godot/core/image_quantize.cpp
Rémi Verschelde d8223ffa75 Welcome in 2017, dear changelog reader!
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer
with state-of-the-art rendering techniques tuned to work as low as middle
end handheld devices - without compromising with the possibilities given
for higher end desktop games of course. Great times ahead for the Godot
community and the gamers that will play our games!

(cherry picked from commit c7bc44d5ad)
2017-01-12 19:15:30 +01:00

366 lines
9.5 KiB
C++

/*************************************************************************/
/* image_quantize.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "image.h"
#include <stdio.h>
#include "print_string.h"
#ifdef TOOLS_ENABLED
#include "set.h"
#include "sort.h"
#include "os/os.h"
//#define QUANTIZE_SPEED_OVER_QUALITY
Image::MCBlock::MCBlock() {
}
Image::MCBlock::MCBlock(BColorPos *p_colors,int p_color_count) {
colors=p_colors;
color_count=p_color_count;
min_color.color=BColor(255,255,255,255);
max_color.color=BColor(0,0,0,0);
shrink();
}
int Image::MCBlock::get_longest_axis_index() const {
int max_dist=-1;
int max_index=0;
for(int i=0;i<4;i++) {
int d = max_color.color.col[i]-min_color.color.col[i];
if (d>max_dist) {
max_index=i;
max_dist=d;
}
}
return max_index;
}
int Image::MCBlock::get_longest_axis_length() const {
int max_dist=-1;
for(int i=0;i<4;i++) {
int d = max_color.color.col[i]-min_color.color.col[i];
if (d>max_dist) {
max_dist=d;
}
}
return max_dist;
}
bool Image::MCBlock::operator<(const MCBlock& p_block) const {
int alen = get_longest_axis_length();
int blen = p_block.get_longest_axis_length();
if (alen==blen) {
return colors < p_block.colors;
} else
return alen < blen;
}
void Image::MCBlock::shrink() {
min_color=colors[0];
max_color=colors[0];
for(int i=1;i<color_count;i++) {
for(int j=0;j<4;j++) {
min_color.color.col[j]=MIN(min_color.color.col[j],colors[i].color.col[j]);
max_color.color.col[j]=MAX(max_color.color.col[j],colors[i].color.col[j]);
}
}
}
void Image::quantize() {
bool has_alpha = detect_alpha()!=ALPHA_NONE;
bool quantize_fast=OS::get_singleton()->has_environment("QUANTIZE_FAST");
convert(FORMAT_RGBA);
ERR_FAIL_COND( format!=FORMAT_RGBA );
DVector<uint8_t> indexed_data;
{
int color_count = data.size()/4;
ERR_FAIL_COND(color_count==0);
Set<MCBlock> block_queue;
DVector<BColorPos> data_colors;
data_colors.resize(color_count);
DVector<BColorPos>::Write dcw=data_colors.write();
DVector<uint8_t>::Read dr = data.read();
const BColor * drptr=(const BColor*)&dr[0];
BColorPos *bcptr=&dcw[0];
{
for(int i=0;i<color_count;i++) {
//uint32_t data_ofs=i<<2;
bcptr[i].color=drptr[i];//BColor(drptr[data_ofs+0],drptr[data_ofs+1],drptr[data_ofs+2],drptr[data_ofs+3]);
bcptr[i].index=i;
}
}
//printf("color count: %i\n",color_count);
/*
for(int i=0;i<color_count;i++) {
BColor bc = ((BColor*)&wb[0])[i];
printf("%i - %i,%i,%i,%i\n",i,bc.r,bc.g,bc.b,bc.a);
}*/
MCBlock initial_block((BColorPos*)&dcw[0],color_count);
block_queue.insert(initial_block);
while( block_queue.size() < 256 && block_queue.back()->get().color_count > 1 ) {
MCBlock longest = block_queue.back()->get();
//printf("longest: %i (%i)\n",longest.get_longest_axis_index(),longest.get_longest_axis_length());
block_queue.erase(block_queue.back());
BColorPos *first = longest.colors;
BColorPos *median = longest.colors + (longest.color_count+1)/2;
BColorPos *end = longest.colors + longest.color_count;
#if 0
int lai =longest.get_longest_axis_index();
switch(lai) {
#if 0
case 0: { SortArray<BColorPos,BColorPos::SortR> sort; sort.sort(first,end-first); } break;
case 1: { SortArray<BColorPos,BColorPos::SortG> sort; sort.sort(first,end-first); } break;
case 2: { SortArray<BColorPos,BColorPos::SortB> sort; sort.sort(first,end-first); } break;
