godot/drivers/gles2/rasterizer_gles2.cpp

10767 lines
322 KiB
C++

/*************************************************************************/
/* rasterizer_gles2.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifdef GLES2_ENABLED
#include "rasterizer_gles2.h"
#include "gl_context/context_gl.h"
#include "global_config.h"
#include "os/os.h"
#include "servers/visual/particle_system_sw.h"
#include "servers/visual/shader_language.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef GLEW_ENABLED
#define _GL_HALF_FLOAT_OES 0x140B
#else
#define _GL_HALF_FLOAT_OES 0x8D61
#endif
#define _GL_RGBA16F_EXT 0x881A
#define _GL_RGB16F_EXT 0x881B
#define _GL_RG16F_EXT 0x822F
#define _GL_R16F_EXT 0x822D
#define _GL_R32F_EXT 0x822E
#define _GL_RED_EXT 0x1903
#define _GL_RG_EXT 0x8227
#define _GL_R8_EXT 0x8229
#define _GL_RG8_EXT 0x822B
#define _DEPTH_COMPONENT24_OES 0x81A6
#ifdef GLEW_ENABLED
#define _glClearDepth glClearDepth
#else
#define _glClearDepth glClearDepthf
#endif
#define _GL_SRGB_EXT 0x8C40
#define _GL_SRGB_ALPHA_EXT 0x8C42
#define _GL_TEXTURE_MAX_ANISOTROPY_EXT 0x84FE
#define _GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF
//#define DEBUG_OPENGL
#ifdef DEBUG_OPENGL
#define DEBUG_TEST_ERROR(m_section) \
{ \
print_line("AT: " + String(m_section)); \
glFlush(); \
uint32_t err = glGetError(); \
if (err) { \
print_line("OpenGL Error #" + itos(err) + " at: " + m_section); \
} \
}
#else
#define DEBUG_TEST_ERROR(m_section)
#endif
static RasterizerGLES2 *_singleton = NULL;
#ifdef GLES_NO_CLIENT_ARRAYS
static float GlobalVertexBuffer[MAX_POLYGON_VERTICES * 8] = { 0 };
#endif
static const GLenum prim_type[] = { GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLE_FAN };
_FORCE_INLINE_ static void _set_color_attrib(const Color &p_color) {
GLfloat c[4] = { p_color.r, p_color.g, p_color.b, p_color.a };
glVertexAttrib4fv(VS::ARRAY_COLOR, c);
}
static _FORCE_INLINE_ uint16_t make_half_float(float f) {
union {
float fv;
uint32_t ui;
} ci;
ci.fv = f;
unsigned int x = ci.ui;
unsigned int sign = (unsigned short)(x >> 31);
unsigned int mantissa;
unsigned int exp;
uint16_t hf;
// get mantissa
mantissa = x & ((1 << 23) - 1);
// get exponent bits
exp = x & (0xFF << 23);
if (exp >= 0x47800000) {
// check if the original single precision float number is a NaN
if (mantissa && (exp == (0xFF << 23))) {
// we have a single precision NaN
mantissa = (1 << 23) - 1;
} else {
// 16-bit half-float representation stores number as Inf
mantissa = 0;
}
hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
(uint16_t)(mantissa >> 13);
}
// check if exponent is <= -15
else if (exp <= 0x38000000) {
/*// store a denorm half-float value or zero
exp = (0x38000000 - exp) >> 23;
mantissa >>= (14 + exp);
hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
*/
hf = 0; //denormals do not work for 3D, convert to zero
} else {
hf = (((uint16_t)sign) << 15) |
(uint16_t)((exp - 0x38000000) >> 13) |
(uint16_t)(mantissa >> 13);
}
return hf;
}
void RasterizerGLES2::_draw_primitive(int p_points, const Vector3 *p_vertices, const Vector3 *p_normals, const Color *p_colors, const Vector3 *p_uvs, const Plane *p_tangents, int p_instanced) {
ERR_FAIL_COND(!p_vertices);
ERR_FAIL_COND(p_points < 1 || p_points > 4);
bool quad = false;
GLenum type;
switch (p_points) {
case 1: type = GL_POINTS; break;
case 2: type = GL_LINES; break;
case 4: quad = true; p_points = 3;
case 3: type = GL_TRIANGLES; break;
};
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
GLfloat vert_array[18];
GLfloat normal_array[18];
GLfloat color_array[24];
GLfloat tangent_array[24];
GLfloat uv_array[18];
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, false, 0, vert_array);
for (int i = 0; i < p_points; i++) {
vert_array[i * 3 + 0] = p_vertices[i].x;
vert_array[i * 3 + 1] = p_vertices[i].y;
vert_array[i * 3 + 2] = p_vertices[i].z;
if (quad) {
int idx = 2 + i;
if (idx == 4)
idx = 0;
vert_array[9 + i * 3 + 0] = p_vertices[idx].x;
vert_array[9 + i * 3 + 1] = p_vertices[idx].y;
vert_array[9 + i * 3 + 2] = p_vertices[idx].z;
}
}
if (p_normals) {
glEnableVertexAttribArray(VS::ARRAY_NORMAL);
glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, false, 0, normal_array);
for (int i = 0; i < p_points; i++) {
normal_array[i * 3 + 0] = p_normals[i].x;
normal_array[i * 3 + 1] = p_normals[i].y;
normal_array[i * 3 + 2] = p_normals[i].z;
if (quad) {
int idx = 2 + i;
if (idx == 4)
idx = 0;
normal_array[9 + i * 3 + 0] = p_normals[idx].x;
normal_array[9 + i * 3 + 1] = p_normals[idx].y;
normal_array[9 + i * 3 + 2] = p_normals[idx].z;
}
}
} else {
glDisableVertexAttribArray(VS::ARRAY_NORMAL);
}
if (p_colors) {
glEnableVertexAttribArray(VS::ARRAY_COLOR);
glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, 0, color_array);
for (int i = 0; i < p_points; i++) {
color_array[i * 4 + 0] = p_colors[i].r;
color_array[i * 4 + 1] = p_colors[i].g;
color_array[i * 4 + 2] = p_colors[i].b;
color_array[i * 4 + 3] = p_colors[i].a;
if (quad) {
int idx = 2 + i;
if (idx == 4)
idx = 0;
color_array[12 + i * 4 + 0] = p_colors[idx].r;
color_array[12 + i * 4 + 1] = p_colors[idx].g;
color_array[12 + i * 4 + 2] = p_colors[idx].b;
color_array[12 + i * 4 + 3] = p_colors[idx].a;
}
}
} else {
glDisableVertexAttribArray(VS::ARRAY_COLOR);
}
if (p_tangents) {
glEnableVertexAttribArray(VS::ARRAY_TANGENT);
glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, false, 0, tangent_array);
for (int i = 0; i < p_points; i++) {
tangent_array[i * 4 + 0] = p_tangents[i].normal.x;
tangent_array[i * 4 + 1] = p_tangents[i].normal.y;
tangent_array[i * 4 + 2] = p_tangents[i].normal.z;
tangent_array[i * 4 + 3] = p_tangents[i].d;
if (quad) {
int idx = 2 + i;
if (idx == 4)
idx = 0;
tangent_array[12 + i * 4 + 0] = p_tangents[idx].normal.x;
tangent_array[12 + i * 4 + 1] = p_tangents[idx].normal.y;
tangent_array[12 + i * 4 + 2] = p_tangents[idx].normal.z;
tangent_array[12 + i * 4 + 3] = p_tangents[idx].d;
}
}
} else {
glDisableVertexAttribArray(VS::ARRAY_TANGENT);
}
if (p_uvs) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glVertexAttribPointer(VS::ARRAY_TEX_UV, 3, GL_FLOAT, false, 0, uv_array);
for (int i = 0; i < p_points; i++) {
uv_array[i * 3 + 0] = p_uvs[i].x;
uv_array[i * 3 + 1] = p_uvs[i].y;
uv_array[i * 3 + 2] = p_uvs[i].z;
if (quad) {
int idx = 2 + i;
if (idx == 4)
idx = 0;
uv_array[9 + i * 3 + 0] = p_uvs[idx].x;
uv_array[9 + i * 3 + 1] = p_uvs[idx].y;
uv_array[9 + i * 3 + 2] = p_uvs[idx].z;
}
}
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
}
/*
if (p_instanced>1)
glDrawArraysInstanced(type,0,p_points,p_instanced);
else
*/
glDrawArrays(type, 0, quad ? 6 : p_points);
};
/* TEXTURE API */
#define _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
#define _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01
#define _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#define _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03
#define _EXT_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT 0x8A54
#define _EXT_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT 0x8A55
#define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT 0x8A56
#define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT 0x8A57
#define _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
#define _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
#define _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#define _EXT_COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70
#define _EXT_COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT 0x8C71
#define _EXT_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72
#define _EXT_COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT 0x8C73
#define _EXT_COMPRESSED_RED_RGTC1_EXT 0x8DBB
#define _EXT_COMPRESSED_RED_RGTC1 0x8DBB
#define _EXT_COMPRESSED_SIGNED_RED_RGTC1 0x8DBC
#define _EXT_COMPRESSED_RG_RGTC2 0x8DBD
#define _EXT_COMPRESSED_SIGNED_RG_RGTC2 0x8DBE
#define _EXT_COMPRESSED_SIGNED_RED_RGTC1_EXT 0x8DBC
#define _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT 0x8DBD
#define _EXT_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT 0x8DBE
#define _EXT_ETC1_RGB8_OES 0x8D64
#define _EXT_SLUMINANCE_NV 0x8C46
#define _EXT_SLUMINANCE_ALPHA_NV 0x8C44
#define _EXT_SRGB8_NV 0x8C41
#define _EXT_SLUMINANCE8_NV 0x8C47
#define _EXT_SLUMINANCE8_ALPHA8_NV 0x8C45
#define _EXT_COMPRESSED_SRGB_S3TC_DXT1_NV 0x8C4C
#define _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_NV 0x8C4D
#define _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_NV 0x8C4E
#define _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_NV 0x8C4F
#define _EXT_ATC_RGB_AMD 0x8C92
#define _EXT_ATC_RGBA_EXPLICIT_ALPHA_AMD 0x8C93
#define _EXT_ATC_RGBA_INTERPOLATED_ALPHA_AMD 0x87EE
/* TEXTURE API */
Image RasterizerGLES2::_get_gl_image_and_format(const Image &p_image, Image::Format p_format, uint32_t p_flags, GLenum &r_gl_format, GLenum &r_gl_internal_format, int &r_gl_components, bool &r_has_alpha_cache, bool &r_compressed) {
r_has_alpha_cache = false;
r_compressed = false;
r_gl_format = 0;
Image image = p_image;
switch (p_format) {
case Image::FORMAT_L8: {
r_gl_components = 1;
r_gl_format = GL_LUMINANCE;
r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_SLUMINANCE_NV : GL_LUMINANCE;
} break;
case Image::FORMAT_INTENSITY: {
if (!image.empty())
image.convert(Image::FORMAT_RGBA8);
r_gl_components = 4;
r_gl_format = GL_RGBA;
r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _GL_SRGB_ALPHA_EXT : GL_RGBA;
r_has_alpha_cache = true;
} break;
case Image::FORMAT_LA8: {
//image.convert(Image::FORMAT_RGBA8);
r_gl_components = 2;
r_gl_format = GL_LUMINANCE_ALPHA;
r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_SLUMINANCE_ALPHA_NV : GL_LUMINANCE_ALPHA;
r_has_alpha_cache = true;
} break;
case Image::FORMAT_INDEXED: {
if (!image.empty())
image.convert(Image::FORMAT_RGB8);
r_gl_components = 3;
r_gl_format = GL_RGB;
r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _GL_SRGB_EXT : GL_RGB;
} break;
case Image::FORMAT_INDEXED_ALPHA: {
if (!image.empty())
image.convert(Image::FORMAT_RGBA8);
r_gl_components = 4;
if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (srgb_supported) {
r_gl_format = GL_RGBA;
r_gl_internal_format = _GL_SRGB_ALPHA_EXT;
} else {
r_gl_internal_format = GL_RGBA;
if (!image.empty())
image.srgb_to_linear();
}
} else {
r_gl_internal_format = GL_RGBA;
}
r_has_alpha_cache = true;
} break;
case Image::FORMAT_RGB8: {
r_gl_components = 3;
if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (srgb_supported) {
r_gl_internal_format = _GL_SRGB_EXT;
r_gl_format = GL_RGB;
} else {
r_gl_internal_format = GL_RGB;
if (!image.empty())
image.srgb_to_linear();
}
} else {
r_gl_internal_format = GL_RGB;
}
} break;
case Image::FORMAT_RGBA8: {
r_gl_components = 4;
if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (srgb_supported) {
r_gl_internal_format = _GL_SRGB_ALPHA_EXT;
r_gl_format = GL_RGBA;
//r_gl_internal_format=GL_RGBA;
} else {
r_gl_internal_format = GL_RGBA;
if (!image.empty())
image.srgb_to_linear();
}
} else {
r_gl_internal_format = GL_RGBA;
}
r_has_alpha_cache = true;
} break;
case Image::FORMAT_DXT1: {
if (!s3tc_supported || (!s3tc_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
if (!image.empty()) {
image.decompress();
}
r_gl_components = 4;
if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (srgb_supported) {
r_gl_format = GL_RGBA;
r_gl_internal_format = _GL_SRGB_ALPHA_EXT;
} else {
r_gl_internal_format = GL_RGBA;
if (!image.empty())
image.srgb_to_linear();
}
} else {
r_gl_internal_format = GL_RGBA;
}
r_has_alpha_cache = true;
} else {
r_gl_components = 1; //doesn't matter much
r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_NV : _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT;
r_compressed = true;
};
} break;
case Image::FORMAT_DXT3: {
if (!s3tc_supported || (!s3tc_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
if (!image.empty()) {
image.decompress();
}
r_gl_components = 4;
if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (srgb_supported) {
r_gl_format = GL_RGBA;
r_gl_internal_format = _GL_SRGB_ALPHA_EXT;
} else {
r_gl_internal_format = GL_RGBA;
if (!image.empty())
image.srgb_to_linear();
}
} else {
r_gl_internal_format = GL_RGBA;
}
r_has_alpha_cache = true;
} else {
r_gl_components = 1; //doesn't matter much
r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_NV : _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT;
r_has_alpha_cache = true;
r_compressed = true;
};
} break;
case Image::FORMAT_DXT5: {
if (!s3tc_supported || (!s3tc_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
if (!image.empty()) {
image.decompress();
}
r_gl_components = 4;
if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (srgb_supported) {
r_gl_format = GL_RGBA;
r_gl_internal_format = _GL_SRGB_ALPHA_EXT;
} else {
r_gl_internal_format = GL_RGBA;
if (!image.empty())
image.srgb_to_linear();
}
} else {
r_gl_internal_format = GL_RGBA;
}
r_has_alpha_cache = true;
} else {
r_gl_components = 1; //doesn't matter much
r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_NV : _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT;
r_has_alpha_cache = true;
r_compressed = true;
};
} break;
case Image::FORMAT_ATI1: {
if (!latc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components = 4;
if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (srgb_supported) {
r_gl_format = GL_RGBA;
r_gl_internal_format = _GL_SRGB_ALPHA_EXT;
} else {
r_gl_internal_format = GL_RGBA;
if (!image.empty())
image.srgb_to_linear();
}
} else {
r_gl_internal_format = GL_RGBA;
}
r_has_alpha_cache = true;
} else {
r_gl_internal_format = _EXT_COMPRESSED_LUMINANCE_LATC1_EXT;
r_gl_components = 1; //doesn't matter much
r_compressed = true;
};
} break;
case Image::FORMAT_ATI2: {
if (!latc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components = 4;
if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (srgb_supported) {
r_gl_format = GL_RGBA;
r_gl_internal_format = _GL_SRGB_ALPHA_EXT;
} else {
r_gl_internal_format = GL_RGBA;
if (!image.empty())
image.srgb_to_linear();
}
} else {
r_gl_internal_format = GL_RGBA;
}
r_has_alpha_cache = true;
} else {
r_gl_internal_format = _EXT_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT;
r_gl_components = 1; //doesn't matter much
r_compressed = true;
};
} break;
case Image::FORMAT_PVRTC2: {
if (!pvr_supported || (!pvr_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
if (!image.empty()) {
image.decompress();
}
r_gl_components = 4;
if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (srgb_supported) {
r_gl_format = GL_RGBA;
r_gl_internal_format = _GL_SRGB_ALPHA_EXT;
} else {
r_gl_internal_format = GL_RGBA;
if (!image.empty())
image.srgb_to_linear();
}
} else {
r_gl_internal_format = GL_RGBA;
}
r_has_alpha_cache = true;
} else {
r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT : _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
r_gl_components = 1; //doesn't matter much
r_compressed = true;
}
} break;
case Image::FORMAT_PVRTC2A: {
if (!pvr_supported || (!pvr_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
if (!image.empty())
image.decompress();
r_gl_components = 4;
if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (srgb_supported) {
r_gl_format = GL_RGBA;
r_gl_internal_format = _GL_SRGB_ALPHA_EXT;
} else {
r_gl_internal_format = GL_RGBA;
if (!image.empty())
image.srgb_to_linear();
}
} else {
r_gl_internal_format = GL_RGBA;
}
r_has_alpha_cache = true;
} else {
r_gl_internal_format = _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT : _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
r_gl_components = 1; //doesn't matter much
r_compressed = true;
}
} break;
case Image::FORMAT_PVRTC4: {
if (!pvr_supported || (!pvr_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
if (!image.empty())
image.decompress();
r_gl_components = 4;
if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (srgb_supported) {
r_gl_format = GL_RGBA;
r_gl_internal_format = _GL_SRGB_ALPHA_EXT;
} else {
r_gl_internal_format = GL_RGBA;
if (!image.empty())
image.srgb_to_linear();
}
} else {
r_gl_internal_format = GL_RGBA;
}
r_has_alpha_cache = true;
} else {
r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT : _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
r_gl_components = 1; //doesn't matter much
r_compressed = true;
}
} break;
case Image::FORMAT_PVRTC4A: {
if (!pvr_supported || (!pvr_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
if (!image.empty())
image.decompress();
r_gl_components = 4;
if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (srgb_supported) {
r_gl_format = GL_RGBA;
r_gl_internal_format = _GL_SRGB_ALPHA_EXT;
} else {
r_gl_internal_format = GL_RGBA;
if (!image.empty())
image.srgb_to_linear();
}
} else {
r_gl_internal_format = GL_RGBA;
}
r_has_alpha_cache = true;
} else {
r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT : _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
r_gl_components = 1; //doesn't matter much
r_compressed = true;
}
} break;
case Image::FORMAT_ETC: {
if (!etc_supported || p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (!image.empty()) {
image.decompress();
}
r_gl_components = 3;
if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) {
if (srgb_supported) {
r_gl_format = GL_RGB;
r_gl_internal_format = _GL_SRGB_EXT;
} else {
r_gl_internal_format = GL_RGB;
if (!image.empty())
image.srgb_to_linear();
}
} else {
r_gl_internal_format = GL_RGB;
}
r_gl_internal_format = GL_RGB;
} else {
r_gl_internal_format = _EXT_ETC1_RGB8_OES;
r_gl_components = 1; //doesn't matter much
r_compressed = true;
}
} break;
case Image::FORMAT_ATC: {
if (!atitc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components = 3;
r_gl_internal_format = GL_RGB;
} else {
r_gl_internal_format = _EXT_ATC_RGB_AMD;
r_gl_components = 1; //doesn't matter much
r_compressed = true;
}
} break;
case Image::FORMAT_ATC_ALPHA_EXPLICIT: {
if (!atitc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components = 4;
r_gl_internal_format = GL_RGBA;
} else {
r_gl_internal_format = _EXT_ATC_RGBA_EXPLICIT_ALPHA_AMD;
r_gl_components = 1; //doesn't matter much
r_compressed = true;
}
} break;
case Image::FORMAT_ATC_ALPHA_INTERPOLATED: {
if (!atitc_supported) {
if (!image.empty()) {
image.decompress();
}
r_gl_components = 4;
r_gl_internal_format = GL_RGBA;
} else {
r_gl_internal_format = _EXT_ATC_RGBA_INTERPOLATED_ALPHA_AMD;
r_gl_components = 1; //doesn't matter much
r_compressed = true;
}
} break;
case Image::FORMAT_YUV_422:
case Image::FORMAT_YUV_444: {
if (!image.empty())
image.convert(Image::FORMAT_RGB8);
r_gl_internal_format = GL_RGB;
r_gl_components = 3;
} break;
default: {
ERR_FAIL_V(Image());
}
}
if (r_gl_format == 0) {
r_gl_format = r_gl_internal_format;
}
return image;
}
