godot/core/io/marshalls.cpp
Rémi Verschelde d8223ffa75 Welcome in 2017, dear changelog reader!
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer
with state-of-the-art rendering techniques tuned to work as low as middle
end handheld devices - without compromising with the possibilities given
for higher end desktop games of course. Great times ahead for the Godot
community and the gamers that will play our games!

(cherry picked from commit c7bc44d5ad)
2017-01-12 19:15:30 +01:00

1419 lines
26 KiB
C++

/*************************************************************************/
/* marshalls.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "marshalls.h"
#include "print_string.h"
#include "os/keyboard.h"
#include <stdio.h>
Error decode_variant(Variant& r_variant,const uint8_t *p_buffer, int p_len,int *r_len) {
const uint8_t * buf=p_buffer;
int len=p_len;
if (len<4) {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
}
uint32_t type=decode_uint32(buf);
ERR_FAIL_COND_V(type>=Variant::VARIANT_MAX,ERR_INVALID_DATA);
buf+=4;
len-=4;
if (r_len)
*r_len=4;
switch(type) {
case Variant::NIL: {
r_variant=Variant();
} break;
case Variant::BOOL: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
bool val = decode_uint32(buf);
r_variant=val;
if (r_len)
(*r_len)+=4;
} break;
case Variant::INT: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
int val = decode_uint32(buf);
r_variant=val;
if (r_len)
(*r_len)+=4;
} break;
case Variant::REAL: {
ERR_FAIL_COND_V(len<(int)4,ERR_INVALID_DATA);
float val = decode_float(buf);
r_variant=val;
if (r_len)
(*r_len)+=4;
} break;
case Variant::STRING: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t strlen = decode_uint32(buf);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)strlen>len,ERR_INVALID_DATA);
String str;
str.parse_utf8((const char*)buf,strlen);
r_variant=str;
if (r_len) {
if (strlen%4)
(*r_len)+=4-strlen%4;
(*r_len)+=4+strlen;
}
} break;
// math types
case Variant::VECTOR2: {
ERR_FAIL_COND_V(len<(int)4*2,ERR_INVALID_DATA);
Vector2 val;
val.x=decode_float(&buf[0]);
val.y=decode_float(&buf[4]);
r_variant=val;
if (r_len)
(*r_len)+=4*2;
} break; // 5
case Variant::RECT2: {
ERR_FAIL_COND_V(len<(int)4*4,ERR_INVALID_DATA);
Rect2 val;
val.pos.x=decode_float(&buf[0]);
val.pos.y=decode_float(&buf[4]);
val.size.x=decode_float(&buf[8]);
val.size.y=decode_float(&buf[12]);
r_variant=val;
if (r_len)
(*r_len)+=4*4;
} break;
case Variant::VECTOR3: {
ERR_FAIL_COND_V(len<(int)4*3,ERR_INVALID_DATA);
Vector3 val;
val.x=decode_float(&buf[0]);
val.y=decode_float(&buf[4]);
val.z=decode_float(&buf[8]);
r_variant=val;
if (r_len)
(*r_len)+=4*3;
} break;
case Variant::MATRIX32: {
ERR_FAIL_COND_V(len<(int)4*6,ERR_INVALID_DATA);
Matrix32 val;
for(int i=0;i<3;i++) {
for(int j=0;j<2;j++) {
val.elements[i][j]=decode_float(&buf[(i*2+j)*4]);
}
}
r_variant=val;
if (r_len)
(*r_len)+=4*6;
} break;
case Variant::PLANE: {
ERR_FAIL_COND_V(len<(int)4*4,ERR_INVALID_DATA);
Plane val;
val.normal.x=decode_float(&buf[0]);
val.normal.y=decode_float(&buf[4]);
val.normal.z=decode_float(&buf[8]);
