godot/core/math/quat.cpp
Rémi Verschelde d8223ffa75 Welcome in 2017, dear changelog reader!
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer
with state-of-the-art rendering techniques tuned to work as low as middle
end handheld devices - without compromising with the possibilities given
for higher end desktop games of course. Great times ahead for the Godot
community and the gamers that will play our games!

(cherry picked from commit c7bc44d5ad)
2017-01-12 19:15:30 +01:00

268 lines
7.3 KiB
C++

/*************************************************************************/
/* quat.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "quat.h"
#include "print_string.h"
void Quat::set_euler(const Vector3& p_euler) {
real_t half_yaw = p_euler.x * 0.5;
real_t half_pitch = p_euler.y * 0.5;
real_t half_roll = p_euler.z * 0.5;
real_t cos_yaw = Math::cos(half_yaw);
real_t sin_yaw = Math::sin(half_yaw);
real_t cos_pitch = Math::cos(half_pitch);
real_t sin_pitch = Math::sin(half_pitch);
real_t cos_roll = Math::cos(half_roll);
real_t sin_roll = Math::sin(half_roll);
set(cos_roll * sin_pitch * cos_yaw+sin_roll * cos_pitch * sin_yaw,
cos_roll * cos_pitch * sin_yaw - sin_roll * sin_pitch * cos_yaw,
sin_roll * cos_pitch * cos_yaw - cos_roll * sin_pitch * sin_yaw,
cos_roll * cos_pitch * cos_yaw+sin_roll * sin_pitch * sin_yaw);
}
void Quat::operator*=(const Quat& q) {
set(w * q.x+x * q.w+y * q.z - z * q.y,
w * q.y+y * q.w+z * q.x - x * q.z,
w * q.z+z * q.w+x * q.y - y * q.x,
w * q.w - x * q.x - y * q.y - z * q.z);
}
Quat Quat::operator*(const Quat& q) const {
Quat r=*this;
r*=q;
return r;
}
real_t Quat::length() const {
return Math::sqrt(length_squared());
}
void Quat::normalize() {
*this /= length();
}
Quat Quat::normalized() const {
return *this / length();
}
Quat Quat::inverse() const {
return Quat( -x, -y, -z, w );
}
Quat Quat::slerp(const Quat& q, const real_t& t) const {
#if 0
Quat dst=q;
Quat src=*this;
src.normalize();
dst.normalize();
real_t cosine = dst.dot(src);
if (cosine < 0 && true) {
cosine = -cosine;
dst = -dst;
} else {
dst = dst;
}
if (Math::abs(cosine) < 1 - CMP_EPSILON) {
// Standard case (slerp)
real_t sine = Math::sqrt(1 - cosine*cosine);
real_t angle = Math::atan2(sine, cosine);
real_t inv_sine = 1.0f / sine;
real_t coeff_0 = Math::sin((1.0f - t) * angle) * inv_sine;
real_t coeff_1 = Math::sin(t * angle) * inv_sine;
Quat ret= src * coeff_0 + dst * coeff_1;
return ret;
} else {
// There are two situations:
// 1. "rkP" and "q" are very close (cosine ~= +1), so we can do a linear
// interpolation safely.
// 2. "rkP" and "q" are almost invedste of each other (cosine ~= -1), there
// are an infinite number of possibilities interpolation. but we haven't
// have method to fix this case, so just use linear interpolation here.
Quat ret = src * (1.0f - t) + dst *t;
// taking the complement requires renormalisation
ret.normalize();
return ret;
}
#else
real_t to1[4];
real_t omega, cosom, sinom, scale0, scale1;
// calc cosine
cosom = x * q.x + y * q.y + z * q.z
+ w * q.w;
// adjust signs (if necessary)
if ( cosom <0.0 ) {
cosom = -cosom; to1[0] = - q.x;
to1[1] = - q.y;
to1[2] = - q.z;
to1[3] = - q.w;
} else {
to1[0] = q.x;
to1[1] = q.y;
to1[2] = q.z;
to1[3] = q.w;
}
// calculate coefficients
if ( (1.0 - cosom) > CMP_EPSILON ) {
// standard case (slerp)
omega = Math::acos(cosom);
sinom = Math::sin(omega);
scale0 = Math::sin((1.0 - t) * omega) / sinom;
scale1 = Math::sin(t * omega) / sinom;
} else {
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
scale0 = 1.0 - t;
scale1 = t;
}
// calculate final values
return Quat(
scale0 * x + scale1 * to1[0],
scale0 * y + scale1 * to1[1],
scale0 * z + scale1 * to1[2],
scale0 * w + scale1 * to1[3]
);
#endif
}
Quat Quat::slerpni(const Quat& q, const real_t& t) const {
const Quat &from = *this;
float dot = from.dot(q);
if (Math::absf(dot) > 0.9999f) return from;
float theta = Math::acos(dot),
sinT = 1.0f / Math::sin(theta),
newFactor = Math::sin(t * theta) * sinT,
invFactor = Math::sin((1.0f - t) * theta) * sinT;
return Quat( invFactor * from.x + newFactor * q.x,
invFactor * from.y + newFactor * q.y,
invFactor * from.z + newFactor * q.z,
invFactor * from.w + newFactor * q.w );
#if 0
real_t to1[4];
real_t omega, cosom, sinom, scale0, scale1;
// calc cosine
cosom = x * q.x + y * q.y + z * q.z
+ w * q.w;
// adjust signs (if necessary)
if ( cosom <0.0 && false) {
cosom = -cosom; to1[0] = - q.x;
to1[1] = - q.y;
to1[2] = - q.z;
to1[3] = - q.w;
} else {
to1[0] = q.x;
to1[1] = q.y;
to1[2] = q.z;
to1[3] = q.w;
}
// calculate coefficients
if ( (1.0 - cosom) > CMP_EPSILON ) {
// standard case (slerp)
omega = Math::acos(cosom);
sinom = Math::sin(omega);
scale0 = Math::sin((1.0 - t) * omega) / sinom;
scale1 = Math::sin(t * omega) / sinom;
} else {
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
scale0 = 1.0 - t;
scale1 = t;
}
// calculate final values
return Quat(
scale0 * x + scale1 * to1[0],
scale0 * y + scale1 * to1[1],
scale0 * z + scale1 * to1[2],
scale0 * w + scale1 * to1[3]
);
#endif
}
Quat Quat::cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const {
//the only way to do slerp :|
float t2 = (1.0-t)*t*2;
Quat sp = this->slerp(q,t);
Quat sq = prep.slerpni(postq,t);
return sp.slerpni(sq,t2);
}
Quat::operator String() const {
return String::num(x)+", "+String::num(y)+", "+ String::num(z)+", "+ String::num(w);
}
Quat::Quat(const Vector3& axis, const real_t& angle) {
real_t d = axis.length();
if (d==0)
set(0,0,0,0);
else {
real_t s = Math::sin(-angle * 0.5) / d;
set(axis.x * s, axis.y * s, axis.z * s,
Math::cos(-angle * 0.5));
}
}