static const GLenum _cube_side_enum[6] = {
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
};
RID RasterizerGLES2::texture_create() {
Texture *texture = memnew(Texture);
ERR_FAIL_COND_V(!texture, RID());
glGenTextures(1, &texture->tex_id);
texture->active = false;
texture->total_data_size = 0;
return texture_owner.make_rid(texture);
}
void RasterizerGLES2::texture_allocate(RID p_texture, int p_width, int p_height, Image::Format p_format, uint32_t p_flags) {
bool has_alpha_cache;
int components;
GLenum format;
GLenum internal_format;
bool compressed;
int po2_width = nearest_power_of_2(p_width);
int po2_height = nearest_power_of_2(p_height);
if (p_flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) {
p_flags &= ~VS::TEXTURE_FLAG_MIPMAPS; // no mipies for video
}
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
texture->width = p_width;
texture->height = p_height;
texture->format = p_format;
texture->flags = p_flags;
texture->target = (p_flags & VS::TEXTURE_FLAG_CUBEMAP) ? GL_TEXTURE_CUBE_MAP : GL_TEXTURE_2D;
_get_gl_image_and_format(Image(), texture->format, texture->flags, format, internal_format, components, has_alpha_cache, compressed);
bool scale_textures = !compressed && !(p_flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) && (!npo2_textures_available || p_flags & VS::TEXTURE_FLAG_MIPMAPS);
if (scale_textures) {
texture->alloc_width = po2_width;
texture->alloc_height = po2_height;
//print_line("scale because npo2: "+itos(npo2_textures_available)+" mm: "+itos(p_format&VS::TEXTURE_FLAG_MIPMAPS)+" "+itos(p_mipmap_count) );
} else {
texture->alloc_width = texture->width;
texture->alloc_height = texture->height;
};
if (!(p_flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) && shrink_textures_x2) {
texture->alloc_height = MAX(1, texture->alloc_height / 2);
texture->alloc_width = MAX(1, texture->alloc_width / 2);
}
texture->gl_components_cache = components;
texture->gl_format_cache = format;
texture->gl_internal_format_cache = internal_format;
texture->format_has_alpha = has_alpha_cache;
texture->compressed = compressed;
texture->has_alpha = false; //by default it doesn't have alpha unless something with alpha is blitteds
texture->data_size = 0;
texture->mipmaps = 0;
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
if (p_flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) {
//prealloc if video
glTexImage2D(texture->target, 0, internal_format, p_width, p_height, 0, format, GL_UNSIGNED_BYTE, NULL);
}
texture->active = true;
}
void RasterizerGLES2::texture_set_data(RID p_texture, const Image &p_image, VS::CubeMapSide p_cube_side) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(!texture->active);
ERR_FAIL_COND(texture->render_target);
ERR_FAIL_COND(texture->format != p_image.get_format());
ERR_FAIL_COND(p_image.empty());
int components;
GLenum format;
GLenum internal_format;
bool alpha;
bool compressed;
if (keep_copies && !(texture->flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) && !(use_reload_hooks && texture->reloader)) {
texture->image[p_cube_side] = p_image;
}
Image img = _get_gl_image_and_format(p_image, p_image.get_format(), texture->flags, format, internal_format, components, alpha, compressed);
if (texture->alloc_width != img.get_width() || texture->alloc_height != img.get_height()) {
if (texture->alloc_width == img.get_width() / 2 && texture->alloc_height == img.get_height() / 2) {
img.shrink_x2();
} else if (img.get_format() <= Image::FORMAT_INDEXED_ALPHA) {
img.resize(texture->alloc_width, texture->alloc_height, Image::INTERPOLATE_BILINEAR);
}
};
if (!(texture->flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) && img.detect_alpha() == Image::ALPHA_BLEND) {
texture->has_alpha = true;
}
GLenum blit_target = (texture->target == GL_TEXTURE_CUBE_MAP) ? _cube_side_enum[p_cube_side] : GL_TEXTURE_2D;
texture->data_size = img.get_data().size();
PoolVector<uint8_t>::Read read = img.get_data().read();
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
texture->ignore_mipmaps = compressed && img.get_mipmaps() == 0;
if (texture->flags & VS::TEXTURE_FLAG_MIPMAPS && !texture->ignore_mipmaps)
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, use_fast_texture_filter ? GL_LINEAR_MIPMAP_NEAREST : GL_LINEAR_MIPMAP_LINEAR);
else {
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
}
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering
} else {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // raw Filtering
}
bool force_clamp_to_edge = !(texture->flags & VS::TEXTURE_FLAG_MIPMAPS && !texture->ignore_mipmaps) && (nearest_power_of_2(texture->alloc_height) != texture->alloc_height || nearest_power_of_2(texture->alloc_width) != texture->alloc_width);
if (!force_clamp_to_edge && (texture->flags & VS::TEXTURE_FLAG_REPEAT || texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) && texture->target != GL_TEXTURE_CUBE_MAP) {
if (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);
} else {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
}
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
if (use_anisotropic_filter) {
if (texture->flags & VS::TEXTURE_FLAG_ANISOTROPIC_FILTER) {
glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, anisotropic_level);
} else {
glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, 1);
}
}
int mipmaps = (texture->flags & VS::TEXTURE_FLAG_MIPMAPS && img.get_mipmaps() > 0) ? img.get_mipmaps() + 1 : 1;
int w = img.get_width();
int h = img.get_height();
int tsize = 0;
for (int i = 0; i < mipmaps; i++) {
int size, ofs;
img.get_mipmap_offset_and_size(i, ofs, size);
//print_line("mipmap: "+itos(i)+" size: "+itos(size)+" w: "+itos(mm_w)+", h: "+itos(mm_h));
if (texture->compressed) {
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glCompressedTexImage2D(blit_target, i, format, w, h, 0, size, &read[ofs]);
} else {
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
if (texture->flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) {
glTexSubImage2D(blit_target, i, 0, 0, w, h, format, GL_UNSIGNED_BYTE, &read[ofs]);
} else {
glTexImage2D(blit_target, i, internal_format, w, h, 0, format, GL_UNSIGNED_BYTE, &read[ofs]);
}
}
tsize += size;
w = MAX(1, w >> 1);
h = MAX(1, h >> 1);
}
_rinfo.texture_mem -= texture->total_data_size;
texture->total_data_size = tsize;
_rinfo.texture_mem += texture->total_data_size;
//printf("texture: %i x %i - size: %i - total: %i\n",texture->width,texture->height,tsize,_rinfo.texture_mem);
if (texture->flags & VS::TEXTURE_FLAG_MIPMAPS && mipmaps == 1 && !texture->ignore_mipmaps) {
//generate mipmaps if they were requested and the image does not contain them
glGenerateMipmap(texture->target);
}
texture->mipmaps = mipmaps;
if (mipmaps > 1) {
//glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, mipmaps-1 ); - assumed to have all, always
}
//texture_set_flags(p_texture,texture->flags);
}
Image RasterizerGLES2::texture_get_data(RID p_texture, VS::CubeMapSide p_cube_side) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, Image());
ERR_FAIL_COND_V(!texture->active, Image());
ERR_FAIL_COND_V(texture->data_size == 0, Image());
ERR_FAIL_COND_V(texture->render_target, Image());
return texture->image[p_cube_side];
#if 0
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,Image());
ERR_FAIL_COND_V(!texture->active,Image());
ERR_FAIL_COND_V(texture->data_size==0,Image());
PoolVector<uint8_t> data;
GLenum format,type=GL_UNSIGNED_BYTE;
Image::Format fmt;
int pixelsize=0;
int pixelshift=0;
int minw=1,minh=1;
bool compressed=false;
fmt=texture->format;
switch(texture->format) {
case Image::FORMAT_L8: {
format=GL_LUMINANCE;
type=GL_UNSIGNED_BYTE;
data.resize(texture->alloc_width*texture->alloc_height);
pixelsize=1;
} break;
case Image::FORMAT_INTENSITY: {
return Image();
} break;
case Image::FORMAT_LA8: {
format=GL_LUMINANCE_ALPHA;
type=GL_UNSIGNED_BYTE;
pixelsize=2;
} break;
case Image::FORMAT_RGB8: {
format=GL_RGB;
type=GL_UNSIGNED_BYTE;
pixelsize=3;
} break;
case Image::FORMAT_RGBA8: {
format=GL_RGBA;
type=GL_UNSIGNED_BYTE;
pixelsize=4;
} break;
case Image::FORMAT_INDEXED: {
format=GL_RGB;
type=GL_UNSIGNED_BYTE;
fmt=Image::FORMAT_RGB8;
pixelsize=3;
} break;
case Image::FORMAT_INDEXED_ALPHA: {
format=GL_RGBA;
type=GL_UNSIGNED_BYTE;
fmt=Image::FORMAT_RGBA8;
pixelsize=4;
} break;
case Image::FORMAT_DXT1: {
pixelsize=1; //doesn't matter much
format=GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
compressed=true;
pixelshift=1;
minw=minh=4;
} break;
case Image::FORMAT_DXT3: {
pixelsize=1; //doesn't matter much
format=GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
compressed=true;
minw=minh=4;
} break;
case Image::FORMAT_DXT5: {
pixelsize=1; //doesn't matter much
format=GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
compressed=true;
minw=minh=4;
} break;
case Image::FORMAT_ATI1: {
format=GL_COMPRESSED_RED_RGTC1;
pixelsize=1; //doesn't matter much
compressed=true;
pixelshift=1;
minw=minh=4;
} break;
case Image::FORMAT_ATI2: {
format=GL_COMPRESSED_RG_RGTC2;
pixelsize=1; //doesn't matter much
compressed=true;
minw=minh=4;
} break;
default:{}
}
data.resize(texture->data_size);
PoolVector<uint8_t>::Write wb = data.write();
glActiveTexture(GL_TEXTURE0);
int ofs=0;
glBindTexture(texture->target,texture->tex_id);
int w=texture->alloc_width;
int h=texture->alloc_height;
for(int i=0;i<texture->mipmaps+1;i++) {
if (compressed) {
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glGetCompressedTexImage(texture->target,i,&wb[ofs]);
} else {
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glGetTexImage(texture->target,i,format,type,&wb[ofs]);
}
int size = (w*h*pixelsize)>>pixelshift;
ofs+=size;
w=MAX(minw,w>>1);
h=MAX(minh,h>>1);
}
wb=PoolVector<uint8_t>::Write();
Image img(texture->alloc_width,texture->alloc_height,texture->mipmaps,fmt,data);
if (texture->format<Image::FORMAT_INDEXED && (texture->alloc_width!=texture->width || texture->alloc_height!=texture->height))
img.resize(texture->width,texture->height);
return img;
#endif
}
void RasterizerGLES2::texture_set_flags(RID p_texture, uint32_t p_flags) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
if (texture->render_target) {
p_flags &= VS::TEXTURE_FLAG_FILTER; //can change only filter
}
bool had_mipmaps = texture->flags & VS::TEXTURE_FLAG_MIPMAPS;
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
uint32_t cube = texture->flags & VS::TEXTURE_FLAG_CUBEMAP;
texture->flags = p_flags | cube; // can't remove a cube from being a cube
bool force_clamp_to_edge = !(p_flags & VS::TEXTURE_FLAG_MIPMAPS && !texture->ignore_mipmaps) && (nearest_power_of_2(texture->alloc_height) != texture->alloc_height || nearest_power_of_2(texture->alloc_width) != texture->alloc_width);
if (!force_clamp_to_edge && (texture->flags & VS::TEXTURE_FLAG_REPEAT || texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) && texture->target != GL_TEXTURE_CUBE_MAP) {
if (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);
} else {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
}
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
if (use_anisotropic_filter) {
if (texture->flags & VS::TEXTURE_FLAG_ANISOTROPIC_FILTER) {
glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, anisotropic_level);
} else {
glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, 1);
}
}
if (texture->flags & VS::TEXTURE_FLAG_MIPMAPS && !texture->ignore_mipmaps) {
if (!had_mipmaps && texture->mipmaps == 1) {
glGenerateMipmap(texture->target);
}
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, use_fast_texture_filter ? GL_LINEAR_MIPMAP_NEAREST : GL_LINEAR_MIPMAP_LINEAR);
} else {
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
}
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering
} else {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // raw Filtering
}
}
uint32_t RasterizerGLES2::texture_get_flags(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->flags;
}
Image::Format RasterizerGLES2::texture_get_format(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, Image::FORMAT_L8);
return texture->format;
}
uint32_t RasterizerGLES2::texture_get_width(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->width;
}
uint32_t RasterizerGLES2::texture_get_height(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->height;
}
bool RasterizerGLES2::texture_has_alpha(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->has_alpha;
}
void RasterizerGLES2::texture_set_size_override(RID p_texture, int p_width, int p_height) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(texture->render_target);
ERR_FAIL_COND(p_width <= 0 || p_width > 16384);
ERR_FAIL_COND(p_height <= 0 || p_height > 16384);
//real texture size is in alloc width and height
texture->width = p_width;
texture->height = p_height;
}
void RasterizerGLES2::texture_set_reload_hook(RID p_texture, ObjectID p_owner, const StringName &p_function) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(texture->render_target);
texture->reloader = p_owner;
texture->reloader_func = p_function;
if (use_reload_hooks && p_owner && keep_copies) {
for (int i = 0; i < 6; i++)
texture->image[i] = Image();
}
}
GLuint RasterizerGLES2::_texture_get_name(RID p_tex) {
Texture *texture = texture_owner.get(p_tex);
ERR_FAIL_COND_V(!texture, 0);
return texture->tex_id;
};
void RasterizerGLES2::texture_set_path(RID p_texture, const String &p_path) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
texture->path = p_path;
}
String RasterizerGLES2::texture_get_path(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, String());
return texture->path;
}
void RasterizerGLES2::texture_debug_usage(List<VS::TextureInfo> *r_info) {
List<RID> textures;
texture_owner.get_owned_list(&textures);
for (List<RID>::Element *E = textures.front(); E; E = E->next()) {
Texture *t = texture_owner.get(E->get());
if (!t)
continue;
VS::TextureInfo tinfo;
tinfo.path = t->path;
tinfo.format = t->format;
tinfo.size.x = t->alloc_width;
tinfo.size.y = t->alloc_height;
tinfo.bytes = t->total_data_size;
r_info->push_back(tinfo);
}
}
void RasterizerGLES2::texture_set_shrink_all_x2_on_set_data(bool p_enable) {
shrink_textures_x2 = p_enable;
}
/* SHADER API */
RID RasterizerGLES2::shader_create(VS::ShaderMode p_mode) {
Shader *shader = memnew(Shader);
shader->mode = p_mode;
RID rid = shader_owner.make_rid(shader);
shader_set_mode(rid, p_mode);
_shader_make_dirty(shader);
return rid;
}
void RasterizerGLES2::shader_set_mode(RID p_shader, VS::ShaderMode p_mode) {
ERR_FAIL_INDEX(p_mode, 3);
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
if (shader->custom_code_id && p_mode == shader->mode)
return;
if (shader->custom_code_id) {
switch (shader->mode) {
case VS::SHADER_MATERIAL: {
material_shader.free_custom_shader(shader->custom_code_id);
} break;
case VS::SHADER_CANVAS_ITEM: {
canvas_shader.free_custom_shader(shader->custom_code_id);
} break;
}
shader->custom_code_id = 0;
}
shader->mode = p_mode;
switch (shader->mode) {
case VS::SHADER_MATERIAL: {
shader->custom_code_id = material_shader.create_custom_shader();
} break;
case VS::SHADER_CANVAS_ITEM: {
shader->custom_code_id = canvas_shader.create_custom_shader();
} break;
}
_shader_make_dirty(shader);
}
VS::ShaderMode RasterizerGLES2::shader_get_mode(RID p_shader) const {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader, VS::SHADER_MATERIAL);
return shader->mode;
}
void RasterizerGLES2::shader_set_code(RID p_shader, const String &p_vertex, const String &p_fragment, const String &p_light, int p_vertex_ofs, int p_fragment_ofs, int p_light_ofs) {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
#ifdef DEBUG_ENABLED
if (shader->vertex_code == p_vertex && shader->fragment_code == p_fragment && shader->light_code == p_light)
return;
#endif
shader->fragment_code = p_fragment;
shader->vertex_code = p_vertex;
shader->light_code = p_light;
shader->fragment_line = p_fragment_ofs;
shader->vertex_line = p_vertex_ofs;
shader->light_line = p_light_ofs;
_shader_make_dirty(shader);
}
String RasterizerGLES2::shader_get_vertex_code(RID p_shader) const {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader, String());
return shader->vertex_code;
}
String RasterizerGLES2::shader_get_fragment_code(RID p_shader) const {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader, String());
return shader->fragment_code;
}
String RasterizerGLES2::shader_get_light_code(RID p_shader) const {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader, String());
return shader->light_code;
}
void RasterizerGLES2::_shader_make_dirty(Shader *p_shader) {
if (p_shader->dirty_list.in_list())
return;
_shader_dirty_list.add(&p_shader->dirty_list);
}
void RasterizerGLES2::shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
if (shader->dirty_list.in_list())
_update_shader(shader); // ok should be not anymore dirty
Map<int, StringName> order;
for (Map<StringName, ShaderLanguage::Uniform>::Element *E = shader->uniforms.front(); E; E = E->next()) {
order[E->get().order] = E->key();
}
for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) {
PropertyInfo pi;
ShaderLanguage::Uniform &u = shader->uniforms[E->get()];
pi.name = E->get();
switch (u.type) {
case ShaderLanguage::TYPE_VOID:
case ShaderLanguage::TYPE_BOOL:
case ShaderLanguage::TYPE_FLOAT:
case ShaderLanguage::TYPE_VEC2:
case ShaderLanguage::TYPE_VEC3:
case ShaderLanguage::TYPE_MAT3:
case ShaderLanguage::TYPE_MAT4:
case ShaderLanguage::TYPE_VEC4:
pi.type = u.default_value.get_type();
break;
case ShaderLanguage::TYPE_TEXTURE:
pi.type = Variant::_RID;
pi.hint = PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string = "Texture";
break;
case ShaderLanguage::TYPE_CUBEMAP:
pi.type = Variant::_RID;
pi.hint = PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string = "CubeMap";
break;
};
p_param_list->push_back(pi);
}
}
void RasterizerGLES2::shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture) {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
ERR_FAIL_COND(p_texture.is_valid() && !texture_owner.owns(p_texture));
if (p_texture.is_valid())
shader->default_textures[p_name] = p_texture;
else
shader->default_textures.erase(p_name);
_shader_make_dirty(shader);
}
RID RasterizerGLES2::shader_get_default_texture_param(RID p_shader, const StringName &p_name) const {
const Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader, RID());
const Map<StringName, RID>::Element *E = shader->default_textures.find(p_name);
if (!E)
return RID();
return E->get();
}
Variant RasterizerGLES2::shader_get_default_param(RID p_shader, const StringName &p_name) {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader, Variant());
//update shader params if necessary
//make sure the shader is compiled and everything
//so the actual parameters can be properly retrieved!