val.d=decode_float(&buf[12]);
r_variant=val;
if (r_len)
(*r_len)+=4*4;
} break;
case Variant::QUAT: {
ERR_FAIL_COND_V(len<(int)4*4,ERR_INVALID_DATA);
Quat val;
val.x=decode_float(&buf[0]);
val.y=decode_float(&buf[4]);
val.z=decode_float(&buf[8]);
val.w=decode_float(&buf[12]);
r_variant=val;
if (r_len)
(*r_len)+=4*4;
} break;
case Variant::_AABB: {
ERR_FAIL_COND_V(len<(int)4*6,ERR_INVALID_DATA);
AABB val;
val.pos.x=decode_float(&buf[0]);
val.pos.y=decode_float(&buf[4]);
val.pos.z=decode_float(&buf[8]);
val.size.x=decode_float(&buf[12]);
val.size.y=decode_float(&buf[16]);
val.size.z=decode_float(&buf[20]);
r_variant=val;
if (r_len)
(*r_len)+=4*6;
} break;
case Variant::MATRIX3: {
ERR_FAIL_COND_V(len<(int)4*9,ERR_INVALID_DATA);
Matrix3 val;
for(int i=0;i<3;i++) {
for(int j=0;j<3;j++) {
val.elements[i][j]=decode_float(&buf[(i*3+j)*4]);
}
}
r_variant=val;
if (r_len)
(*r_len)+=4*9;
} break;
case Variant::TRANSFORM: {
ERR_FAIL_COND_V(len<(int)4*12,ERR_INVALID_DATA);
Transform val;
for(int i=0;i<3;i++) {
for(int j=0;j<3;j++) {
val.basis.elements[i][j]=decode_float(&buf[(i*3+j)*4]);
}
}
val.origin[0]=decode_float(&buf[36]);
val.origin[1]=decode_float(&buf[40]);
val.origin[2]=decode_float(&buf[44]);
r_variant=val;
if (r_len)
(*r_len)+=4*12;
} break;
// misc types
case Variant::COLOR: {
ERR_FAIL_COND_V(len<(int)4*4,ERR_INVALID_DATA);
Color val;
val.r=decode_float(&buf[0]);
val.g=decode_float(&buf[4]);
val.b=decode_float(&buf[8]);
val.a=decode_float(&buf[12]);
r_variant=val;
if (r_len)
(*r_len)+=4*4;
} break;
case Variant::IMAGE: {
ERR_FAIL_COND_V(len<(int)5*4,ERR_INVALID_DATA);
Image::Format fmt = (Image::Format)decode_uint32(&buf[0]);
ERR_FAIL_INDEX_V( fmt, Image::FORMAT_MAX, ERR_INVALID_DATA);
uint32_t mipmaps = decode_uint32(&buf[4]);
uint32_t w = decode_uint32(&buf[8]);
uint32_t h = decode_uint32(&buf[12]);
uint32_t datalen = decode_uint32(&buf[16]);
Image img;
if (datalen>0) {
len-=5*4;
ERR_FAIL_COND_V( len < datalen, ERR_INVALID_DATA );
DVector<uint8_t> data;
data.resize(datalen);
DVector<uint8_t>::Write wr = data.write();
copymem(&wr[0],&buf[20],datalen);
wr = DVector<uint8_t>::Write();
img=Image(w,h,mipmaps,fmt,data);
}
r_variant=img;
if (r_len) {
if (datalen%4)
(*r_len)+=4-datalen%4;
(*r_len)+=4*5+datalen;
}
} break;
case Variant::NODE_PATH: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t strlen = decode_uint32(buf);
if (strlen&0x80000000) {
//new format
ERR_FAIL_COND_V(len<12,ERR_INVALID_DATA);
Vector<StringName> names;
Vector<StringName> subnames;
StringName prop;
uint32_t namecount=strlen&=0x7FFFFFFF;
uint32_t subnamecount = decode_uint32(buf+4);
uint32_t flags = decode_uint32(buf+8);
len-=12;
buf+=12;
int total=namecount+subnamecount;
if (flags&2)
total++;
if (r_len)
(*r_len)+=12;
for(int i=0;i<total;i++) {
ERR_FAIL_COND_V((int)len<4,ERR_INVALID_DATA);
strlen = decode_uint32(buf);
int pad=0;
if (strlen%4)
pad+=4-strlen%4;
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)strlen+pad>len,ERR_INVALID_DATA);
String str;
str.parse_utf8((const char*)buf,strlen);
if (i<namecount)
