godot/servers/rendering/renderer_rd/shaders/ssao_importance_map.glsl
reduz d3b49c416a Refactor GLSL shader compilation
-Used a more consistent set of keywords for the shader
-Remove all harcoded entry points
-Re-wrote the GLSL shader parser, new system is more flexible. Allows any entry point organization.
-Entry point for sky shaders is now sky().
-Entry point for particle shaders is now process().
2021-04-14 11:37:52 -03:00

127 lines
4.9 KiB
GLSL

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2016, Intel Corporation
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the "Software"), to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of
// the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// File changes (yyyy-mm-dd)
// 2016-09-07: filip.strugar@intel.com: first commit
// 2020-12-05: clayjohn: convert to Vulkan and Godot
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#[compute]
#version 450
#VERSION_DEFINES
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
#ifdef GENERATE_MAP
layout(set = 0, binding = 0) uniform sampler2DArray source_ssao;
#else
layout(set = 0, binding = 0) uniform sampler2D source_importance;
#endif
layout(r8, set = 1, binding = 0) uniform restrict writeonly image2D dest_image;
#ifdef PROCESS_MAPB
layout(set = 2, binding = 0, std430) buffer Counter {
uint sum;
}
counter;
#endif
layout(push_constant, binding = 1, std430) uniform Params {
vec2 half_screen_pixel_size;
float intensity;
float power;
}
params;
void main() {
// Pixel being shaded
ivec2 ssC = ivec2(gl_GlobalInvocationID.xy);
#ifdef GENERATE_MAP
// importance map stuff
uvec2 base_position = ssC * 2;
vec2 base_uv = (vec2(base_position) + vec2(0.5f, 0.5f)) * params.half_screen_pixel_size;
float avg = 0.0;
float minV = 1.0;
float maxV = 0.0;
for (int i = 0; i < 4; i++) {
vec4 vals = textureGather(source_ssao, vec3(base_uv, i));
// apply the same modifications that would have been applied in the main shader
vals = params.intensity * vals;
vals = 1 - vals;
vals = pow(clamp(vals, 0.0, 1.0), vec4(params.power));
avg += dot(vec4(vals.x, vals.y, vals.z, vals.w), vec4(1.0 / 16.0, 1.0 / 16.0, 1.0 / 16.0, 1.0 / 16.0));
maxV = max(maxV, max(max(vals.x, vals.y), max(vals.z, vals.w)));
minV = min(minV, min(min(vals.x, vals.y), min(vals.z, vals.w)));
}
float min_max_diff = maxV - minV;
imageStore(dest_image, ssC, vec4(pow(clamp(min_max_diff * 2.0, 0.0, 1.0), 0.8)));
#endif
#ifdef PROCESS_MAPA
vec2 uv = (vec2(ssC) + 0.5f) * params.half_screen_pixel_size * 2.0;
float centre = textureLod(source_importance, uv, 0.0).x;
vec2 half_pixel = params.half_screen_pixel_size;
vec4 vals;
vals.x = textureLod(source_importance, uv + vec2(-half_pixel.x * 3, -half_pixel.y), 0.0).x;
vals.y = textureLod(source_importance, uv + vec2(+half_pixel.x, -half_pixel.y * 3), 0.0).x;
vals.z = textureLod(source_importance, uv + vec2(+half_pixel.x * 3, +half_pixel.y), 0.0).x;
vals.w = textureLod(source_importance, uv + vec2(-half_pixel.x, +half_pixel.y * 3), 0.0).x;
float avg = dot(vals, vec4(0.25, 0.25, 0.25, 0.25));
imageStore(dest_image, ssC, vec4(avg));
#endif
#ifdef PROCESS_MAPB
vec2 uv = (vec2(ssC) + 0.5f) * params.half_screen_pixel_size * 2.0;
float centre = textureLod(source_importance, uv, 0.0).x;
vec2 half_pixel = params.half_screen_pixel_size;
vec4 vals;
vals.x = textureLod(source_importance, uv + vec2(-half_pixel.x, -half_pixel.y * 3), 0.0).x;
vals.y = textureLod(source_importance, uv + vec2(+half_pixel.x * 3, -half_pixel.y), 0.0).x;
vals.z = textureLod(source_importance, uv + vec2(+half_pixel.x, +half_pixel.y * 3), 0.0).x;
vals.w = textureLod(source_importance, uv + vec2(-half_pixel.x * 3, +half_pixel.y), 0.0).x;
float avg = dot(vals, vec4(0.25, 0.25, 0.25, 0.25));
imageStore(dest_image, ssC, vec4(avg));
// sum the average; to avoid overflowing we assume max AO resolution is not bigger than 16384x16384; so quarter res (used here) will be 4096x4096, which leaves us with 8 bits per pixel
uint sum = uint(clamp(avg, 0.0, 1.0) * 255.0 + 0.5);
// save every 9th to avoid InterlockedAdd congestion - since we're blurring, this is good enough; compensated by multiplying load_counter_avg_div by 9
if (((ssC.x % 3) + (ssC.y % 3)) == 0) {
atomicAdd(counter.sum, sum);
}
#endif
}