if (shader->dirty_list.in_list()) {
_update_shader(shader);
}
if (shader->valid && shader->uniforms.has(p_name))
return shader->uniforms[p_name].default_value;
return Variant();
}
/* COMMON MATERIAL API */
RID RasterizerGLES2::material_create() {
RID material = material_owner.make_rid(memnew(Material));
return material;
}
void RasterizerGLES2::material_set_shader(RID p_material, RID p_shader) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
if (material->shader == p_shader)
return;
material->shader = p_shader;
material->shader_version = 0;
}
RID RasterizerGLES2::material_get_shader(RID p_material) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, RID());
return material->shader;
}
void RasterizerGLES2::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
Map<StringName, Material::UniformData>::Element *E = material->shader_params.find(p_param);
if (E) {
if (p_value.get_type() == Variant::NIL) {
material->shader_params.erase(E);
material->shader_version = 0; //get default!
} else {
E->get().value = p_value;
E->get().inuse = true;
}
} else {
if (p_value.get_type() == Variant::NIL)
return;
Material::UniformData ud;
ud.index = -1;
ud.value = p_value;
ud.istexture = p_value.get_type() == Variant::_RID; /// cache it being texture
ud.inuse = true;
material->shader_params[p_param] = ud; //may be got at some point, or erased
}
}
Variant RasterizerGLES2::material_get_param(RID p_material, const StringName &p_param) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, Variant());
if (material->shader.is_valid()) {
//update shader params if necessary
//make sure the shader is compiled and everything
//so the actual parameters can be properly retrieved!
material->shader_cache = shader_owner.get(material->shader);
if (!material->shader_cache) {
//invalidate
material->shader = RID();
material->shader_cache = NULL;
} else {
if (material->shader_cache->dirty_list.in_list())
_update_shader(material->shader_cache);
if (material->shader_cache->valid && material->shader_cache->version != material->shader_version) {
//validate
_update_material_shader_params(material);
}
}
}
if (material->shader_params.has(p_param) && material->shader_params[p_param].inuse)
return material->shader_params[p_param].value;
else
return Variant();
}
void RasterizerGLES2::material_set_flag(RID p_material, VS::MaterialFlag p_flag, bool p_enabled) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
ERR_FAIL_INDEX(p_flag, VS::MATERIAL_FLAG_MAX);
material->flags[p_flag] = p_enabled;
}
bool RasterizerGLES2::material_get_flag(RID p_material, VS::MaterialFlag p_flag) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, false);
ERR_FAIL_INDEX_V(p_flag, VS::MATERIAL_FLAG_MAX, false);
return material->flags[p_flag];
}
void RasterizerGLES2::material_set_depth_draw_mode(RID p_material, VS::MaterialDepthDrawMode p_mode) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->depth_draw_mode = p_mode;
}
VS::MaterialDepthDrawMode RasterizerGLES2::material_get_depth_draw_mode(RID p_material) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, VS::MATERIAL_DEPTH_DRAW_ALWAYS);
return material->depth_draw_mode;
}
void RasterizerGLES2::material_set_blend_mode(RID p_material, VS::MaterialBlendMode p_mode) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->blend_mode = p_mode;
}
VS::MaterialBlendMode RasterizerGLES2::material_get_blend_mode(RID p_material) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, VS::MATERIAL_BLEND_MODE_ADD);
return material->blend_mode;
}
void RasterizerGLES2::material_set_line_width(RID p_material, float p_line_width) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->line_width = p_line_width;
}
float RasterizerGLES2::material_get_line_width(RID p_material) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, 0);
return material->line_width;
}
/* MESH API */
RID RasterizerGLES2::mesh_create() {
return mesh_owner.make_rid(memnew(Mesh));
}
void RasterizerGLES2::mesh_add_surface(RID p_mesh, VS::PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, bool p_alpha_sort) {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_primitive, VS::PRIMITIVE_MAX);
ERR_FAIL_COND(p_arrays.size() != VS::ARRAY_MAX);
uint32_t format = 0;
// validation
int index_array_len = 0;
int array_len = 0;
for (int i = 0; i < p_arrays.size(); i++) {
if (p_arrays[i].get_type() == Variant::NIL)
continue;
format |= (1 << i);
if (i == VS::ARRAY_VERTEX) {
array_len = Vector3Array(p_arrays[i]).size();
ERR_FAIL_COND(array_len == 0);
} else if (i == VS::ARRAY_INDEX) {
index_array_len = IntArray(p_arrays[i]).size();
}
}
ERR_FAIL_COND((format & VS::ARRAY_FORMAT_VERTEX) == 0); // mandatory
ERR_FAIL_COND(mesh->morph_target_count != p_blend_shapes.size());
if (mesh->morph_target_count) {
//validate format for morphs
for (int i = 0; i < p_blend_shapes.size(); i++) {
uint32_t bsformat = 0;
Array arr = p_blend_shapes[i];
for (int j = 0; j < arr.size(); j++) {
if (arr[j].get_type() != Variant::NIL)
bsformat |= (1 << j);
}
ERR_FAIL_COND((bsformat) != (format & (VS::ARRAY_FORMAT_BONES - 1)));
}
}
Surface *surface = memnew(Surface);
ERR_FAIL_COND(!surface);
bool use_VBO = true; //glGenBuffersARB!=NULL; // TODO detect if it's in there
if ((!use_hw_skeleton_xform && format & VS::ARRAY_FORMAT_WEIGHTS) || mesh->morph_target_count > 0) {
use_VBO = false;
}
//surface->packed=pack_arrays && use_VBO;
int total_elem_size = 0;
for (int i = 0; i < VS::ARRAY_MAX; i++) {
Surface::ArrayData &ad = surface->array[i];
ad.size = 0;
ad.ofs = 0;
int elem_size = 0;
int elem_count = 0;
bool valid_local = true;
GLenum datatype;
bool normalize = false;
bool bind = false;
if (!(format & (1 << i))) // no array
continue;
switch (i) {
case VS::ARRAY_VERTEX: {
if (use_VBO && use_half_float) {
elem_size = 3 * sizeof(int16_t); // vertex
datatype = _GL_HALF_FLOAT_OES;
} else {
elem_size = 3 * sizeof(GLfloat); // vertex
datatype = GL_FLOAT;
}
bind = true;
elem_count = 3;
} break;
case VS::ARRAY_NORMAL: {
if (use_VBO) {
elem_size = 4 * sizeof(int8_t); // vertex
datatype = GL_BYTE;
normalize = true;
} else {
elem_size = 3 * sizeof(GLfloat); // vertex
datatype = GL_FLOAT;
}
bind = true;
elem_count = 3;
} break;
case VS::ARRAY_TANGENT: {
if (use_VBO) {
elem_size = 4 * sizeof(int8_t); // vertex
datatype = GL_BYTE;
normalize = true;
} else {
elem_size = 4 * sizeof(GLfloat); // vertex
datatype = GL_FLOAT;
}
bind = true;
elem_count = 4;
} break;
case VS::ARRAY_COLOR: {
elem_size = 4 * sizeof(uint8_t); /* RGBA */
datatype = GL_UNSIGNED_BYTE;
elem_count = 4;
bind = true;
normalize = true;
} break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2: {
if (use_VBO && use_half_float) {
elem_size = 2 * sizeof(int16_t); // vertex
datatype = _GL_HALF_FLOAT_OES;
} else {
elem_size = 2 * sizeof(GLfloat); // vertex
datatype = GL_FLOAT;
}
bind = true;
elem_count = 2;
} break;
case VS::ARRAY_WEIGHTS: {
if (use_VBO) {
elem_size = VS::ARRAY_WEIGHTS_SIZE * sizeof(GLushort);
valid_local = false;
bind = true;
normalize = true;
datatype = GL_UNSIGNED_SHORT;
elem_count = 4;
} else {
elem_size = VS::ARRAY_WEIGHTS_SIZE * sizeof(GLfloat);
valid_local = false;
bind = false;
datatype = GL_FLOAT;
elem_count = 4;
}
} break;
case VS::ARRAY_BONES: {
if (use_VBO) {
elem_size = VS::ARRAY_WEIGHTS_SIZE * sizeof(GLubyte);
valid_local = false;
bind = true;
datatype = GL_UNSIGNED_BYTE;
elem_count = 4;
} else {
elem_size = VS::ARRAY_WEIGHTS_SIZE * sizeof(GLushort);
valid_local = false;
bind = false;
datatype = GL_UNSIGNED_SHORT;
elem_count = 4;
}
} break;
case VS::ARRAY_INDEX: {
if (index_array_len <= 0) {
ERR_PRINT("index_array_len==NO_INDEX_ARRAY");
break;
}
/* determine wether using 16 or 32 bits indices */
if (array_len > (1 << 16)) {
elem_size = 4;
datatype = GL_UNSIGNED_INT;
} else {
elem_size = 2;
datatype = GL_UNSIGNED_SHORT;
}
/*
if (use_VBO) {
glGenBuffers(1,&surface->index_id);
ERR_FAIL_COND(surface->index_id==0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,surface->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,index_array_len*elem_size,NULL,GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind
} else {
surface->index_array_local = (uint8_t*)memalloc(index_array_len*elem_size);
};
*/
surface->index_array_len = index_array_len; // only way it can exist
ad.ofs = 0;
ad.size = elem_size;
continue;
} break;
default: {
ERR_FAIL();
}
}
ad.ofs = total_elem_size;
ad.size = elem_size;
ad.datatype = datatype;
ad.normalize = normalize;
ad.bind = bind;
ad.count = elem_count;
total_elem_size += elem_size;
if (valid_local) {
surface->local_stride += elem_size;
surface->morph_format |= (1 << i);
}
}
surface->stride = total_elem_size;
surface->array_len = array_len;
surface->format = format;
surface->primitive = p_primitive;
surface->morph_target_count = mesh->morph_target_count;
surface->configured_format = 0;
surface->mesh = mesh;
if (keep_copies) {
surface->data = p_arrays;
surface->morph_data = p_blend_shapes;
}
uint8_t *array_ptr = NULL;
uint8_t *index_array_ptr = NULL;
PoolVector<uint8_t> array_pre_vbo;
PoolVector<uint8_t>::Write vaw;
PoolVector<uint8_t> index_array_pre_vbo;
PoolVector<uint8_t>::Write iaw;
/* create pointers */
if (use_VBO) {
array_pre_vbo.resize(surface->array_len * surface->stride);
vaw = array_pre_vbo.write();
array_ptr = vaw.ptr();
if (surface->index_array_len) {
index_array_pre_vbo.resize(surface->index_array_len * surface->array[VS::ARRAY_INDEX].size);
iaw = index_array_pre_vbo.write();
index_array_ptr = iaw.ptr();
}
_surface_set_arrays(surface, array_ptr, index_array_ptr, p_arrays, true);
} else {
surface->array_local = (uint8_t *)memalloc(surface->array_len * surface->stride);
array_ptr = (uint8_t *)surface->array_local;
if (surface->index_array_len) {
surface->index_array_local = (uint8_t *)memalloc(index_array_len * surface->array[VS::ARRAY_INDEX].size);
index_array_ptr = (uint8_t *)surface->index_array_local;
}
_surface_set_arrays(surface, array_ptr, index_array_ptr, p_arrays, true);
if (mesh->morph_target_count) {
surface->morph_targets_local = memnew_arr(Surface::MorphTarget, mesh->morph_target_count);
for (int i = 0; i < mesh->morph_target_count; i++) {
surface->morph_targets_local[i].array = memnew_arr(uint8_t, surface->local_stride * surface->array_len);
surface->morph_targets_local[i].configured_format = surface->morph_format;
_surface_set_arrays(surface, surface->morph_targets_local[i].array, NULL, p_blend_shapes[i], false);
}
}
}
/* create buffers!! */
if (use_VBO) {
glGenBuffers(1, &surface->vertex_id);
ERR_FAIL_COND(surface->vertex_id == 0);
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
glBufferData(GL_ARRAY_BUFFER, surface->array_len * surface->stride, array_ptr, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
if (surface->index_array_len) {
glGenBuffers(1, &surface->index_id);
ERR_FAIL_COND(surface->index_id == 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, index_array_len * surface->array[VS::ARRAY_INDEX].size, index_array_ptr, GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
}
}
mesh->surfaces.push_back(surface);
}
Error RasterizerGLES2::_surface_set_arrays(Surface *p_surface, uint8_t *p_mem, uint8_t *p_index_mem, const Array &p_arrays, bool p_main) {
uint32_t stride = p_main ? p_surface->stride : p_surface->local_stride;
for (int ai = 0; ai < VS::ARRAY_MAX; ai++) {
if (ai >= p_arrays.size())
break;
if (p_arrays[ai].get_type() == Variant::NIL)
continue;
Surface::ArrayData &a = p_surface->array[ai];
switch (ai) {
case VS::ARRAY_VERTEX: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<Vector3> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_surface->array_len, ERR_INVALID_PARAMETER);
PoolVector<Vector3>::Read read = array.read();
const Vector3 *src = read.ptr();
// setting vertices means regenerating the AABB
AABB aabb;
float scale = 1;
if (p_surface->array[VS::ARRAY_VERTEX].datatype == _GL_HALF_FLOAT_OES) {
for (int i = 0; i < p_surface->array_len; i++) {
uint16_t vector[3] = { make_half_float(src[i].x), make_half_float(src[i].y), make_half_float(src[i].z) };
copymem(&p_mem[a.ofs + i * stride], vector, a.size);
if (i == 0) {
aabb = AABB(src[i], Vector3());
} else {
aabb.expand_to(src[i]);
}
}
} else {
for (int i = 0; i < p_surface->array_len; i++) {
GLfloat vector[3] = { src[i].x, src[i].y, src[i].z };
copymem(&p_mem[a.ofs + i * stride], vector, a.size);
if (i == 0) {
aabb = AABB(src[i], Vector3());
} else {
aabb.expand_to(src[i]);
}
}
}
if (p_main) {
p_surface->aabb = aabb;
p_surface->vertex_scale = scale;
}
} break;
case VS::ARRAY_NORMAL: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<Vector3> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_surface->array_len, ERR_INVALID_PARAMETER);
PoolVector<Vector3>::Read read = array.read();
const Vector3 *src = read.ptr();
// setting vertices means regenerating the AABB
if (p_surface->array[VS::ARRAY_NORMAL].datatype == GL_BYTE) {
for (int i = 0; i < p_surface->array_len; i++) {
GLbyte vector[4] = {
CLAMP(src[i].x * 127, -128, 127),
CLAMP(src[i].y * 127, -128, 127),
CLAMP(src[i].z * 127, -128, 127),
0,
};
copymem(&p_mem[a.ofs + i * stride], vector, a.size);
}
} else {
for (int i = 0; i < p_surface->array_len; i++) {
GLfloat vector[3] = { src[i].x, src[i].y, src[i].z };
copymem(&p_mem[a.ofs + i * stride], vector, a.size);
}
}
} break;
case VS::ARRAY_TANGENT: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<real_t> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_surface->array_len * 4, ERR_INVALID_PARAMETER);
PoolVector<real_t>::Read read = array.read();
const real_t *src = read.ptr();
if (p_surface->array[VS::ARRAY_TANGENT].datatype == GL_BYTE) {
for (int i = 0; i < p_surface->array_len; i++) {
GLbyte xyzw[4] = {
CLAMP(src[i * 4 + 0] * 127, -128, 127),
CLAMP(src[i * 4 + 1] * 127, -128, 127),
CLAMP(src[i * 4 + 2] * 127, -128, 127),
CLAMP(src[i * 4 + 3] * 127, -128, 127)
};
copymem(&p_mem[a.ofs + i * stride], xyzw, a.size);
}
} else {
for (int i = 0; i < p_surface->array_len; i++) {
GLfloat xyzw[4] = {
src[i * 4 + 0],
src[i * 4 + 1],
src[i * 4 + 2],
src[i * 4 + 3]
};
copymem(&p_mem[a.ofs + i * stride], xyzw, a.size);
}
}
} break;
case VS::ARRAY_COLOR: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::COLOR_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<Color> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_surface->array_len, ERR_INVALID_PARAMETER);
PoolVector<Color>::Read read = array.read();
const Color *src = read.ptr();
bool alpha = false;
for (int i = 0; i < p_surface->array_len; i++) {
if (src[i].a < 0.98) // tolerate alpha a bit, for crappy exporters
alpha = true;
uint8_t colors[4];
for (int j = 0; j < 4; j++) {
colors[j] = CLAMP(int((src[i][j]) * 255.0), 0, 255);
}
copymem(&p_mem[a.ofs + i * stride], colors, a.size);
}
if (p_main)
p_surface->has_alpha = alpha;
} break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY && p_arrays[ai].get_type() != Variant::VECTOR2_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<Vector2> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_surface->array_len, ERR_INVALID_PARAMETER);