names.push_back(str);
else if (i<namecount+subnamecount)
subnames.push_back(str);
else
prop=str;
buf+=strlen+pad;
len-=strlen+pad;
if (r_len)
(*r_len)+=4+strlen+pad;
}
r_variant=NodePath(names,subnames,flags&1,prop);
} else {
//old format, just a string
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)strlen>len,ERR_INVALID_DATA);
String str;
str.parse_utf8((const char*)buf,strlen);
r_variant=NodePath(str);
if (r_len)
(*r_len)+=4+strlen;
}
} break;
/*case Variant::RESOURCE: {
ERR_EXPLAIN("Can't marshallize resources");
ERR_FAIL_V(ERR_INVALID_DATA); //no, i'm sorry, no go
} break;*/
case Variant::_RID: {
r_variant = RID();
} break;
case Variant::OBJECT: {
r_variant = (Object*)NULL;
} break;
case Variant::INPUT_EVENT: {
InputEvent ie;
ie.type=decode_uint32(&buf[0]);
ie.device=decode_uint32(&buf[4]);
if (r_len)
(*r_len)+=12;
switch(ie.type) {
case InputEvent::KEY: {
uint32_t mods=decode_uint32(&buf[12]);
if (mods&KEY_MASK_SHIFT)
ie.key.mod.shift=true;
if (mods&KEY_MASK_CTRL)
ie.key.mod.control=true;
if (mods&KEY_MASK_ALT)
ie.key.mod.alt=true;
if (mods&KEY_MASK_META)
ie.key.mod.meta=true;
ie.key.scancode=decode_uint32(&buf[16]);
if (r_len)
(*r_len)+=8;
} break;
case InputEvent::MOUSE_BUTTON: {
ie.mouse_button.button_index=decode_uint32(&buf[12]);
if (r_len)
(*r_len)+=4;
} break;
case InputEvent::JOYSTICK_BUTTON: {
ie.joy_button.button_index=decode_uint32(&buf[12]);
if (r_len)
(*r_len)+=4;
} break;
case InputEvent::SCREEN_TOUCH: {
ie.screen_touch.index=decode_uint32(&buf[12]);
if (r_len)
(*r_len)+=4;
} break;
case InputEvent::JOYSTICK_MOTION: {
ie.joy_motion.axis=decode_uint32(&buf[12]);
ie.joy_motion.axis_value=decode_float(&buf[16]);
if (r_len)
(*r_len)+=8;
} break;
}
r_variant = ie;
} break;
case Variant::DICTIONARY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
bool shared = count&0x80000000;
count&=0x7FFFFFFF;
buf+=4;
len-=4;
if (r_len) {
(*r_len)+=4;
}
Dictionary d(shared);
for(uint32_t i=0;i<count;i++) {
Variant key,value;
int used;
Error err = decode_variant(key,buf,len,&used);
ERR_FAIL_COND_V(err,err);
buf+=used;
len-=used;
if (r_len) {
(*r_len)+=used;
}
err = decode_variant(value,buf,len,&used);
ERR_FAIL_COND_V(err,err);
buf+=used;
len-=used;
if (r_len) {
(*r_len)+=used;
}
d[key]=value;
}
r_variant=d;
} break;
case Variant::ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
bool shared = count&0x80000000;
count&=0x7FFFFFFF;
buf+=4;
len-=4;
if (r_len) {
(*r_len)+=4;
}
Array varr(shared);
for(uint32_t i=0;i<count;i++) {
int used=0;
Variant v;
Error err = decode_variant(v,buf,len,&used);
ERR_FAIL_COND_V(err,err);
buf+=used;
len-=used;
varr.push_back(v);
if (r_len) {
(*r_len)+=used;
}
}
r_variant=varr;
} break;
// arrays
case Variant::RAW_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)count>len,ERR_INVALID_DATA);
DVector<uint8_t> data;
if (count) {
data.resize(count);
DVector<uint8_t>::Write w = data.write();
for(int i=0;i<count;i++) {
w[i]=buf[i];
}
w = DVector<uint8_t>::Write();
}
r_variant=data;
if (r_len) {
if (count%4)
(*r_len)+=4-count%4;
(*r_len)+=4+count;
}
} break;