case 3: { SortArray<BColorPos,BColorPos::SortA> sort; sort.sort(first,end-first); } break;
#else
case 0: { SortArray<BColorPos,BColorPos::SortR> sort; sort.nth_element(0,end-first,median-first,first); } break;
case 1: { SortArray<BColorPos,BColorPos::SortG> sort; sort.nth_element(0,end-first,median-first,first); } break;
case 2: { SortArray<BColorPos,BColorPos::SortB> sort; sort.nth_element(0,end-first,median-first,first); } break;
case 3: { SortArray<BColorPos,BColorPos::SortA> sort; sort.nth_element(0,end-first,median-first,first); } break;
#endif
}
//avoid same color from being split in 2
//search forward and flip
BColorPos *median_end=median;
BColorPos *p=median_end+1;
while(p!=end) {
if (median_end->color==p->color) {
SWAP(*(median_end+1),*p);
median_end++;
}
p++;
}
//search backward and flip
BColorPos *median_begin=median;
p=median_begin-1;
while(p!=(first-1)) {
if (median_begin->color==p->color) {
SWAP(*(median_begin-1),*p);
median_begin--;
}
p--;
}
if (first < median_begin) {
median=median_begin;
} else if (median_end < end-1) {
median=median_end+1;
} else {
break; //shouldn't have arrived here, since it means all pixels are equal, but wathever
}
MCBlock left(first,median-first);
MCBlock right(median,end-median);
block_queue.insert(left);
block_queue.insert(right);
#else
switch(longest.get_longest_axis_index()) {
case 0: { SortArray<BColorPos,BColorPos::SortR> sort; sort.nth_element(0,end-first,median-first,first); } break;
case 1: { SortArray<BColorPos,BColorPos::SortG> sort; sort.nth_element(0,end-first,median-first,first); } break;
case 2: { SortArray<BColorPos,BColorPos::SortB> sort; sort.nth_element(0,end-first,median-first,first); } break;
case 3: { SortArray<BColorPos,BColorPos::SortA> sort; sort.nth_element(0,end-first,median-first,first); } break;
}
MCBlock left(first,median-first);
MCBlock right(median,end-median);
block_queue.insert(left);
block_queue.insert(right);
#endif
}
while(block_queue.size() > 256) {
block_queue.erase(block_queue.front());// erase least significant
}
int res_colors=0;
int comp_size = (has_alpha?4:3);
indexed_data.resize(color_count + 256*comp_size);
DVector<uint8_t>::Write iw = indexed_data.write();
uint8_t *iwptr=&iw[0];
BColor pallete[256];
// print_line("applying quantization - res colors "+itos(block_queue.size()));
while(block_queue.size()) {
const MCBlock &b = block_queue.back()->get();
uint64_t sum[4]={0,0,0,0};
for(int i=0;i<b.color_count;i++) {
sum[0]+=b.colors[i].color.col[0];
sum[1]+=b.colors[i].color.col[1];
sum[2]+=b.colors[i].color.col[2];
sum[3]+=b.colors[i].color.col[3];
}
BColor c( sum[0]/b.color_count, sum[1]/b.color_count, sum[2]/b.color_count, sum[3]/b.color_count );
//printf(" %i: %i,%i,%i,%i out of %i\n",res_colors,c.r,c.g,c.b,c.a,b.color_count);
for(int i=0;i<comp_size;i++) {
iwptr[ color_count + res_colors * comp_size + i ] = c.col[i];
}
if (quantize_fast) {
for(int i=0;i<b.color_count;i++) {
iwptr[b.colors[i].index]=res_colors;
}
} else {
pallete[res_colors]=c;
}
res_colors++;
block_queue.erase(block_queue.back());
}
if (!quantize_fast) {
for(int i=0;i<color_count;i++) {
const BColor &c=drptr[i];
uint8_t best_dist_idx=0;
uint32_t dist=0xFFFFFFFF;
for(int j=0;j<res_colors;j++) {
const BColor &pc=pallete[j];
uint32_t d = 0;
{ int16_t v = (int16_t)c.r-(int16_t)pc.r; d+=v*v; }
{ int16_t v = (int16_t)c.g-(int16_t)pc.g; d+=v*v; }
{ int16_t v = (int16_t)c.b-(int16_t)pc.b; d+=v*v; }
{ int16_t v = (int16_t)c.a-(int16_t)pc.a; d+=v*v; }
if (d<=dist) {
best_dist_idx=j;
dist=d;
}
}
iwptr[ i ] = best_dist_idx;
}
}
//iw = DVector<uint8_t>::Write();
//dr = DVector<uint8_t>::Read();
//wb = DVector<uint8_t>::Write();
}
print_line(itos(indexed_data.size()));
data=indexed_data;
format=has_alpha?FORMAT_INDEXED_ALPHA:FORMAT_INDEXED;
} //do none
#else
void Image::quantize() {} //do none
#endif