PoolVector<Vector2>::Read read = array.read();
const Vector2 *src = read.ptr();
float scale = 1.0;
if (p_surface->array[ai].datatype == _GL_HALF_FLOAT_OES) {
for (int i = 0; i < p_surface->array_len; i++) {
uint16_t uv[2] = { make_half_float(src[i].x), make_half_float(src[i].y) };
copymem(&p_mem[a.ofs + i * stride], uv, a.size);
}
} else {
for (int i = 0; i < p_surface->array_len; i++) {
GLfloat uv[2] = { src[i].x, src[i].y };
copymem(&p_mem[a.ofs + i * stride], uv, a.size);
}
}
if (p_main) {
if (ai == VS::ARRAY_TEX_UV) {
p_surface->uv_scale = scale;
}
if (ai == VS::ARRAY_TEX_UV2) {
p_surface->uv2_scale = scale;
}
}
} break;
case VS::ARRAY_WEIGHTS: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<real_t> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_surface->array_len * VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER);
PoolVector<real_t>::Read read = array.read();
const real_t *src = read.ptr();
if (p_surface->array[VS::ARRAY_WEIGHTS].datatype == GL_UNSIGNED_SHORT) {
for (int i = 0; i < p_surface->array_len; i++) {
GLushort data[VS::ARRAY_WEIGHTS_SIZE];
for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++) {
data[j] = CLAMP(src[i * VS::ARRAY_WEIGHTS_SIZE + j] * 65535, 0, 65535);
}
copymem(&p_mem[a.ofs + i * stride], data, a.size);
}
} else {
for (int i = 0; i < p_surface->array_len; i++) {
GLfloat data[VS::ARRAY_WEIGHTS_SIZE];
for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++) {
data[j] = src[i * VS::ARRAY_WEIGHTS_SIZE + j];
}
copymem(&p_mem[a.ofs + i * stride], data, a.size);
}
}
} break;
case VS::ARRAY_BONES: {
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<int> array = p_arrays[ai];
ERR_FAIL_COND_V(array.size() != p_surface->array_len * VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER);
PoolVector<int>::Read read = array.read();
const int *src = read.ptr();
p_surface->max_bone = 0;
if (p_surface->array[VS::ARRAY_BONES].datatype == GL_UNSIGNED_BYTE) {
for (int i = 0; i < p_surface->array_len; i++) {
GLubyte data[VS::ARRAY_WEIGHTS_SIZE];
for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++) {
data[j] = CLAMP(src[i * VS::ARRAY_WEIGHTS_SIZE + j], 0, 255);
p_surface->max_bone = MAX(data[j], p_surface->max_bone);
}
copymem(&p_mem[a.ofs + i * stride], data, a.size);
}
} else {
for (int i = 0; i < p_surface->array_len; i++) {
GLushort data[VS::ARRAY_WEIGHTS_SIZE];
for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++) {
data[j] = src[i * VS::ARRAY_WEIGHTS_SIZE + j];
p_surface->max_bone = MAX(data[j], p_surface->max_bone);
}
copymem(&p_mem[a.ofs + i * stride], data, a.size);
}
}
} break;
case VS::ARRAY_INDEX: {
ERR_FAIL_COND_V(p_surface->index_array_len <= 0, ERR_INVALID_DATA);
ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::INT_ARRAY, ERR_INVALID_PARAMETER);
PoolVector<int> indices = p_arrays[ai];
ERR_FAIL_COND_V(indices.size() == 0, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(indices.size() != p_surface->index_array_len, ERR_INVALID_PARAMETER);
/* determine wether using 16 or 32 bits indices */
PoolVector<int>::Read read = indices.read();
const int *src = read.ptr();
for (int i = 0; i < p_surface->index_array_len; i++) {
if (a.size == 2) {
uint16_t v = src[i];
copymem(&p_index_mem[i * a.size], &v, a.size);
} else {
uint32_t v = src[i];
copymem(&p_index_mem[i * a.size], &v, a.size);
}
}
} break;
default: { ERR_FAIL_V(ERR_INVALID_PARAMETER); }
}
p_surface->configured_format |= (1 << ai);
}
if (p_surface->format & VS::ARRAY_FORMAT_BONES) {
//create AABBs for each detected bone
int total_bones = p_surface->max_bone + 1;
if (p_main) {
p_surface->skeleton_bone_aabb.resize(total_bones);
p_surface->skeleton_bone_used.resize(total_bones);
for (int i = 0; i < total_bones; i++)
p_surface->skeleton_bone_used[i] = false;
}
PoolVector<Vector3> vertices = p_arrays[VS::ARRAY_VERTEX];
PoolVector<int> bones = p_arrays[VS::ARRAY_BONES];
PoolVector<float> weights = p_arrays[VS::ARRAY_WEIGHTS];
bool any_valid = false;
if (vertices.size() && bones.size() == vertices.size() * 4 && weights.size() == bones.size()) {
//print_line("MAKING SKELETHONG");
int vs = vertices.size();
PoolVector<Vector3>::Read rv = vertices.read();
PoolVector<int>::Read rb = bones.read();
PoolVector<float>::Read rw = weights.read();
Vector<bool> first;
first.resize(total_bones);
for (int i = 0; i < total_bones; i++) {
first[i] = p_main;
}
AABB *bptr = p_surface->skeleton_bone_aabb.ptr();
bool *fptr = first.ptr();
bool *usedptr = p_surface->skeleton_bone_used.ptr();
for (int i = 0; i < vs; i++) {
Vector3 v = rv[i];
for (int j = 0; j < 4; j++) {
int idx = rb[i * 4 + j];
float w = rw[i * 4 + j];
if (w == 0)
continue; //break;
ERR_FAIL_INDEX_V(idx, total_bones, ERR_INVALID_DATA);
if (fptr[idx]) {
bptr[idx].pos = v;
fptr[idx] = false;
any_valid = true;
} else {
bptr[idx].expand_to(v);
}
usedptr[idx] = true;
}
}
}
if (p_main && !any_valid) {
p_surface->skeleton_bone_aabb.clear();
p_surface->skeleton_bone_used.clear();
}
}
return OK;
}
void RasterizerGLES2::mesh_add_custom_surface(RID p_mesh, const Variant &p_dat) {
ERR_EXPLAIN("OpenGL Rasterizer does not support custom surfaces. Running on wrong platform?");
ERR_FAIL();
}
Array RasterizerGLES2::mesh_get_surface_arrays(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, Array());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Array());
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V(!surface, Array());
return surface->data;
}
Array RasterizerGLES2::mesh_get_surface_morph_arrays(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, Array());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Array());
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V(!surface, Array());
return surface->morph_data;
}
void RasterizerGLES2::mesh_set_morph_target_count(RID p_mesh, int p_amount) {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_COND(mesh->surfaces.size() != 0);
mesh->morph_target_count = p_amount;
}
int RasterizerGLES2::mesh_get_morph_target_count(RID p_mesh) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, -1);
return mesh->morph_target_count;
}
void RasterizerGLES2::mesh_set_morph_target_mode(RID p_mesh, VS::MorphTargetMode p_mode) {
ERR_FAIL_INDEX(p_mode, 2);
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND(!mesh);
mesh->morph_target_mode = p_mode;
}
VS::MorphTargetMode RasterizerGLES2::mesh_get_morph_target_mode(RID p_mesh) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, VS::MORPH_MODE_NORMALIZED);
return mesh->morph_target_mode;
}
void RasterizerGLES2::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material, bool p_owned) {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_surface, mesh->surfaces.size());
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND(!surface);
if (surface->material_owned && surface->material.is_valid())
free(surface->material);
surface->material_owned = p_owned;
surface->material = p_material;
}
RID RasterizerGLES2::mesh_surface_get_material(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, RID());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), RID());
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V(!surface, RID());
return surface->material;
}
int RasterizerGLES2::mesh_surface_get_array_len(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, -1);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1);
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V(!surface, -1);
return surface->array_len;
}
int RasterizerGLES2::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, -1);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1);
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V(!surface, -1);
return surface->index_array_len;
}
uint32_t RasterizerGLES2::mesh_surface_get_format(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, 0);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0);
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V(!surface, 0);
return surface->format;
}
VS::PrimitiveType RasterizerGLES2::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, VS::PRIMITIVE_POINTS);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), VS::PRIMITIVE_POINTS);
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V(!surface, VS::PRIMITIVE_POINTS);
return surface->primitive;
}
void RasterizerGLES2::mesh_remove_surface(RID p_mesh, int p_index) {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_index, mesh->surfaces.size());
Surface *surface = mesh->surfaces[p_index];
ERR_FAIL_COND(!surface);
if (surface->vertex_id)
glDeleteBuffers(1, &surface->vertex_id);
if (surface->index_id)
glDeleteBuffers(1, &surface->index_id);
if (mesh->morph_target_count) {
for (int i = 0; i < mesh->morph_target_count; i++)
memfree(surface->morph_targets_local[i].array);
memfree(surface->morph_targets_local);
}
memdelete(mesh->surfaces[p_index]);
mesh->surfaces.remove(p_index);
}
int RasterizerGLES2::mesh_get_surface_count(RID p_mesh) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, -1);
return mesh->surfaces.size();
}
AABB RasterizerGLES2::mesh_get_aabb(RID p_mesh, RID p_skeleton) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, AABB());
if (mesh->custom_aabb != AABB())
return mesh->custom_aabb;
Skeleton *sk = NULL;
if (p_skeleton.is_valid())
sk = skeleton_owner.get(p_skeleton);
AABB aabb;
if (sk && sk->bones.size() != 0) {
for (int i = 0; i < mesh->surfaces.size(); i++) {
AABB laabb;
if (mesh->surfaces[i]->format & VS::ARRAY_FORMAT_BONES && mesh->surfaces[i]->skeleton_bone_aabb.size()) {
int bs = mesh->surfaces[i]->skeleton_bone_aabb.size();
const AABB *skbones = mesh->surfaces[i]->skeleton_bone_aabb.ptr();
const bool *skused = mesh->surfaces[i]->skeleton_bone_used.ptr();
int sbs = sk->bones.size();
ERR_CONTINUE(bs > sbs);
Skeleton::Bone *skb = sk->bones.ptr();
bool first = true;
for (int j = 0; j < bs; j++) {
if (!skused[j])
continue;
AABB baabb = skb[j].transform_aabb(skbones[j]);
if (first) {
laabb = baabb;
first = false;
} else {
laabb.merge_with(baabb);
}
}
} else {
laabb = mesh->surfaces[i]->aabb;
}
if (i == 0)
aabb = laabb;
else
aabb.merge_with(laabb);
}
} else {
for (int i = 0; i < mesh->surfaces.size(); i++) {
if (i == 0)
aabb = mesh->surfaces[i]->aabb;
else
aabb.merge_with(mesh->surfaces[i]->aabb);
}
}
return aabb;
}
void RasterizerGLES2::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND(!mesh);
mesh->custom_aabb = p_aabb;
}
AABB RasterizerGLES2::mesh_get_custom_aabb(RID p_mesh) const {
const Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, AABB());
return mesh->custom_aabb;
}
/* MULTIMESH API */
RID RasterizerGLES2::multimesh_create() {
return multimesh_owner.make_rid(memnew(MultiMesh));
}
void RasterizerGLES2::multimesh_set_instance_count(RID p_multimesh, int p_count) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
//multimesh->elements.clear(); // make sure to delete everything, so it "fails" in all implementations
if (use_texture_instancing) {
if (nearest_power_of_2(p_count) != nearest_power_of_2(multimesh->elements.size())) {
if (multimesh->tex_id) {
glDeleteTextures(1, &multimesh->tex_id);
multimesh->tex_id = 0;
}
if (p_count) {
uint32_t po2 = nearest_power_of_2(p_count);
if (po2 & 0xAAAAAAAA) {
//half width
multimesh->tw = Math::sqrt(po2 * 2);
multimesh->th = multimesh->tw / 2;
} else {
multimesh->tw = Math::sqrt(po2);
multimesh->th = multimesh->tw;
}
multimesh->tw *= 4;
if (multimesh->th == 0)
multimesh->th = 1;
glGenTextures(1, &multimesh->tex_id);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, multimesh->tex_id);
#ifdef GLEW_ENABLED
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, multimesh->tw, multimesh->th, 0, GL_RGBA, GL_FLOAT, NULL);
#else
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, multimesh->tw, multimesh->th, 0, GL_RGBA, GL_FLOAT, NULL);
#endif
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
//multimesh->pixel_size=1.0/ps;
glBindTexture(GL_TEXTURE_2D, 0);
}
}
if (!multimesh->dirty_list.in_list()) {
_multimesh_dirty_list.add(&multimesh->dirty_list);
}
}
multimesh->elements.resize(p_count);
}
int RasterizerGLES2::multimesh_get_instance_count(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh, -1);
return multimesh->elements.size();
}
void RasterizerGLES2::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
multimesh->mesh = p_mesh;
}
void RasterizerGLES2::multimesh_set_aabb(RID p_multimesh, const AABB &p_aabb) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
multimesh->aabb = p_aabb;
}
void RasterizerGLES2::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index, multimesh->elements.size());
MultiMesh::Element &e = multimesh->elements[p_index];
e.matrix[0] = p_transform.basis.elements[0][0];
e.matrix[1] = p_transform.basis.elements[1][0];
e.matrix[2] = p_transform.basis.elements[2][0];
e.matrix[3] = 0;
e.matrix[4] = p_transform.basis.elements[0][1];
e.matrix[5] = p_transform.basis.elements[1][1];
e.matrix[6] = p_transform.basis.elements[2][1];
e.matrix[7] = 0;
e.matrix[8] = p_transform.basis.elements[0][2];
e.matrix[9] = p_transform.basis.elements[1][2];
e.matrix[10] = p_transform.basis.elements[2][2];
e.matrix[11] = 0;
e.matrix[12] = p_transform.origin.x;
e.matrix[13] = p_transform.origin.y;
e.matrix[14] = p_transform.origin.z;
e.matrix[15] = 1;
if (!multimesh->dirty_list.in_list()) {
_multimesh_dirty_list.add(&multimesh->dirty_list);
}
}
void RasterizerGLES2::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh)
ERR_FAIL_INDEX(p_index, multimesh->elements.size());
MultiMesh::Element &e = multimesh->elements[p_index];
e.color[0] = CLAMP(p_color.r * 255, 0, 255);
e.color[1] = CLAMP(p_color.g * 255, 0, 255);
e.color[2] = CLAMP(p_color.b * 255, 0, 255);
e.color[3] = CLAMP(p_color.a * 255, 0, 255);
if (!multimesh->dirty_list.in_list()) {
_multimesh_dirty_list.add(&multimesh->dirty_list);
}
}
RID RasterizerGLES2::multimesh_get_mesh(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh, RID());
return multimesh->mesh;
}
AABB RasterizerGLES2::multimesh_get_aabb(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh, AABB());
return multimesh->aabb;
}
Transform RasterizerGLES2::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Transform());
ERR_FAIL_INDEX_V(p_index, multimesh->elements.size(), Transform());
MultiMesh::Element &e = multimesh->elements[p_index];
Transform tr;
tr.basis.elements[0][0] = e.matrix[0];
tr.basis.elements[1][0] = e.matrix[1];
tr.basis.elements[2][0] = e.matrix[2];
tr.basis.elements[0][1] = e.matrix[4];
tr.basis.elements[1][1] = e.matrix[5];
tr.basis.elements[2][1] = e.matrix[6];
tr.basis.elements[0][2] = e.matrix[8];
tr.basis.elements[1][2] = e.matrix[9];
tr.basis.elements[2][2] = e.matrix[10];
tr.origin.x = e.matrix[12];
tr.origin.y = e.matrix[13];
tr.origin.z = e.matrix[14];
return tr;
}
Color RasterizerGLES2::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Color());
ERR_FAIL_INDEX_V(p_index, multimesh->elements.size(), Color());
MultiMesh::Element &e = multimesh->elements[p_index];
Color c;
c.r = e.color[0] / 255.0;
c.g = e.color[1] / 255.0;
c.b = e.color[2] / 255.0;
c.a = e.color[3] / 255.0;