case Variant::INT_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)count*4>len,ERR_INVALID_DATA);
DVector<int> data;
if (count) {
//const int*rbuf=(const int*)buf;
data.resize(count);
DVector<int>::Write w = data.write();
for(int i=0;i<count;i++) {
w[i]=decode_uint32(&buf[i*4]);
}
w = DVector<int>::Write();
}
r_variant=Variant(data);
if (r_len) {
(*r_len)+=4+count*sizeof(int);
}
} break;
case Variant::REAL_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)count*4>len,ERR_INVALID_DATA);
DVector<float> data;
if (count) {
//const float*rbuf=(const float*)buf;
data.resize(count);
DVector<float>::Write w = data.write();
for(int i=0;i<count;i++) {
w[i]=decode_float(&buf[i*4]);
}
w = DVector<float>::Write();
}
r_variant=data;
if (r_len) {
(*r_len)+=4+count*sizeof(float);
}
} break;
case Variant::STRING_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
ERR_FAIL_COND_V(count<0,ERR_INVALID_DATA);
DVector<String> strings;
buf+=4;
len-=4;
if (r_len)
(*r_len)+=4;
//printf("string count: %i\n",count);
for(int i=0;i<(int)count;i++) {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t strlen = decode_uint32(buf);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)strlen>len,ERR_INVALID_DATA);
//printf("loaded string: %s\n",(const char*)buf);
String str;
str.parse_utf8((const char*)buf,strlen);
strings.push_back(str);
buf+=strlen;
len-=strlen;
if (r_len)
(*r_len)+=4+strlen;
if (strlen%4) {
int pad = 4-(strlen%4);
buf+=pad;
len-=pad;
if (r_len) {
(*r_len)+=pad;
}
}
}
r_variant=strings;
} break;
case Variant::VECTOR2_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
ERR_FAIL_COND_V(count<0,ERR_INVALID_DATA);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)count*4*2>len,ERR_INVALID_DATA);
DVector<Vector2> varray;
if (r_len) {
(*r_len)+=4;
}
if (count) {
varray.resize(count);
DVector<Vector2>::Write w = varray.write();
for(int i=0;i<(int)count;i++) {
w[i].x=decode_float(buf+i*4*2+4*0);
w[i].y=decode_float(buf+i*4*2+4*1);
}
int adv = 4*2*count;
if (r_len)
(*r_len)+=adv;
len-=adv;
buf+=adv;
}
r_variant=varray;
} break;
case Variant::VECTOR3_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
ERR_FAIL_COND_V(count<0,ERR_INVALID_DATA);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)count*4*3>len,ERR_INVALID_DATA);
DVector<Vector3> varray;
if (r_len) {
(*r_len)+=4;
}
if (count) {
varray.resize(count);
DVector<Vector3>::Write w = varray.write();
for(int i=0;i<(int)count;i++) {
w[i].x=decode_float(buf+i*4*3+4*0);
w[i].y=decode_float(buf+i*4*3+4*1);
w[i].z=decode_float(buf+i*4*3+4*2);
}
int adv = 4*3*count;
if (r_len)
(*r_len)+=adv;
len-=adv;
buf+=adv;
}
r_variant=varray;
} break;
case Variant::COLOR_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
ERR_FAIL_COND_V(count<0,ERR_INVALID_DATA);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)count*4*4>len,ERR_INVALID_DATA);
DVector<Color> carray;
if (r_len) {
(*r_len)+=4;
}
if (count) {
carray.resize(count);
DVector<Color>::Write w = carray.write();
for(int i=0;i<(int)count;i++) {
w[i].r=decode_float(buf+i*4*4+4*0);
w[i].g=decode_float(buf+i*4*4+4*1);
