
void RoomManager::_set_owner_recursive(Node *p_node, Node *p_owner) {
if (p_node != p_owner) {
p_node->set_owner(p_owner);
}
for (int n = 0; n < p_node->get_child_count(); n++) {
_set_owner_recursive(p_node->get_child(n), p_owner);
}
}
void RoomManager::_check_for_misnamed_node(const Node *p_node, String p_start_string) {
// don't check the roomlist name, as it often has a conflict with Room
if (p_node == _roomlist) {
return;
}
String name = p_node->get_name();
int ss_length = p_start_string.length();
if (name.substr(0, ss_length).to_lower() == p_start_string.to_lower()) {
if (p_start_string == "Room") {
// do allow RoomGroup and RoomManager
if (name.substr(0, 9) == "RoomGroup") {
return;
}
if (name.substr(0, 11) == "RoomManager") {
return;
}
} else {
if (p_start_string == "RoomGroup") {
return;
}
}
WARN_PRINT("Possible misnamed node : " + name);
_warning_misnamed_nodes_detected = true;
}
}
bool RoomManager::_name_starts_with(const Node *p_node, String p_search_string, bool p_allow_no_delineator) {
String name = p_node->get_name();
if (p_allow_no_delineator && (name == p_search_string)) {
return true;
}
String search_string = p_search_string + GODOT_PORTAL_DELINEATOR;
int sl = search_string.length();
if (name.substr(0, sl) == search_string) {
return true;
}
_check_for_misnamed_node(p_node, p_search_string);
return false;
}
String RoomManager::_find_name_after(Node *p_node, String p_string_start) {
p_string_start += GODOT_PORTAL_DELINEATOR;
String string_result;
String name = p_node->get_name();
string_result = name.substr(p_string_start.length());
// because godot doesn't support multiple nodes with the same name, we will strip e.g. a number
// after an @ on the end of the name...
// e.g. portal_kitchen@2
for (int c = 0; c < string_result.length(); c++) {
if (string_result[c] == '*') {
// remove everything after and including this character
string_result = string_result.substr(0, c);
break;
}
}
return string_result;
}
void RoomManager::_merge_meshes_in_room(Room *p_room) {
// only do in running game so as not to lose data
if (Engine::get_singleton()->is_editor_hint()) {
return;
}
_merge_log("merging room " + p_room->get_name());
// list of meshes suitable
LocalVector<MeshInstance *, int32_t> source_meshes;
_list_mergeable_mesh_instances(p_room, source_meshes);
// none suitable
if (!source_meshes.size()) {
return;
}
_merge_log("\t" + itos(source_meshes.size()) + " source meshes");
BitFieldDynamic bf;
bf.create(source_meshes.size(), true);
for (int n = 0; n < source_meshes.size(); n++) {
LocalVector<MeshInstance *, int32_t> merge_list;
// find similar meshes
MeshInstance *a = source_meshes[n];
merge_list.push_back(a);
// may not be necessary
bf.set_bit(n, true);
for (int c = n + 1; c < source_meshes.size(); c++) {
// if not merged already
if (!bf.get_bit(c)) {
MeshInstance *b = source_meshes[c];
// if (_are_meshes_mergeable(a, b)) {
if (a->is_mergeable_with(*b)) {
merge_list.push_back(b);
bf.set_bit(c, true);
}
} // if not merged already
} // for c through secondary mesh
// only merge if more than 1
if (merge_list.size() > 1) {
// we can merge!
// create a new holder mesh
MeshInstance *merged = memnew(MeshInstance);
merged->set_name("MergedMesh");
_merge_log("\t\t" + merged->get_name());
if (merged->create_by_merging(merge_list)) {
// set all the source meshes to portal mode ignore so not shown
for (int i = 0; i < merge_list.size(); i++) {
merge_list[i]->set_portal_mode(CullInstance::PORTAL_MODE_IGNORE);
}
// and set the new merged mesh to static
merged->set_portal_mode(CullInstance::PORTAL_MODE_STATIC);
// attach to scene tree
p_room->add_child(merged);
merged->set_owner(p_room->get_owner());
// compensate for room transform, as the verts are now in world space
Transform tr = p_room->get_global_transform();
tr.affine_invert();
merged->set_transform(tr);
// delete originals?
// note this isn't perfect, it may still end up with dangling spatials, but they can be
// deleted later.
for (int i = 0; i < merge_list.size(); i++) {
MeshInstance *mi = merge_list[i];
if (!mi->get_child_count()) {
mi->queue_delete();
} else {
Node *parent = mi->get_parent();
if (parent) {
// if there are children, we don't want to delete it, but we do want to
// remove the mesh drawing, e.g. by replacing it with a spatial
String name = mi->get_name();
mi->set_name("DeleteMe"); // can be anything, just to avoid name conflict with replacement node
Spatial *replacement = memnew(Spatial);
replacement->set_name(name);
parent->add_child(replacement);
// make the transform and owner match
replacement->set_owner(mi->get_owner());
replacement->set_transform(mi->get_transform());
// move all children from the mesh instance to the replacement
while (mi->get_child_count()) {
Node *child = mi->get_child(0);
mi->remove_child(child);
replacement->add_child(child);
}
} // if the mesh instance has a parent (should hopefully be always the case?)
}
}
} else {
// no success
memdelete(merged);
}
}
} // for n through primary mesh
if (_settings_remove_danglers) {
_remove_redundant_dangling_nodes(p_room);
}
}
bool RoomManager::_remove_redundant_dangling_nodes(Spatial *p_node) {
int non_queue_delete_children = 0;
// do the children first
for (int n = 0; n < p_node->get_child_count(); n++) {
Node *node_child = p_node->get_child(n);
Spatial *child = Object::cast_to<Spatial>(node_child);
if (child) {
_remove_redundant_dangling_nodes(child);
}
if (node_child && !node_child->is_queued_for_deletion()) {
non_queue_delete_children++;
}
}
if (!non_queue_delete_children) {
// only remove true spatials, not derived classes
if (p_node->get_class_name() == "Spatial") {
p_node->queue_delete();
return true;
}
}
return false;
}
void RoomManager::_list_mergeable_mesh_instances(Spatial *p_node, LocalVector<MeshInstance *, int32_t> &r_list) {
MeshInstance *mi = Object::cast_to<MeshInstance>(p_node);
if (mi) {
// only interested in static portal mode meshes
VisualInstance *vi = Object::cast_to<VisualInstance>(mi);
// we are only interested in VIs with static or dynamic mode
if (vi && vi->get_portal_mode() == CullInstance::PORTAL_MODE_STATIC) {
// disallow for portals or bounds
// mesh instance portals should be queued for deletion by this point, we don't want to merge portals!
if (!_node_is_type<Portal>(mi) && !_name_starts_with(mi, "Bound", true) && !mi->is_queued_for_deletion()) {
// only merge if visible
if (mi->is_inside_tree() && mi->is_visible()) {
r_list.push_back(mi);
}
}
}
}
for (int n = 0; n < p_node->get_child_count(); n++) {
Spatial *child = Object::cast_to<Spatial>(p_node->get_child(n));
if (child) {
_list_mergeable_mesh_instances(child, r_list);
}
}
}