return c;
}
void RasterizerGLES2::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
multimesh->visible = p_visible;
}
int RasterizerGLES2::multimesh_get_visible_instances(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh, -1);
return multimesh->visible;
}
/* IMMEDIATE API */
RID RasterizerGLES2::immediate_create() {
Immediate *im = memnew(Immediate);
return immediate_owner.make_rid(im);
}
void RasterizerGLES2::immediate_begin(RID p_immediate, VS::PrimitiveType p_rimitive, RID p_texture) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(im->building);
Immediate::Chunk ic;
ic.texture = p_texture;
ic.primitive = p_rimitive;
im->chunks.push_back(ic);
im->mask = 0;
im->building = true;
}
void RasterizerGLES2::immediate_vertex(RID p_immediate, const Vector3 &p_vertex) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
Immediate::Chunk *c = &im->chunks.back()->get();
if (c->vertices.empty() && im->chunks.size() == 1) {
im->aabb.pos = p_vertex;
im->aabb.size = Vector3();
} else {
im->aabb.expand_to(p_vertex);
}
if (im->mask & VS::ARRAY_FORMAT_NORMAL)
c->normals.push_back(chunk_normal);
if (im->mask & VS::ARRAY_FORMAT_TANGENT)
c->tangents.push_back(chunk_tangent);
if (im->mask & VS::ARRAY_FORMAT_COLOR)
c->colors.push_back(chunk_color);
if (im->mask & VS::ARRAY_FORMAT_TEX_UV)
c->uvs.push_back(chunk_uv);
if (im->mask & VS::ARRAY_FORMAT_TEX_UV2)
c->uvs2.push_back(chunk_uv2);
im->mask |= VS::ARRAY_FORMAT_VERTEX;
c->vertices.push_back(p_vertex);
}
void RasterizerGLES2::immediate_normal(RID p_immediate, const Vector3 &p_normal) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_NORMAL;
chunk_normal = p_normal;
}
void RasterizerGLES2::immediate_tangent(RID p_immediate, const Plane &p_tangent) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_TANGENT;
chunk_tangent = p_tangent;
}
void RasterizerGLES2::immediate_color(RID p_immediate, const Color &p_color) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_COLOR;
chunk_color = p_color;
}
void RasterizerGLES2::immediate_uv(RID p_immediate, const Vector2 &tex_uv) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_TEX_UV;
chunk_uv = tex_uv;
}
void RasterizerGLES2::immediate_uv2(RID p_immediate, const Vector2 &tex_uv) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_TEX_UV2;
chunk_uv2 = tex_uv;
}
void RasterizerGLES2::immediate_end(RID p_immediate) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->building = false;
}
void RasterizerGLES2::immediate_clear(RID p_immediate) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(im->building);
im->chunks.clear();
}
AABB RasterizerGLES2::immediate_get_aabb(RID p_immediate) const {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND_V(!im, AABB());
return im->aabb;
}
void RasterizerGLES2::immediate_set_material(RID p_immediate, RID p_material) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
im->material = p_material;
}
RID RasterizerGLES2::immediate_get_material(RID p_immediate) const {
const Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND_V(!im, RID());
return im->material;
}
/* PARTICLES API */
RID RasterizerGLES2::particles_create() {
Particles *particles = memnew(Particles);
ERR_FAIL_COND_V(!particles, RID());
return particles_owner.make_rid(particles);
}
void RasterizerGLES2::particles_set_amount(RID p_particles, int p_amount) {
ERR_FAIL_COND(p_amount < 1);
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
particles->data.amount = p_amount;
}
int RasterizerGLES2::particles_get_amount(RID p_particles) const {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, -1);
return particles->data.amount;
}
void RasterizerGLES2::particles_set_emitting(RID p_particles, bool p_emitting) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
particles->data.emitting = p_emitting;
}
bool RasterizerGLES2::particles_is_emitting(RID p_particles) const {
const Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, false);
return particles->data.emitting;
}
void RasterizerGLES2::particles_set_visibility_aabb(RID p_particles, const AABB &p_visibility) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
particles->data.visibility_aabb = p_visibility;
}
void RasterizerGLES2::particles_set_emission_half_extents(RID p_particles, const Vector3 &p_half_extents) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
particles->data.emission_half_extents = p_half_extents;
}
Vector3 RasterizerGLES2::particles_get_emission_half_extents(RID p_particles) const {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, Vector3());
return particles->data.emission_half_extents;
}
void RasterizerGLES2::particles_set_emission_base_velocity(RID p_particles, const Vector3 &p_base_velocity) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
particles->data.emission_base_velocity = p_base_velocity;
}
Vector3 RasterizerGLES2::particles_get_emission_base_velocity(RID p_particles) const {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, Vector3());
return particles->data.emission_base_velocity;
}
void RasterizerGLES2::particles_set_emission_points(RID p_particles, const PoolVector<Vector3> &p_points) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
particles->data.emission_points = p_points;
}
PoolVector<Vector3> RasterizerGLES2::particles_get_emission_points(RID p_particles) const {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, PoolVector<Vector3>());
return particles->data.emission_points;
}
void RasterizerGLES2::particles_set_gravity_normal(RID p_particles, const Vector3 &p_normal) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
particles->data.gravity_normal = p_normal;
}
Vector3 RasterizerGLES2::particles_get_gravity_normal(RID p_particles) const {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, Vector3());
return particles->data.gravity_normal;
}
AABB RasterizerGLES2::particles_get_visibility_aabb(RID p_particles) const {
const Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, AABB());
return particles->data.visibility_aabb;
}
void RasterizerGLES2::particles_set_variable(RID p_particles, VS::ParticleVariable p_variable, float p_value) {
ERR_FAIL_INDEX(p_variable, VS::PARTICLE_VAR_MAX);
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
particles->data.particle_vars[p_variable] = p_value;
}
float RasterizerGLES2::particles_get_variable(RID p_particles, VS::ParticleVariable p_variable) const {
const Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, -1);
return particles->data.particle_vars[p_variable];
}
void RasterizerGLES2::particles_set_randomness(RID p_particles, VS::ParticleVariable p_variable, float p_randomness) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
particles->data.particle_randomness[p_variable] = p_randomness;
}
float RasterizerGLES2::particles_get_randomness(RID p_particles, VS::ParticleVariable p_variable) const {
const Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, -1);
return particles->data.particle_randomness[p_variable];
}
void RasterizerGLES2::particles_set_color_phases(RID p_particles, int p_phases) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
ERR_FAIL_COND(p_phases < 0 || p_phases > VS::MAX_PARTICLE_COLOR_PHASES);
particles->data.color_phase_count = p_phases;
}
int RasterizerGLES2::particles_get_color_phases(RID p_particles) const {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, -1);
return particles->data.color_phase_count;
}
void RasterizerGLES2::particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos) {
ERR_FAIL_INDEX(p_phase, VS::MAX_PARTICLE_COLOR_PHASES);
if (p_pos < 0.0)
p_pos = 0.0;
if (p_pos > 1.0)
p_pos = 1.0;
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
particles->data.color_phases[p_phase].pos = p_pos;
}
float RasterizerGLES2::particles_get_color_phase_pos(RID p_particles, int p_phase) const {
ERR_FAIL_INDEX_V(p_phase, VS::MAX_PARTICLE_COLOR_PHASES, -1.0);
const Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, -1);
return particles->data.color_phases[p_phase].pos;
}
void RasterizerGLES2::particles_set_color_phase_color(RID p_particles, int p_phase, const Color &p_color) {
ERR_FAIL_INDEX(p_phase, VS::MAX_PARTICLE_COLOR_PHASES);
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
particles->data.color_phases[p_phase].color = p_color;
//update alpha
particles->has_alpha = false;
for (int i = 0; i < VS::MAX_PARTICLE_COLOR_PHASES; i++) {
if (particles->data.color_phases[i].color.a < 0.99)
particles->has_alpha = true;
}
}
Color RasterizerGLES2::particles_get_color_phase_color(RID p_particles, int p_phase) const {
ERR_FAIL_INDEX_V(p_phase, VS::MAX_PARTICLE_COLOR_PHASES, Color());
const Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, Color());
return particles->data.color_phases[p_phase].color;
}
void RasterizerGLES2::particles_set_attractors(RID p_particles, int p_attractors) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
ERR_FAIL_COND(p_attractors < 0 || p_attractors > VisualServer::MAX_PARTICLE_ATTRACTORS);
particles->data.attractor_count = p_attractors;
}
int RasterizerGLES2::particles_get_attractors(RID p_particles) const {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, -1);
return particles->data.attractor_count;
}
void RasterizerGLES2::particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3 &p_pos) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
ERR_FAIL_INDEX(p_attractor, particles->data.attractor_count);
particles->data.attractors[p_attractor].pos = p_pos;
}
Vector3 RasterizerGLES2::particles_get_attractor_pos(RID p_particles, int p_attractor) const {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, Vector3());
ERR_FAIL_INDEX_V(p_attractor, particles->data.attractor_count, Vector3());
return particles->data.attractors[p_attractor].pos;
}
void RasterizerGLES2::particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
ERR_FAIL_INDEX(p_attractor, particles->data.attractor_count);
particles->data.attractors[p_attractor].force = p_force;
}
float RasterizerGLES2::particles_get_attractor_strength(RID p_particles, int p_attractor) const {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, 0);
ERR_FAIL_INDEX_V(p_attractor, particles->data.attractor_count, 0);
return particles->data.attractors[p_attractor].force;
}
void RasterizerGLES2::particles_set_material(RID p_particles, RID p_material, bool p_owned) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
if (particles->material_owned && particles->material.is_valid())
free(particles->material);
particles->material_owned = p_owned;
particles->material = p_material;
}
RID RasterizerGLES2::particles_get_material(RID p_particles) const {
const Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, RID());
return particles->material;
}
void RasterizerGLES2::particles_set_use_local_coordinates(RID p_particles, bool p_enable) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
particles->data.local_coordinates = p_enable;
}
bool RasterizerGLES2::particles_is_using_local_coordinates(RID p_particles) const {
const Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, false);
return particles->data.local_coordinates;
}
bool RasterizerGLES2::particles_has_height_from_velocity(RID p_particles) const {
const Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, false);
return particles->data.height_from_velocity;
}
void RasterizerGLES2::particles_set_height_from_velocity(RID p_particles, bool p_enable) {
Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND(!particles);
particles->data.height_from_velocity = p_enable;
}
AABB RasterizerGLES2::particles_get_aabb(RID p_particles) const {
const Particles *particles = particles_owner.get(p_particles);
ERR_FAIL_COND_V(!particles, AABB());
return particles->data.visibility_aabb;
}
/* SKELETON API */
RID RasterizerGLES2::skeleton_create() {
Skeleton *skeleton = memnew(Skeleton);
ERR_FAIL_COND_V(!skeleton, RID());
return skeleton_owner.make_rid(skeleton);
}
void RasterizerGLES2::skeleton_resize(RID p_skeleton, int p_bones) {
Skeleton *skeleton = skeleton_owner.get(p_skeleton);
ERR_FAIL_COND(!skeleton);
if (p_bones == skeleton->bones.size()) {
return;
};
if (use_hw_skeleton_xform) {
if (nearest_power_of_2(p_bones) != nearest_power_of_2(skeleton->bones.size())) {
if (skeleton->tex_id) {
glDeleteTextures(1, &skeleton->tex_id);
skeleton->tex_id = 0;
}
if (p_bones) {
glGenTextures(1, &skeleton->tex_id);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, skeleton->tex_id);
int ps = nearest_power_of_2(p_bones * 3);
#ifdef GLEW_ENABLED
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, ps, 1, 0, GL_RGBA, GL_FLOAT, skel_default.ptr());
#else
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, ps, 1, 0, GL_RGBA, GL_FLOAT, skel_default.ptr());
#endif
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
skeleton->pixel_size = 1.0 / ps;
glBindTexture(GL_TEXTURE_2D, 0);
}
}
if (!skeleton->dirty_list.in_list()) {
_skeleton_dirty_list.add(&skeleton->dirty_list);
}
}
skeleton->bones.resize(p_bones);
}
int RasterizerGLES2::skeleton_get_bone_count(RID p_skeleton) const {
Skeleton *skeleton = skeleton_owner.get(p_skeleton);
ERR_FAIL_COND_V(!skeleton, -1);
return skeleton->bones.size();
}
void RasterizerGLES2::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform) {
Skeleton *skeleton = skeleton_owner.get(p_skeleton);
ERR_FAIL_COND(!skeleton);
ERR_FAIL_INDEX(p_bone, skeleton->bones.size());
Skeleton::Bone &b = skeleton->bones[p_bone];
b.mtx[0][0] = p_transform.basis[0][0];
b.mtx[0][1] = p_transform.basis[1][0];
b.mtx[0][2] = p_transform.basis[2][0];
b.mtx[1][0] = p_transform.basis[0][1];
b.mtx[1][1] = p_transform.basis[1][1];
b.mtx[1][2] = p_transform.basis[2][1];
b.mtx[2][0] = p_transform.basis[0][2];
b.mtx[2][1] = p_transform.basis[1][2];
b.mtx[2][2] = p_transform.basis[2][2];
b.mtx[3][0] = p_transform.origin[0];
b.mtx[3][1] = p_transform.origin[1];
b.mtx[3][2] = p_transform.origin[2];
if (skeleton->tex_id) {
if (!skeleton->dirty_list.in_list()) {
_skeleton_dirty_list.add(&skeleton->dirty_list);
}
}
}
Transform RasterizerGLES2::skeleton_bone_get_transform(RID p_skeleton, int p_bone) {
Skeleton *skeleton = skeleton_owner.get(p_skeleton);
ERR_FAIL_COND_V(!skeleton, Transform());
ERR_FAIL_INDEX_V(p_bone, skeleton->bones.size(), Transform());
const Skeleton::Bone &b = skeleton->bones[p_bone];
Transform t;
t.basis[0][0] = b.mtx[0][0];
t.basis[1][0] = b.mtx[0][1];
t.basis[2][0] = b.mtx[0][2];
t.basis[0][1] = b.mtx[1][0];
t.basis[1][1] = b.mtx[1][1];
t.basis[2][1] = b.mtx[1][2];
t.basis[0][2] = b.mtx[2][0];
t.basis[1][2] = b.mtx[2][1];
t.basis[2][2] = b.mtx[2][2];
t.origin[0] = b.mtx[3][0];
t.origin[1] = b.mtx[3][1];
t.origin[2] = b.mtx[3][2];
return t;
}
/* LIGHT API */
RID RasterizerGLES2::light_create(VS::LightType p_type) {
Light *light = memnew(Light);
light->type = p_type;
return light_owner.make_rid(light);
}
VS::LightType RasterizerGLES2::light_get_type(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_OMNI);
return light->type;
}
void RasterizerGLES2::light_set_color(RID p_light, VS::LightColor p_type, const Color &p_color) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX(p_type, 3);