w[i].b=decode_float(buf+i*4*4+4*2);
w[i].a=decode_float(buf+i*4*4+4*3);
}
int adv = 4*4*count;
if (r_len)
(*r_len)+=adv;
len-=adv;
buf+=adv;
}
r_variant=carray;
} break;
default: { ERR_FAIL_V(ERR_BUG); }
}
return OK;
}
Error encode_variant(const Variant& p_variant, uint8_t *r_buffer, int &r_len) {
uint8_t * buf=r_buffer;
r_len=0;
if (buf) {
encode_uint32(p_variant.get_type(),buf);
buf+=4;
}
r_len+=4;
switch(p_variant.get_type()) {
case Variant::NIL: {
//nothing to do
} break;
case Variant::BOOL: {
if (buf) {
encode_uint32(p_variant.operator bool(),buf);
}
r_len+=4;
} break;
case Variant::INT: {
if (buf) {
encode_uint32(p_variant.operator int(),buf);
}
r_len+=4;
} break;
case Variant::REAL: {
if (buf) {
encode_float(p_variant.operator float(),buf);
}
r_len+=4;
} break;
case Variant::NODE_PATH: {
NodePath np=p_variant;
if (buf) {
encode_uint32(uint32_t(np.get_name_count())|0x80000000,buf); //for compatibility with the old format
encode_uint32(np.get_subname_count(),buf+4);
uint32_t flags=0;
if (np.is_absolute())
flags|=1;
if (np.get_property()!=StringName())
flags|=2;
encode_uint32(flags,buf+8);
buf+=12;
}
r_len+=12;
int total = np.get_name_count()+np.get_subname_count();
if (np.get_property()!=StringName())
total++;
for(int i=0;i<total;i++) {
String str;
if (i<np.get_name_count())
str=np.get_name(i);
else if (i<np.get_name_count()+np.get_subname_count())
str=np.get_subname(i-np.get_subname_count());
else
str=np.get_property();
CharString utf8 = str.utf8();
int pad = 0;
if (utf8.length()%4)
pad=4-utf8.length()%4;
if (buf) {
encode_uint32(utf8.length(),buf);
buf+=4;
copymem(buf,utf8.get_data(),utf8.length());
buf+=pad+utf8.length();
}
r_len+=4+utf8.length()+pad;
}
} break;
case Variant::STRING: {
CharString utf8 = p_variant.operator String().utf8();
if (buf) {
encode_uint32(utf8.length(),buf);
buf+=4;
copymem(buf,utf8.get_data(),utf8.length());
}
r_len+=4+utf8.length();
while (r_len%4)
r_len++; //pad
} break;
// math types
case Variant::VECTOR2: {
if (buf) {
Vector2 v2=p_variant;
encode_float(v2.x,&buf[0]);
encode_float(v2.y,&buf[4]);
}
r_len+=2*4;
} break; // 5
case Variant::RECT2: {
if (buf) {
Rect2 r2=p_variant;
encode_float(r2.pos.x,&buf[0]);
encode_float(r2.pos.y,&buf[4]);
encode_float(r2.size.x,&buf[8]);
encode_float(r2.size.y,&buf[12]);
}
r_len+=4*4;
} break;
case Variant::VECTOR3: {
if (buf) {
Vector3 v3=p_variant;
encode_float(v3.x,&buf[0]);
encode_float(v3.y,&buf[4]);
encode_float(v3.z,&buf[8]);
}
r_len+=3*4;
} break;
case Variant::MATRIX32: {
if (buf) {
Matrix32 val=p_variant;
for(int i=0;i<3;i++) {
for(int j=0;j<2;j++) {
copymem(&buf[(i*2+j)*4],&val.elements[i][j],sizeof(float));
}
}
}
r_len+=6*4;
} break;
case Variant::PLANE: {
if (buf) {
Plane p=p_variant;
encode_float(p.normal.x,&buf[0]);
encode_float(p.normal.y,&buf[4]);
encode_float(p.normal.z,&buf[8]);
encode_float(p.d,&buf[12]);
}
r_len+=4*4;
} break;
case Variant::QUAT: {
if (buf) {
Quat q=p_variant;
encode_float(q.x,&buf[0]);
encode_float(q.y,&buf[4]);
encode_float(q.z,&buf[8]);
encode_float(q.w,&buf[12]);
}
r_len+=4*4;
} break;
case Variant::_AABB: {
if (buf) {
AABB aabb=p_variant;
encode_float(aabb.pos.x,&buf[0]);
encode_float(aabb.pos.y,&buf[4]);
encode_float(aabb.pos.z,&buf[8]);
encode_float(aabb.size.x,&buf[12]);
encode_float(aabb.size.y,&buf[16]);
encode_float(aabb.size.z,&buf[20]);
}
r_len+=6*4;
} break;
case Variant::MATRIX3: {
if (buf) {
Matrix3 val=p_variant;
for(int i=0;i<3;i++) {
for(int j=0;j<3;j++) {
copymem(&buf[(i*3+j)*4],&val.elements[i][j],sizeof(float));
}
}
}
r_len+=9*4;
} break;
case Variant::TRANSFORM: {
if (buf) {
Transform val=p_variant;
for(int i=0;i<3;i++) {
for(int j=0;j<3;j++) {
copymem(&buf[(i*3+j)*4],&val.basis.elements[i][j],sizeof(float));
}
}
encode_float(val.origin.x,&buf[36]);
encode_float(val.origin.y,&buf[40]);
encode_float(val.origin.z,&buf[44]);
}
r_len+=12*4;
} break;
// misc types
case Variant::COLOR: {
if (buf) {
Color c=p_variant;
encode_float(c.r,&buf[0]);
encode_float(c.g,&buf[4]);
encode_float(c.b,&buf[8]);
encode_float(c.a,&buf[12]);
}
r_len+=4*4;
} break;
case Variant::IMAGE: {
Image image = p_variant;
DVector<uint8_t> data=image.get_data();
if (buf) {
encode_uint32(image.get_format(),&buf[0]);
encode_uint32(image.get_mipmaps(),&buf[4]);
encode_uint32(image.get_width(),&buf[8]);
encode_uint32(image.get_height(),&buf[12]);
int ds=data.size();
encode_uint32(ds,&buf[16]);
DVector<uint8_t>::Read r = data.read();
copymem(&buf[20],&r[0],ds);
}
int pad=0;
if (data.size()%4)
pad=4-data.size()%4;
r_len+=data.size()+5*4+pad;
} break;
/*case Variant::RESOURCE: {
ERR_EXPLAIN("Can't marshallize resources");
ERR_FAIL_V(ERR_INVALID_DATA); //no, i'm sorry, no go
} break;*/
case Variant::_RID:
case Variant::OBJECT: {
} break;
case Variant::INPUT_EVENT: {
InputEvent ie=p_variant;
if (buf) {
encode_uint32(ie.type,&buf[0]);
encode_uint32(ie.device,&buf[4]);
encode_uint32(0,&buf[8]);
}
int llen=12;
switch(ie.type) {
case InputEvent::KEY: {
if (buf) {
uint32_t mods=0;
if (ie.key.mod.shift)
mods|=KEY_MASK_SHIFT;
if (ie.key.mod.control)
mods|=KEY_MASK_CTRL;
if (ie.key.mod.alt)
mods|=KEY_MASK_ALT;
if (ie.key.mod.meta)
mods|=KEY_MASK_META;
encode_uint32(mods,&buf[llen]);
encode_uint32(ie.key.scancode,&buf[llen+4]);
}
llen+=8;
} break;
case InputEvent::MOUSE_BUTTON: {
if (buf) {
encode_uint32(ie.mouse_button.button_index,&buf[llen]);
}
llen+=4;
} break;
case InputEvent::JOYSTICK_BUTTON: {
if (buf) {
encode_uint32(ie.joy_button.button_index,&buf[llen]);
}
llen+=4;
} break;
case InputEvent::SCREEN_TOUCH: {
if (buf) {
encode_uint32(ie.screen_touch.index,&buf[llen]);
}
llen+=4;
} break;
case InputEvent::JOYSTICK_MOTION: {
if (buf) {
int axis = ie.joy_motion.axis;
encode_uint32(axis,&buf[llen]);
encode_float(ie.joy_motion.axis_value, &buf[llen+4]);
}
llen+=8;
} break;
}
if (buf)
encode_uint32(llen,&buf[8]);
r_len+=llen;
// not supported
} break;
case Variant::DICTIONARY: {
Dictionary d = p_variant;
if (buf) {
encode_uint32(uint32_t(d.size())|(d.is_shared()?0x80000000:0),buf);
buf+=4;
}
r_len+=4;
List<Variant> keys;
d.get_key_list(&keys);
for(List<Variant>::Element *E=keys.front();E;E=E->next()) {