light->colors[p_type] = p_color;
}
Color RasterizerGLES2::light_get_color(RID p_light, VS::LightColor p_type) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, Color());
ERR_FAIL_INDEX_V(p_type, 3, Color());
return light->colors[p_type];
}
void RasterizerGLES2::light_set_shadow(RID p_light, bool p_enabled) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->shadow_enabled = p_enabled;
}
bool RasterizerGLES2::light_has_shadow(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, false);
return light->shadow_enabled;
}
void RasterizerGLES2::light_set_volumetric(RID p_light, bool p_enabled) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->volumetric_enabled = p_enabled;
}
bool RasterizerGLES2::light_is_volumetric(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, false);
return light->volumetric_enabled;
}
void RasterizerGLES2::light_set_projector(RID p_light, RID p_texture) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->projector = p_texture;
}
RID RasterizerGLES2::light_get_projector(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, RID());
return light->projector;
}
void RasterizerGLES2::light_set_var(RID p_light, VS::LightParam p_var, float p_value) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX(p_var, VS::LIGHT_PARAM_MAX);
light->vars[p_var] = p_value;
}
float RasterizerGLES2::light_get_var(RID p_light, VS::LightParam p_var) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, 0);
ERR_FAIL_INDEX_V(p_var, VS::LIGHT_PARAM_MAX, 0);
return light->vars[p_var];
}
void RasterizerGLES2::light_set_operator(RID p_light, VS::LightOp p_op){
};
VS::LightOp RasterizerGLES2::light_get_operator(RID p_light) const {
return VS::LightOp();
};
void RasterizerGLES2::light_omni_set_shadow_mode(RID p_light, VS::LightOmniShadowMode p_mode) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->omni_shadow_mode = p_mode;
}
VS::LightOmniShadowMode RasterizerGLES2::light_omni_get_shadow_mode(RID p_light) const {
const Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_OMNI_SHADOW_DEFAULT);
return light->omni_shadow_mode;
}
void RasterizerGLES2::light_directional_set_shadow_mode(RID p_light, VS::LightDirectionalShadowMode p_mode) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->directional_shadow_mode = p_mode;
}
VS::LightDirectionalShadowMode RasterizerGLES2::light_directional_get_shadow_mode(RID p_light) const {
const Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL);
return light->directional_shadow_mode;
}
void RasterizerGLES2::light_directional_set_shadow_param(RID p_light, VS::LightDirectionalShadowParam p_param, float p_value) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->directional_shadow_param[p_param] = p_value;
}
float RasterizerGLES2::light_directional_get_shadow_param(RID p_light, VS::LightDirectionalShadowParam p_param) const {
const Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, 0);
return light->directional_shadow_param[p_param];
}
AABB RasterizerGLES2::light_get_aabb(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, AABB());
switch (light->type) {
case VS::LIGHT_SPOT: {
float len = light->vars[VS::LIGHT_PARAM_RADIUS];
float size = Math::tan(Math::deg2rad(light->vars[VS::LIGHT_PARAM_SPOT_ANGLE])) * len;
return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len));
} break;
case VS::LIGHT_OMNI: {
float r = light->vars[VS::LIGHT_PARAM_RADIUS];
return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2);
} break;
case VS::LIGHT_DIRECTIONAL: {
return AABB();
} break;
default: {}
}
ERR_FAIL_V(AABB());
}
RID RasterizerGLES2::light_instance_create(RID p_light) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, RID());
LightInstance *light_instance = memnew(LightInstance);
light_instance->light = p_light;
light_instance->base = light;
light_instance->last_pass = 0;
return light_instance_owner.make_rid(light_instance);
}
void RasterizerGLES2::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
LightInstance *lighti = light_instance_owner.get(p_light_instance);
ERR_FAIL_COND(!lighti);
lighti->transform = p_transform;
}
Rasterizer::ShadowType RasterizerGLES2::light_instance_get_shadow_type(RID p_light_instance, bool p_far) const {
LightInstance *lighti = light_instance_owner.get(p_light_instance);
ERR_FAIL_COND_V(!lighti, Rasterizer::SHADOW_NONE);
switch (lighti->base->type) {
case VS::LIGHT_DIRECTIONAL: {
switch (lighti->base->directional_shadow_mode) {
case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
return SHADOW_ORTHOGONAL;
} break;
case VS::LIGHT_DIRECTIONAL_SHADOW_PERSPECTIVE: {
return SHADOW_PSM;
} break;
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
return SHADOW_PSSM;
} break;
}
} break;
case VS::LIGHT_OMNI: return SHADOW_DUAL_PARABOLOID; break;
case VS::LIGHT_SPOT: return SHADOW_SIMPLE; break;
}
return Rasterizer::SHADOW_NONE;
}
int RasterizerGLES2::light_instance_get_shadow_passes(RID p_light_instance) const {
LightInstance *lighti = light_instance_owner.get(p_light_instance);
ERR_FAIL_COND_V(!lighti, 0);
if (lighti->base->type == VS::LIGHT_DIRECTIONAL && lighti->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
return 4; // dp4
} else if (lighti->base->type == VS::LIGHT_OMNI || (lighti->base->type == VS::LIGHT_DIRECTIONAL && lighti->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS)) {
return 2; // dp
} else
return 1;
}
bool RasterizerGLES2::light_instance_get_pssm_shadow_overlap(RID p_light_instance) const {
return shadow_filter >= SHADOW_FILTER_ESM;
}
void RasterizerGLES2::light_instance_set_shadow_transform(RID p_light_instance, int p_index, const CameraMatrix &p_camera, const Transform &p_transform, float p_split_near, float p_split_far) {
LightInstance *lighti = light_instance_owner.get(p_light_instance);
ERR_FAIL_COND(!lighti);
ERR_FAIL_COND(lighti->base->type != VS::LIGHT_DIRECTIONAL);
//ERR_FAIL_INDEX(p_index,1);
lighti->custom_projection[p_index] = p_camera;
lighti->custom_transform[p_index] = p_transform;
lighti->shadow_split[p_index] = 1.0 / p_split_far;
#if 0
if (p_index==0) {
lighti->custom_projection=p_camera;
lighti->custom_transform=p_transform;
//Plane p(0,0,-p_split_far,1);
//p=camera_projection.xform4(p);
//lighti->shadow_split=p.normal.z/p.d;
lighti->shadow_split=1.0/p_split_far;
//lighti->shadow_split=-p_split_far;
} else {
lighti->custom_projection2=p_camera;
lighti->custom_transform2=p_transform;
lighti->shadow_split2=p_split_far;
}
#endif
}
int RasterizerGLES2::light_instance_get_shadow_size(RID p_light_instance, int p_index) const {
LightInstance *lighti = light_instance_owner.get(p_light_instance);
ERR_FAIL_COND_V(!lighti, 1);
ERR_FAIL_COND_V(!lighti->near_shadow_buffer, 256);
return lighti->near_shadow_buffer->size / 2;
}
void RasterizerGLES2::shadow_clear_near() {
for (int i = 0; i < near_shadow_buffers.size(); i++) {
if (near_shadow_buffers[i].owner)
near_shadow_buffers[i].owner->clear_near_shadow_buffers();
}
}
bool RasterizerGLES2::shadow_allocate_near(RID p_light) {
if (!use_shadow_mapping || !use_framebuffers)
return false;
LightInstance *li = light_instance_owner.get(p_light);
ERR_FAIL_COND_V(!li, false);
ERR_FAIL_COND_V(li->near_shadow_buffer, false);
int skip = 0;
if (framebuffer.active) {
int sc = framebuffer.scale;
while (sc > 1) {
sc /= 2;
skip++;
}
}
for (int i = 0; i < near_shadow_buffers.size(); i++) {
if (skip > 0) {
skip--;
continue;
}
if (near_shadow_buffers[i].owner != NULL)
continue;
near_shadow_buffers[i].owner = li;
li->near_shadow_buffer = &near_shadow_buffers[i];
return true;
}
return false;
}
bool RasterizerGLES2::shadow_allocate_far(RID p_light) {
return false;
}
/* PARTICLES INSTANCE */
RID RasterizerGLES2::particles_instance_create(RID p_particles) {
ERR_FAIL_COND_V(!particles_owner.owns(p_particles), RID());
ParticlesInstance *particles_instance = memnew(ParticlesInstance);
ERR_FAIL_COND_V(!particles_instance, RID());
particles_instance->particles = p_particles;
return particles_instance_owner.make_rid(particles_instance);
}
void RasterizerGLES2::particles_instance_set_transform(RID p_particles_instance, const Transform &p_transform) {
ParticlesInstance *particles_instance = particles_instance_owner.get(p_particles_instance);
ERR_FAIL_COND(!particles_instance);
particles_instance->transform = p_transform;
}
RID RasterizerGLES2::viewport_data_create() {
ViewportData *vd = memnew(ViewportData);
glActiveTexture(GL_TEXTURE0);
glGenFramebuffers(1, &vd->lum_fbo);
glBindFramebuffer(GL_FRAMEBUFFER, vd->lum_fbo);
GLuint format_luminance = use_fp16_fb ? _GL_RG_EXT : GL_RGBA;
GLuint format_luminance_type = use_fp16_fb ? (full_float_fb_supported ? GL_FLOAT : _GL_HALF_FLOAT_OES) : GL_UNSIGNED_BYTE;
GLuint format_luminance_components = use_fp16_fb ? _GL_RG_EXT : GL_RGBA;
glGenTextures(1, &vd->lum_color);
glBindTexture(GL_TEXTURE_2D, vd->lum_color);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
/*
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0,
GL_RGBA, GL_UNSIGNED_BYTE, NULL);
*/
glTexImage2D(GL_TEXTURE_2D, 0, format_luminance, 1, 1, 0,
format_luminance_components, format_luminance_type, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, vd->lum_color, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer);
DEBUG_TEST_ERROR("Viewport Data Init");
if (status != GL_FRAMEBUFFER_COMPLETE) {
WARN_PRINT("Can't create framebuffer for vd");
}
return viewport_data_owner.make_rid(vd);
}
RID RasterizerGLES2::render_target_create() {
RenderTarget *rt = memnew(RenderTarget);
rt->fbo = 0;
rt->width = 0;
rt->height = 0;
rt->last_pass = 0;
Texture *texture = memnew(Texture);
texture->active = false;
texture->total_data_size = 0;
texture->render_target = rt;
texture->ignore_mipmaps = true;
rt->texture_ptr = texture;
rt->texture = texture_owner.make_rid(texture);
rt->texture_ptr->active = false;
return render_target_owner.make_rid(rt);
}
void RasterizerGLES2::render_target_set_size(RID p_render_target, int p_width, int p_height) {
RenderTarget *rt = render_target_owner.get(p_render_target);
if (p_width == rt->width && p_height == rt->height)
return;
if (rt->width != 0 && rt->height != 0) {
glDeleteFramebuffers(1, &rt->fbo);
glDeleteRenderbuffers(1, &rt->depth);
glDeleteTextures(1, &rt->color);
rt->fbo = 0;
rt->depth = 0;
rt->color = 0;
rt->width = 0;
rt->height = 0;
rt->texture_ptr->tex_id = 0;
rt->texture_ptr->active = false;
}
if (p_width == 0 || p_height == 0)
return;
rt->width = p_width;
rt->height = p_height;
//fbo
glGenFramebuffers(1, &rt->fbo);
glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo);
//depth
if (!low_memory_2d) {
glGenRenderbuffers(1, &rt->depth);
glBindRenderbuffer(GL_RENDERBUFFER, rt->depth);
glRenderbufferStorage(GL_RENDERBUFFER, use_depth24 ? _DEPTH_COMPONENT24_OES : GL_DEPTH_COMPONENT16, rt->width, rt->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth);
}
//color
glGenTextures(1, &rt->color);
glBindTexture(GL_TEXTURE_2D, rt->color);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, rt->width, rt->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
if (rt->texture_ptr->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->color, 0);
rt->texture_ptr->tex_id = rt->color;
rt->texture_ptr->active = true;
rt->texture_ptr->width = p_width;
rt->texture_ptr->height = p_height;
#
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
glDeleteRenderbuffers(1, &rt->fbo);
glDeleteTextures(1, &rt->depth);
glDeleteTextures(1, &rt->color);
rt->fbo = 0;
rt->width = 0;
rt->height = 0;
rt->color = 0;
rt->depth = 0;
rt->texture_ptr->tex_id = 0;
rt->texture_ptr->active = false;
WARN_PRINT("Could not create framebuffer!!");
}
glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer);
}
RID RasterizerGLES2::render_target_get_texture(RID p_render_target) const {
const RenderTarget *rt = render_target_owner.get(p_render_target);
ERR_FAIL_COND_V(!rt, RID());
return rt->texture;
}
bool RasterizerGLES2::render_target_renedered_in_frame(RID p_render_target) {
RenderTarget *rt = render_target_owner.get(p_render_target);
ERR_FAIL_COND_V(!rt, false);
return rt->last_pass == frame;
}
/* RENDER API */
/* all calls (inside begin/end shadow) are always warranted to be in the following order: */
void RasterizerGLES2::begin_frame() {
_update_framebuffer();
glDepthFunc(GL_LEQUAL);
glFrontFace(GL_CW);
//fragment_lighting=Globals::get_singleton()->get("rasterizer/use_fragment_lighting");
#ifdef TOOLS_ENABLED
canvas_shader.set_conditional(CanvasShaderGLES2::USE_PIXEL_SNAP, GLOBAL_DEF("display/use_2d_pixel_snap", false));
shadow_filter = ShadowFilterTechnique(int(GlobalConfig::get_singleton()->get("rasterizer/shadow_filter")));
#endif
canvas_shader.set_conditional(CanvasShaderGLES2::SHADOW_PCF5, shadow_filter == SHADOW_FILTER_PCF5);
canvas_shader.set_conditional(CanvasShaderGLES2::SHADOW_PCF13, shadow_filter == SHADOW_FILTER_PCF13);
canvas_shader.set_conditional(CanvasShaderGLES2::SHADOW_ESM, shadow_filter == SHADOW_FILTER_ESM);
window_size = Size2(OS::get_singleton()->get_video_mode().width, OS::get_singleton()->get_video_mode().height);
double time = (OS::get_singleton()->get_ticks_usec() / 1000); // get msec
time /= 1000.0; // make secs
time_delta = time - last_time;
last_time = time;
frame++;
_rinfo.vertex_count = 0;
_rinfo.object_count = 0;
_rinfo.mat_change_count = 0;
_rinfo.shader_change_count = 0;
_rinfo.ci_draw_commands = 0;
_rinfo.surface_count = 0;
_rinfo.draw_calls = 0;
_update_fixed_materials();
while (_shader_dirty_list.first()) {
_update_shader(_shader_dirty_list.first()->self());
}
while (_skeleton_dirty_list.first()) {
Skeleton *s = _skeleton_dirty_list.first()->self();
float *sk_float = (float *)skinned_buffer;
for (int i = 0; i < s->bones.size(); i++) {
float *m = &sk_float[i * 12];
const Skeleton::Bone &b = s->bones[i];
m[0] = b.mtx[0][0];
m[1] = b.mtx[1][0];
m[2] = b.mtx[2][0];
m[3] = b.mtx[3][0];
m[4] = b.mtx[0][1];
m[5] = b.mtx[1][1];
m[6] = b.mtx[2][1];
m[7] = b.mtx[3][1];
m[8] = b.mtx[0][2];
m[9] = b.mtx[1][2];
m[10] = b.mtx[2][2];
m[11] = b.mtx[3][2];
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, s->tex_id);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, nearest_power_of_2(s->bones.size() * 3), 1, GL_RGBA, GL_FLOAT, sk_float);
_skeleton_dirty_list.remove(_skeleton_dirty_list.first());
}
while (_multimesh_dirty_list.first()) {
MultiMesh *s = _multimesh_dirty_list.first()->self();
float *sk_float = (float *)skinned_buffer;
for (int i = 0; i < s->elements.size(); i++) {
float *m = &sk_float[i * 16];
const float *im = s->elements[i].matrix;
for (int j = 0; j < 16; j++) {
m[j] = im[j];
}
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, s->tex_id);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, s->tw, s->th, GL_RGBA, GL_FLOAT, sk_float);
_multimesh_dirty_list.remove(_multimesh_dirty_list.first());
}
draw_next_frame = false;
//material_shader.set_uniform_default(MaterialShaderGLES2::SCREENZ_SCALE, Math::fmod(time, 3600.0));
/* nehe ?*/
//glClearColor(0,0,1,1);
//glClear(GL_COLOR_BUFFER_BIT); //should not clear if anything else cleared..