/*
CharString utf8 = E->->utf8();
if (buf) {
encode_uint32(utf8.length()+1,buf);
buf+=4;
copymem(buf,utf8.get_data(),utf8.length()+1);
}
r_len+=4+utf8.length()+1;
while (r_len%4)
r_len++; //pad
*/
int len;
encode_variant(E->get(),buf,len);
ERR_FAIL_COND_V(len%4,ERR_BUG);
r_len+=len;
if (buf)
buf += len;
encode_variant(d[E->get()],buf,len);
ERR_FAIL_COND_V(len%4,ERR_BUG);
r_len+=len;
if (buf)
buf += len;
}
} break;
case Variant::ARRAY: {
Array v = p_variant;
if (buf) {
encode_uint32(uint32_t(v.size())|(v.is_shared()?0x80000000:0),buf);
buf+=4;
}
r_len+=4;
for(int i=0;i<v.size();i++) {
int len;
encode_variant(v.get(i),buf,len);
ERR_FAIL_COND_V(len%4,ERR_BUG);
r_len+=len;
if (buf)
buf+=len;
}
} break;
// arrays
case Variant::RAW_ARRAY: {
DVector<uint8_t> data = p_variant;
int datalen=data.size();
int datasize=sizeof(uint8_t);
if (buf) {
encode_uint32(datalen,buf);
buf+=4;
DVector<uint8_t>::Read r = data.read();
copymem(buf,&r[0],datalen*datasize);
}
r_len+=4+datalen*datasize;
while(r_len%4)
r_len++;
} break;
case Variant::INT_ARRAY: {
DVector<int> data = p_variant;
int datalen=data.size();
int datasize=sizeof(int32_t);
if (buf) {
encode_uint32(datalen,buf);
buf+=4;
DVector<int>::Read r = data.read();
for(int i=0;i<datalen;i++)
encode_uint32(r[i],&buf[i*datasize]);
}
r_len+=4+datalen*datasize;
} break;
case Variant::REAL_ARRAY: {
DVector<real_t> data = p_variant;
int datalen=data.size();
int datasize=sizeof(real_t);
if (buf) {
encode_uint32(datalen,buf);
buf+=4;
DVector<real_t>::Read r = data.read();
for(int i=0;i<datalen;i++)
encode_float(r[i],&buf[i*datasize]);
}
r_len+=4+datalen*datasize;
} break;
case Variant::STRING_ARRAY: {
DVector<String> data = p_variant;
int len=data.size();
if (buf) {
encode_uint32(len,buf);
buf+=4;
}
r_len+=4;
for(int i=0;i<len;i++) {
CharString utf8 = data.get(i).utf8();
if (buf) {
encode_uint32(utf8.length()+1,buf);
buf+=4;
copymem(buf,utf8.get_data(),utf8.length()+1);
buf+=utf8.length()+1;
}
r_len+=4+utf8.length()+1;
while (r_len%4) {
r_len++; //pad
if (buf)
buf++;
}
}
} break;
case Variant::VECTOR2_ARRAY: {
DVector<Vector2> data = p_variant;
int len=data.size();
if (buf) {
encode_uint32(len,buf);
buf+=4;
}
r_len+=4;
if (buf) {
for(int i=0;i<len;i++) {
Vector2 v = data.get(i);
encode_float(v.x,&buf[0]);
encode_float(v.y,&buf[4]);
buf+=4*2;
}
}
r_len+=4*2*len;
} break;
case Variant::VECTOR3_ARRAY: {
DVector<Vector3> data = p_variant;
int len=data.size();
if (buf) {
encode_uint32(len,buf);
buf+=4;
}
r_len+=4;
if (buf) {
for(int i=0;i<len;i++) {
Vector3 v = data.get(i);
encode_float(v.x,&buf[0]);
encode_float(v.y,&buf[4]);
encode_float(v.z,&buf[8]);
buf+=4*3;
}
}
r_len+=4*3*len;
} break;
case Variant::COLOR_ARRAY: {
DVector<Color> data = p_variant;
int len=data.size();
if (buf) {
encode_uint32(len,buf);
buf+=4;
}
r_len+=4;
if (buf) {
for(int i=0;i<len;i++) {
Color c = data.get(i);
encode_float(c.r,&buf[0]);
encode_float(c.g,&buf[4]);
encode_float(c.b,&buf[8]);
encode_float(c.a,&buf[12]);
buf+=4*4;
}
}
r_len+=4*4*len;
} break;
default: { ERR_FAIL_V(ERR_BUG); }
}
return OK;
}