}
void RasterizerGLES2::capture_viewport(Image *r_capture) {
#if 0
PoolVector<uint8_t> pixels;
pixels.resize(viewport.width*viewport.height*3);
PoolVector<uint8_t>::Write w = pixels.write();
#ifdef GLEW_ENABLED
glReadBuffer(GL_COLOR_ATTACHMENT0);
#endif
glPixelStorei(GL_PACK_ALIGNMENT, 1);
if (current_rt)
glReadPixels( 0, 0, viewport.width, viewport.height,GL_RGB,GL_UNSIGNED_BYTE,w.ptr() );
else
glReadPixels( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height,GL_RGB,GL_UNSIGNED_BYTE,w.ptr());
glPixelStorei(GL_PACK_ALIGNMENT, 4);
w=PoolVector<uint8_t>::Write();
r_capture->create(viewport.width,viewport.height,0,Image::FORMAT_RGB8,pixels);
#else
PoolVector<uint8_t> pixels;
pixels.resize(viewport.width * viewport.height * 4);
PoolVector<uint8_t>::Write w = pixels.write();
glPixelStorei(GL_PACK_ALIGNMENT, 4);
//uint64_t time = OS::get_singleton()->get_ticks_usec();
if (current_rt) {
#ifdef GLEW_ENABLED
glReadBuffer(GL_COLOR_ATTACHMENT0);
#endif
glReadPixels(0, 0, viewport.width, viewport.height, GL_RGBA, GL_UNSIGNED_BYTE, w.ptr());
} else {
// back?
glReadPixels(viewport.x, window_size.height - (viewport.height + viewport.y), viewport.width, viewport.height, GL_RGBA, GL_UNSIGNED_BYTE, w.ptr());
}
bool flip = current_rt == NULL;
if (flip) {
uint32_t *imgptr = (uint32_t *)w.ptr();
for (int y = 0; y < (viewport.height / 2); y++) {
uint32_t *ptr1 = &imgptr[y * viewport.width];
uint32_t *ptr2 = &imgptr[(viewport.height - y - 1) * viewport.width];
for (int x = 0; x < viewport.width; x++) {
uint32_t tmp = ptr1[x];
ptr1[x] = ptr2[x];
ptr2[x] = tmp;
}
}
}
w = PoolVector<uint8_t>::Write();
r_capture->create(viewport.width, viewport.height, 0, Image::FORMAT_RGBA8, pixels);
//r_capture->flip_y();
#endif
}
void RasterizerGLES2::clear_viewport(const Color &p_color) {
if (current_rt || using_canvas_bg) {
glScissor(0, 0, viewport.width, viewport.height);
} else {
glScissor(viewport.x, window_size.height - (viewport.height + viewport.y), viewport.width, viewport.height);
}
glEnable(GL_SCISSOR_TEST);
glClearColor(p_color.r, p_color.g, p_color.b, p_color.a);
glClear(GL_COLOR_BUFFER_BIT); //should not clear if anything else cleared..
glDisable(GL_SCISSOR_TEST);
};
void RasterizerGLES2::set_render_target(RID p_render_target, bool p_transparent_bg, bool p_vflip) {
if (!p_render_target.is_valid()) {
glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer);
current_rt = NULL;
current_rt_vflip = false;
} else {
RenderTarget *rt = render_target_owner.get(p_render_target);
ERR_FAIL_COND(!rt);
ERR_FAIL_COND(rt->fbo == 0);
glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo);
current_rt = rt;
current_rt_transparent = p_transparent_bg;
current_rt_vflip = !p_vflip;
}
}
void RasterizerGLES2::set_viewport(const VS::ViewportRect &p_viewport) {
viewport = p_viewport;
//viewport.width/=2;
//viewport.height/=2;
//print_line("viewport: "+itos(p_viewport.x)+","+itos(p_viewport.y)+","+itos(p_viewport.width)+","+itos(p_viewport.height));
if (current_rt) {
glViewport(0, 0, viewport.width, viewport.height);
} else {
glViewport(viewport.x, window_size.height - (viewport.height + viewport.y), viewport.width, viewport.height);
}
}
void RasterizerGLES2::begin_scene(RID p_viewport_data, RID p_env, VS::ScenarioDebugMode p_debug) {
current_debug = p_debug;
opaque_render_list.clear();
alpha_render_list.clear();
light_instance_count = 0;
current_env = p_env.is_valid() ? environment_owner.get(p_env) : NULL;
scene_pass++;
last_light_id = 0;
directional_light_count = 0;
lights_use_shadow = false;
texscreen_used = false;
current_vd = viewport_data_owner.get(p_viewport_data);
if (current_debug == VS::SCENARIO_DEBUG_WIREFRAME) {
#ifdef GLEW_ENABLED
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
#endif
}
//set state
glCullFace(GL_FRONT);
cull_front = true;
};
void RasterizerGLES2::begin_shadow_map(RID p_light_instance, int p_shadow_pass) {
ERR_FAIL_COND(shadow);
shadow = light_instance_owner.get(p_light_instance);
shadow_pass = p_shadow_pass;
ERR_FAIL_COND(!shadow);
opaque_render_list.clear();
alpha_render_list.clear();
//pre_zpass_render_list.clear();
light_instance_count = 0;
glCullFace(GL_FRONT);
cull_front = true;
}
void RasterizerGLES2::set_camera(const Transform &p_world, const CameraMatrix &p_projection, bool p_ortho_hint) {
camera_transform = p_world;
if (current_rt && current_rt_vflip) {
camera_transform.basis.set_axis(1, -camera_transform.basis.get_axis(1));
}
camera_transform_inverse = camera_transform.inverse();
camera_projection = p_projection;
camera_plane = Plane(camera_transform.origin, -camera_transform.basis.get_axis(2));
camera_z_near = camera_projection.get_z_near();
camera_z_far = camera_projection.get_z_far();
camera_projection.get_viewport_size(camera_vp_size.x, camera_vp_size.y);
camera_ortho = p_ortho_hint;
}
void RasterizerGLES2::add_light(RID p_light_instance) {
#define LIGHT_FADE_TRESHOLD 0.05
ERR_FAIL_COND(light_instance_count >= MAX_SCENE_LIGHTS);
LightInstance *li = light_instance_owner.get(p_light_instance);
ERR_FAIL_COND(!li);
switch (li->base->type) {
case VS::LIGHT_DIRECTIONAL: {
ERR_FAIL_COND(directional_light_count >= RenderList::MAX_LIGHTS);
directional_lights[directional_light_count++] = li;
if (li->base->shadow_enabled) {
CameraMatrix bias;
bias.set_light_bias();
int passes = light_instance_get_shadow_passes(p_light_instance);
for (int i = 0; i < passes; i++) {
Transform modelview = Transform(camera_transform_inverse * li->custom_transform[i]).inverse();
li->shadow_projection[i] = bias * li->custom_projection[i] * modelview;
}
lights_use_shadow = true;
}
} break;
case VS::LIGHT_OMNI: {
if (li->base->shadow_enabled) {
li->shadow_projection[0] = Transform(camera_transform_inverse * li->transform).inverse();
lights_use_shadow = true;
}
} break;
case VS::LIGHT_SPOT: {
if (li->base->shadow_enabled) {
CameraMatrix bias;
bias.set_light_bias();
Transform modelview = Transform(camera_transform_inverse * li->transform).inverse();
li->shadow_projection[0] = bias * li->projection * modelview;
lights_use_shadow = true;
}
} break;
}
/* make light hash */
// actually, not really a hash, but helps to sort the lights
// and avoid recompiling redudant shader versions
li->last_pass = scene_pass;
li->sort_key = light_instance_count;
light_instances[light_instance_count++] = li;
}
void RasterizerGLES2::_update_shader(Shader *p_shader) const {
_shader_dirty_list.remove(&p_shader->dirty_list);
p_shader->valid = false;
p_shader->uniforms.clear();
Vector<StringName> uniform_names;
String vertex_code;
String vertex_globals;
ShaderCompilerGLES2::Flags vertex_flags;
ShaderCompilerGLES2::Flags fragment_flags;
ShaderCompilerGLES2::Flags light_flags;
if (p_shader->mode == VS::SHADER_MATERIAL) {
Error err = shader_precompiler.compile(p_shader->vertex_code, ShaderLanguage::SHADER_MATERIAL_VERTEX, vertex_code, vertex_globals, vertex_flags, &p_shader->uniforms);
if (err) {
return; //invalid
}
} else if (p_shader->mode == VS::SHADER_CANVAS_ITEM) {
Error err = shader_precompiler.compile(p_shader->vertex_code, ShaderLanguage::SHADER_CANVAS_ITEM_VERTEX, vertex_code, vertex_globals, vertex_flags, &p_shader->uniforms);
if (err) {
return; //invalid
}
}
//print_line("compiled vertex: "+vertex_code);
//print_line("compiled vertex globals: "+vertex_globals);
//print_line("UCV: "+itos(p_shader->uniforms.size()));
String fragment_code;
String fragment_globals;
if (p_shader->mode == VS::SHADER_MATERIAL) {
Error err = shader_precompiler.compile(p_shader->fragment_code, ShaderLanguage::SHADER_MATERIAL_FRAGMENT, fragment_code, fragment_globals, fragment_flags, &p_shader->uniforms);
if (err) {
return; //invalid
}
} else if (p_shader->mode == VS::SHADER_CANVAS_ITEM) {
Error err = shader_precompiler.compile(p_shader->fragment_code, ShaderLanguage::SHADER_CANVAS_ITEM_FRAGMENT, fragment_code, fragment_globals, fragment_flags, &p_shader->uniforms);
if (err) {
return; //invalid
}
}
String light_code;
String light_globals;
if (p_shader->mode == VS::SHADER_MATERIAL) {
Error err = shader_precompiler.compile(p_shader->light_code, (ShaderLanguage::SHADER_MATERIAL_LIGHT), light_code, light_globals, light_flags, &p_shader->uniforms);
if (err) {
return; //invalid
}
} else if (p_shader->mode == VS::SHADER_CANVAS_ITEM) {
Error err = shader_precompiler.compile(p_shader->light_code, (ShaderLanguage::SHADER_CANVAS_ITEM_LIGHT), light_code, light_globals, light_flags, &p_shader->uniforms);
if (err) {
return; //invalid
}
}
fragment_globals += light_globals; //both fragment anyway
//print_line("compiled fragment: "+fragment_code);
//("compiled fragment globals: "+fragment_globals);
//print_line("UCF: "+itos(p_shader->uniforms.size()));
int first_tex_index = 0xFFFFF;
p_shader->first_texture = StringName();
for (Map<StringName, ShaderLanguage::Uniform>::Element *E = p_shader->uniforms.front(); E; E = E->next()) {
uniform_names.push_back("_" + String(E->key()));
if (E->get().type == ShaderLanguage::TYPE_TEXTURE && E->get().order < first_tex_index) {
p_shader->first_texture = E->key();
first_tex_index = E->get().order;
}
}
bool uses_time = false;
if (p_shader->mode == VS::SHADER_MATERIAL) {
//print_line("setting code to id.. "+itos(p_shader->custom_code_id));
Vector<const char *> enablers;
if (fragment_flags.use_color_interp || vertex_flags.use_color_interp)
enablers.push_back("#define ENABLE_COLOR_INTERP\n");
if (fragment_flags.use_uv_interp || vertex_flags.use_uv_interp)
enablers.push_back("#define ENABLE_UV_INTERP\n");
if (fragment_flags.use_uv2_interp || vertex_flags.use_uv2_interp)
enablers.push_back("#define ENABLE_UV2_INTERP\n");
if (fragment_flags.use_tangent_interp || vertex_flags.use_tangent_interp || fragment_flags.uses_normalmap)
enablers.push_back("#define ENABLE_TANGENT_INTERP\n");
if (fragment_flags.use_var1_interp || vertex_flags.use_var1_interp)
enablers.push_back("#define ENABLE_VAR1_INTERP\n");
if (fragment_flags.use_var2_interp || vertex_flags.use_var2_interp)
enablers.push_back("#define ENABLE_VAR2_INTERP\n");
if (fragment_flags.uses_texscreen) {
enablers.push_back("#define ENABLE_TEXSCREEN\n");
}
if (fragment_flags.uses_screen_uv) {
enablers.push_back("#define ENABLE_SCREEN_UV\n");
}
if (fragment_flags.uses_discard) {
enablers.push_back("#define ENABLE_DISCARD\n");
}
if (fragment_flags.uses_normalmap) {
enablers.push_back("#define ENABLE_NORMALMAP\n");
}
if (light_flags.uses_light) {
enablers.push_back("#define USE_LIGHT_SHADER_CODE\n");
}
if (light_flags.uses_shadow_color) {
enablers.push_back("#define USE_OUTPUT_SHADOW_COLOR\n");
}
if (light_flags.uses_time || fragment_flags.uses_time || vertex_flags.uses_time) {
enablers.push_back("#define USE_TIME\n");
uses_time = true;
}
if (vertex_flags.vertex_code_writes_position) {
enablers.push_back("#define VERTEX_SHADER_WRITE_POSITION\n");
}
material_shader.set_custom_shader_code(p_shader->custom_code_id, vertex_code, vertex_globals, fragment_code, light_code, fragment_globals, uniform_names, enablers);
} else if (p_shader->mode == VS::SHADER_CANVAS_ITEM) {
Vector<const char *> enablers;
if (light_flags.uses_time || fragment_flags.uses_time || vertex_flags.uses_time) {
enablers.push_back("#define USE_TIME\n");
uses_time = true;
}
if (fragment_flags.uses_normal) {
enablers.push_back("#define NORMAL_USED\n");
}
if (fragment_flags.uses_normalmap) {
enablers.push_back("#define USE_NORMALMAP\n");
}
if (light_flags.uses_light) {
enablers.push_back("#define USE_LIGHT_SHADER_CODE\n");
}
if (fragment_flags.use_var1_interp || vertex_flags.use_var1_interp)
enablers.push_back("#define ENABLE_VAR1_INTERP\n");
if (fragment_flags.use_var2_interp || vertex_flags.use_var2_interp)
enablers.push_back("#define ENABLE_VAR2_INTERP\n");
if (fragment_flags.uses_texscreen) {
enablers.push_back("#define ENABLE_TEXSCREEN\n");
}
if (fragment_flags.uses_screen_uv) {
enablers.push_back("#define ENABLE_SCREEN_UV\n");
}
if (fragment_flags.uses_texpixel_size) {
enablers.push_back("#define USE_TEXPIXEL_SIZE\n");
}
if (light_flags.uses_shadow_color) {
enablers.push_back("#define USE_OUTPUT_SHADOW_COLOR\n");
}
if (vertex_flags.uses_worldvec) {
enablers.push_back("#define USE_WORLD_VEC\n");
}
canvas_shader.set_custom_shader_code(p_shader->custom_code_id, vertex_code, vertex_globals, fragment_code, light_code, fragment_globals, uniform_names, enablers);
//postprocess_shader.set_custom_shader_code(p_shader->custom_code_id,vertex_code, vertex_globals,fragment_code, fragment_globals,uniform_names);
}
p_shader->valid = true;
p_shader->has_alpha = fragment_flags.uses_alpha || fragment_flags.uses_texscreen;
p_shader->writes_vertex = vertex_flags.vertex_code_writes_vertex;
p_shader->uses_discard = fragment_flags.uses_discard;
p_shader->has_texscreen = fragment_flags.uses_texscreen;
p_shader->has_screen_uv = fragment_flags.uses_screen_uv;
p_shader->can_zpass = !fragment_flags.uses_discard && !vertex_flags.vertex_code_writes_vertex;
p_shader->uses_normal = fragment_flags.uses_normal || light_flags.uses_normal;
p_shader->uses_time = uses_time;
p_shader->uses_texpixel_size = fragment_flags.uses_texpixel_size;
p_shader->version++;
}
void RasterizerGLES2::_add_geometry(const Geometry *p_geometry, const InstanceData *p_instance, const Geometry *p_geometry_cmp, const GeometryOwner *p_owner, int p_material) {
Material *m = NULL;
RID m_src = p_instance->material_override.is_valid() ? p_instance->material_override : (p_material >= 0 ? p_instance->materials[p_material] : p_geometry->material);
#ifdef DEBUG_ENABLED
if (current_debug == VS::SCENARIO_DEBUG_OVERDRAW) {
m_src = overdraw_material;
}
#endif
if (m_src)
m = material_owner.get(m_src);
if (!m) {
m = material_owner.get(default_material);
}
ERR_FAIL_COND(!m);
if (m->last_pass != frame) {
if (m->shader.is_valid()) {
m->shader_cache = shader_owner.get(m->shader);
if (m->shader_cache) {
if (!m->shader_cache->valid) {
m->shader_cache = NULL;
} else {
if (m->shader_cache->has_texscreen)
texscreen_used = true;
}
} else {
m->shader = RID();
}
} else {
m->shader_cache = NULL;
}
m->last_pass = frame;
}
RenderList *render_list = NULL;
bool has_base_alpha = (m->shader_cache && m->shader_cache->has_alpha);
bool has_blend_alpha = m->blend_mode != VS::MATERIAL_BLEND_MODE_MIX || m->flags[VS::MATERIAL_FLAG_ONTOP];
bool has_alpha = has_base_alpha || has_blend_alpha;
if (shadow) {
if (has_blend_alpha || (has_base_alpha && m->depth_draw_mode != VS::MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA))
return; //bye
if (!m->shader_cache || (!m->shader_cache->writes_vertex && !m->shader_cache->uses_discard && m->depth_draw_mode != VS::MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA)) {
//shader does not use discard and does not write a vertex position, use generic material
if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED)
m = shadow_mat_double_sided_ptr;
else
m = shadow_mat_ptr;
if (m->last_pass != frame) {
if (m->shader.is_valid()) {
m->shader_cache = shader_owner.get(m->shader);
if (m->shader_cache) {
if (!m->shader_cache->valid)
m->shader_cache = NULL;
} else {
m->shader = RID();
}
} else {
m->shader_cache = NULL;
}
m->last_pass = frame;
}
}
render_list = &opaque_render_list;
/* notyet
if (!m->shader_cache || m->shader_cache->can_zpass)
render_list = &alpha_render_list;
} else {
render_list = &opaque_render_list;
}*/
} else {
if (has_alpha) {
render_list = &alpha_render_list;
} else {
render_list = &opaque_render_list;
}
}
RenderList::Element *e = render_list->add_element();
if (!e)
return;
e->geometry = p_geometry;
e->geometry_cmp = p_geometry_cmp;
e->material = m;
e->instance = p_instance;
if (camera_ortho) {
e->depth = camera_plane.distance_to(p_instance->transform.origin);
} else {
e->depth = camera_transform.origin.distance_to(p_instance->transform.origin);
}
e->owner = p_owner;
e->light_type = 0;
e->additive = false;
e->additive_ptr = &e->additive;
e->sort_flags = 0;
if (p_instance->skeleton.is_valid()) {
e->skeleton = skeleton_owner.get(p_instance->skeleton);
if (!e->skeleton)
const_cast<InstanceData *>(p_instance)->skeleton = RID();
else
e->sort_flags |= RenderList::SORT_FLAG_SKELETON;
} else {
e->skeleton = NULL;
}
if (e->geometry->type == Geometry::GEOMETRY_MULTISURFACE)
e->sort_flags |= RenderList::SORT_FLAG_INSTANCING;
e->mirror = p_instance->mirror;
if (m->flags[VS::MATERIAL_FLAG_INVERT_FACES])
e->mirror = !e->mirror;
//e->light_type=0xFF; // no lights!
e->light_type = 3; //light type 3 is no light?
e->light = 0xFFFF;
if (!shadow && !has_blend_alpha && has_alpha && m->depth_draw_mode == VS::MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA) {
//if nothing exists, add this element as opaque too
RenderList::Element *oe = opaque_render_list.add_element();
if (!oe)
return;
memcpy(oe, e, sizeof(RenderList::Element));
oe->additive_ptr = &oe->additive;
}
if (shadow || m->flags[VS::MATERIAL_FLAG_UNSHADED] || current_debug == VS::SCENARIO_DEBUG_SHADELESS) {
e->light_type = 0x7F; //unshaded is zero
} else {
bool duplicate = false;
for (int i = 0; i < directional_light_count; i++) {
uint16_t sort_key = directional_lights[i]->sort_key;
uint8_t light_type = VS::LIGHT_DIRECTIONAL;
if (directional_lights[i]->base->shadow_enabled) {
light_type |= 0x8;
if (directional_lights[i]->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS)
light_type |= 0x10;
else if (directional_lights[i]->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS)
light_type |= 0x30;
}
RenderList::Element *ec;
if (duplicate) {
ec = render_list->add_element();
memcpy(ec, e, sizeof(RenderList::Element));
} else {
ec = e;
duplicate = true;
}
ec->light_type = light_type;
ec->light = sort_key;
ec->additive_ptr = &e->additive;
}
const RID *liptr = p_instance->light_instances.ptr();
int ilc = p_instance->light_instances.size();
for (int i = 0; i < ilc; i++) {
LightInstance *li = light_instance_owner.get(liptr[i]);
if (!li || li->last_pass != scene_pass) //lit by light not in visible scene
continue;
uint8_t light_type = li->base->type | 0x40; //penalty to ensure directionals always go first
if (li->base->shadow_enabled) {
light_type |= 0x8;
}
uint16_t sort_key = li->sort_key;
RenderList::Element *ec;
if (duplicate) {
ec = render_list->add_element();
memcpy(ec, e, sizeof(RenderList::Element));
} else {
duplicate = true;
ec = e;
}
ec->light_type = light_type;
ec->light = sort_key;
ec->additive_ptr = &e->additive;
}
}
DEBUG_TEST_ERROR("Add Geometry");
}
void RasterizerGLES2::add_mesh(const RID &p_mesh, const InstanceData *p_data) {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND(!mesh);
int ssize = mesh->surfaces.size();
for (int i = 0; i < ssize; i++) {
int mat_idx = p_data->materials[i].is_valid() ? i : -1;
Surface *s = mesh->surfaces[i];
_add_geometry(s, p_data, s, NULL, mat_idx);
}
mesh->last_pass = frame;
}
void RasterizerGLES2::add_multimesh(const RID &p_multimesh, const InstanceData *p_data) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
if (!multimesh->mesh.is_valid())
return;
if (multimesh->elements.empty())
return;
Mesh *mesh = mesh_owner.get(multimesh->mesh);
ERR_FAIL_COND(!mesh);
int surf_count = mesh->surfaces.size();
if (multimesh->last_pass != scene_pass) {
multimesh->cache_surfaces.resize(surf_count);
for (int i = 0; i < surf_count; i++) {
multimesh->cache_surfaces[i].material = mesh->surfaces[i]->material;
multimesh->cache_surfaces[i].has_alpha = mesh->surfaces[i]->has_alpha;
multimesh->cache_surfaces[i].surface = mesh->surfaces[i];
}
multimesh->last_pass = scene_pass;
}
for (int i = 0; i < surf_count; i++) {
_add_geometry(&multimesh->cache_surfaces[i], p_data, multimesh->cache_surfaces[i].surface, multimesh);
}
}
void RasterizerGLES2::add_immediate(const RID &p_immediate, const InstanceData *p_data) {
Immediate *immediate = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!immediate);
_add_geometry(immediate, p_data, immediate, NULL);
}
void RasterizerGLES2::add_particles(const RID &p_particle_instance, const InstanceData *p_data) {
//print_line("adding particles");
ParticlesInstance *particles_instance = particles_instance_owner.get(p_particle_instance);
ERR_FAIL_COND(!particles_instance);
Particles *p = particles_owner.get(particles_instance->particles);
ERR_FAIL_COND(!p);
_add_geometry(p, p_data, p, particles_instance);
draw_next_frame = true;
}
Color RasterizerGLES2::_convert_color(const Color &p_color) {
if (current_env && current_env->fx_enabled[VS::ENV_FX_SRGB])
return p_color.to_linear();
else
return p_color;
}
void RasterizerGLES2::_set_cull(bool p_front, bool p_reverse_cull) {
bool front = p_front;
if (p_reverse_cull)
front = !front;
if (front != cull_front) {
glCullFace(front ? GL_FRONT : GL_BACK);
cull_front = front;
}
}
_FORCE_INLINE_ void RasterizerGLES2::_update_material_shader_params(Material *p_material) const {
Map<StringName, Material::UniformData> old_mparams = p_material->shader_params;
Map<StringName, Material::UniformData> &mparams = p_material->shader_params;
mparams.clear();
int idx = 0;
for (Map<StringName, ShaderLanguage::Uniform>::Element *E = p_material->shader_cache->uniforms.front(); E; E = E->next()) {
Material::UniformData ud;
bool keep = true; //keep material value
Map<StringName, Material::UniformData>::Element *OLD = old_mparams.find(E->key());
bool has_old = OLD;
bool old_inuse = has_old && old_mparams[E->key()].inuse;
ud.istexture = (E->get().type == ShaderLanguage::TYPE_TEXTURE || E->get().type == ShaderLanguage::TYPE_CUBEMAP);
if (!has_old || !old_inuse) {
keep = false;
} else if (OLD->get().value.get_type() != E->value().default_value.get_type()) {
if (OLD->get().value.get_type() == Variant::INT && E->get().type == ShaderLanguage::TYPE_FLOAT) {
//handle common mistake using shaders (feeding ints instead of float)
OLD->get().value = float(OLD->get().value);
keep = true;
} else if (!ud.istexture && E->value().default_value.get_type() != Variant::NIL) {
keep = false;
}
//type changed between old and new
/* if (old_mparams[E->key()].value.get_type()==Variant::OBJECT) {
if (E->value().default_value.get_type()!=Variant::_RID) //hackfor textures
keep=false;
} else if (!old_mparams[E->key()].value.is_num() || !E->value().default_value.get_type())
keep=false;*/
//value is invalid because type differs and default is not null
;
}
if (keep) {
ud.value = old_mparams[E->key()].value;
//print_line("KEEP: "+String(E->key()));
} else {
if (ud.istexture && p_material->shader_cache->default_textures.has(E->key()))
ud.value = p_material->shader_cache->default_textures[E->key()];
else
ud.value = E->value().default_value;
old_inuse = false; //if reverted to default, obviously did not work
/*
print_line("NEW: "+String(E->key())+" because: hasold-"+itos(old_mparams.has(E->key())));
if (old_mparams.has(E->key()))
print_line(" told "+Variant::get_type_name(old_mparams[E->key()].value.get_type())+" tnew "+Variant::get_type_name(E->value().default_value.get_type()));
*/
}
ud.index = idx++;
ud.inuse = old_inuse;
mparams[E->key()] = ud;
}
p_material->shader_version = p_material->shader_cache->version;
}
bool RasterizerGLES2::_setup_material(const Geometry *p_geometry, const Material *p_material, bool p_no_const_light, bool p_opaque_pass) {
if (p_material->flags[VS::MATERIAL_FLAG_DOUBLE_SIDED]) {
glDisable(GL_CULL_FACE);
} else {
glEnable(GL_CULL_FACE);
}
//glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
/*
if (p_material->flags[VS::MATERIAL_FLAG_WIREFRAME])
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
else
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
*/
if (p_material->line_width)
glLineWidth(p_material->line_width);
//all goes to false by default
material_shader.set_conditional(MaterialShaderGLES2::USE_SHADOW_PASS, shadow != NULL);
material_shader.set_conditional(MaterialShaderGLES2::USE_SHADOW_PCF, shadow_filter == SHADOW_FILTER_PCF5 || shadow_filter == SHADOW_FILTER_PCF13);
material_shader.set_conditional(MaterialShaderGLES2::USE_SHADOW_PCF_HQ, shadow_filter == SHADOW_FILTER_PCF13);
material_shader.set_conditional(MaterialShaderGLES2::USE_SHADOW_ESM, shadow_filter == SHADOW_FILTER_ESM);
material_shader.set_conditional(MaterialShaderGLES2::USE_LIGHTMAP_ON_UV2, p_material->flags[VS::MATERIAL_FLAG_LIGHTMAP_ON_UV2]);
material_shader.set_conditional(MaterialShaderGLES2::USE_COLOR_ATTRIB_SRGB_TO_LINEAR, p_material->flags[VS::MATERIAL_FLAG_COLOR_ARRAY_SRGB] && current_env && current_env->fx_enabled[VS::ENV_FX_SRGB]);
if (p_opaque_pass && p_material->depth_draw_mode == VS::MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA && p_material->shader_cache && p_material->shader_cache->has_alpha) {
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_CLIP_ALPHA, true);
} else {
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_CLIP_ALPHA, false);
}
if (!shadow) {
bool depth_test = !p_material->flags[VS::MATERIAL_FLAG_ONTOP];
bool depth_write = p_material->depth_draw_mode != VS::MATERIAL_DEPTH_DRAW_NEVER && (p_opaque_pass || p_material->depth_draw_mode == VS::MATERIAL_DEPTH_DRAW_ALWAYS);
//bool depth_write=!p_material->hints[VS::MATERIAL_HINT_NO_DEPTH_DRAW] && (p_opaque_pass || !p_material->hints[VS::MATERIAL_HINT_NO_DEPTH_DRAW_FOR_ALPHA]);
if (current_depth_mask != depth_write) {
current_depth_mask = depth_write;
glDepthMask(depth_write);
}
if (current_depth_test != depth_test) {
current_depth_test = depth_test;
if (depth_test)
glEnable(GL_DEPTH_TEST);
else
glDisable(GL_DEPTH_TEST);
}
material_shader.set_conditional(MaterialShaderGLES2::USE_FOG, current_env && current_env->fx_enabled[VS::ENV_FX_FOG]);
//glDepthMask( true );
}
DEBUG_TEST_ERROR("Pre Shader Bind");
bool rebind = false;
if (p_material->shader_cache && p_material->shader_cache->valid) {
/*
// reduce amount of conditional compilations
for(int i=0;i<_tex_version_count;i++)
material_shader.set_conditional((MaterialShaderGLES2::Conditionals)_tex_version[i],false);
*/
//material_shader.set_custom_shader(p_material->shader_cache->custom_code_id);
if (p_material->shader_version != p_material->shader_cache->version) {
//shader changed somehow, must update uniforms
_update_material_shader_params((Material *)p_material);
}
material_shader.set_custom_shader(p_material->shader_cache->custom_code_id);
rebind = material_shader.bind();
DEBUG_TEST_ERROR("Shader Bind");
//set uniforms!
int texcoord = 0;
for (Map<StringName, Material::UniformData>::Element *E = p_material->shader_params.front(); E; E = E->next()) {
if (E->get().index < 0)
continue;
//print_line(String(E->key())+": "+E->get().value);
if (E->get().istexture) {
//clearly a texture..
RID rid = E->get().value;
int loc = material_shader.get_custom_uniform_location(E->get().index); //should be automatic..
Texture *t = NULL;
if (rid.is_valid()) {
t = texture_owner.get(rid);
if (!t) {
E->get().value = RID(); //nullify, invalid texture
rid = RID();
}
}
glActiveTexture(GL_TEXTURE0 + texcoord);
glUniform1i(loc, texcoord); //TODO - this could happen automatically on compile...
if (t) {
if (t->render_target)
t->render_target->last_pass = frame;
if (E->key() == p_material->shader_cache->first_texture) {
tc0_idx = texcoord;
tc0_id_cache = t->tex_id;
}
glBindTexture(t->target, t->tex_id);
} else
glBindTexture(GL_TEXTURE_2D, white_tex); //no texture
texcoord++;
} else if (E->get().value.get_type() == Variant::COLOR) {
Color c = E->get().value;
material_shader.set_custom_uniform(E->get().index, _convert_color(c));
} else {
material_shader.set_custom_uniform(E->get().index, E->get().value);
}
}
if (p_material->shader_cache->has_texscreen && framebuffer.active) {
material_shader.set_uniform(MaterialShaderGLES2::TEXSCREEN_SCREEN_MULT, Vector2(float(viewport.width) / framebuffer.width, float(viewport.height) / framebuffer.height));
material_shader.set_uniform(MaterialShaderGLES2::TEXSCREEN_SCREEN_CLAMP, Color(0, 0, float(viewport.width) / framebuffer.width, float(viewport.height) / framebuffer.height));
material_shader.set_uniform(MaterialShaderGLES2::TEXSCREEN_TEX, texcoord);
glActiveTexture(GL_TEXTURE0 + texcoord);
glBindTexture(GL_TEXTURE_2D, framebuffer.sample_color);
}
if (p_material->shader_cache->has_screen_uv) {
material_shader.set_uniform(MaterialShaderGLES2::SCREEN_UV_MULT, Vector2(1.0 / viewport.width, 1.0 / viewport.height));
}
DEBUG_TEST_ERROR("Material arameters");
if (p_material->shader_cache->uses_time) {
material_shader.set_uniform(MaterialShaderGLES2::TIME, Math::fmod(last_time, shader_time_rollback));
draw_next_frame = true;
}
//if uses TIME - draw_next_frame=true
} else {
material_shader.set_custom_shader(0);
rebind = material_shader.bind();
DEBUG_TEST_ERROR("Shader bind2");
}
if (shadow) {
float zofs = shadow->base->vars[VS::LIGHT_PARAM_SHADOW_Z_OFFSET];
float zslope = shadow->base->vars[VS::LIGHT_PARAM_SHADOW_Z_SLOPE_SCALE];
if (shadow_pass >= 1 && shadow->base->type == VS::LIGHT_DIRECTIONAL) {
float m = Math::pow(shadow->base->directional_shadow_param[VS::LIGHT_DIRECTIONAL_SHADOW_PARAM_PSSM_ZOFFSET_SCALE], shadow_pass);
zofs *= m;
zslope *= m;
}
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_Z_OFFSET, zofs);
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_Z_SLOPE_SCALE, zslope);
if (shadow->base->type == VS::LIGHT_OMNI)
material_shader.set_uniform(MaterialShaderGLES2::DUAL_PARABOLOID, shadow->dp);
DEBUG_TEST_ERROR("Shadow uniforms");
}
if (current_env && current_env->fx_enabled[VS::ENV_FX_FOG]) {
Color col_begin = current_env->fx_param[VS::ENV_FX_PARAM_FOG_BEGIN_COLOR];
Color col_end = current_env->fx_param[VS::ENV_FX_PARAM_FOG_END_COLOR];
col_begin = _convert_color(col_begin);
col_end = _convert_color(col_end);
float from = current_env->fx_param[VS::ENV_FX_PARAM_FOG_BEGIN];
float zf = camera_z_far;
float curve = current_env->fx_param[VS::ENV_FX_PARAM_FOG_ATTENUATION];
material_shader.set_uniform(MaterialShaderGLES2::FOG_PARAMS, Vector3(from, zf, curve));
material_shader.set_uniform(MaterialShaderGLES2::FOG_COLOR_BEGIN, Vector3(col_begin.r, col_begin.g, col_begin.b));
material_shader.set_uniform(MaterialShaderGLES2::FOG_COLOR_END, Vector3(col_end.r, col_end.g, col_end.b));
}
//material_shader.set_uniform(MaterialShaderGLES2::TIME,Math::fmod(last_time,300.0));
//if uses TIME - draw_next_frame=true
return rebind;
}
void RasterizerGLES2::_setup_light(uint16_t p_light) {
if (shadow)
return;
if (p_light == 0xFFFF)
return;
enum {
VL_LIGHT_POS,
VL_LIGHT_DIR,
VL_LIGHT_ATTENUATION,
VL_LIGHT_SPOT_ATTENUATION,
VL_LIGHT_DIFFUSE,
VL_LIGHT_SPECULAR,
VL_LIGHT_MAX
};
static const MaterialShaderGLES2::Uniforms light_uniforms[VL_LIGHT_MAX] = {
MaterialShaderGLES2::LIGHT_POS,
MaterialShaderGLES2::LIGHT_DIRECTION,
MaterialShaderGLES2::LIGHT_ATTENUATION,
MaterialShaderGLES2::LIGHT_SPOT_ATTENUATION,
MaterialShaderGLES2::LIGHT_DIFFUSE,
MaterialShaderGLES2::LIGHT_SPECULAR,
};
GLfloat light_data[VL_LIGHT_MAX][3];
memset(light_data, 0, (VL_LIGHT_MAX)*3 * sizeof(GLfloat));
LightInstance *li = light_instances[p_light];
Light *l = li->base;
Color col_diffuse = _convert_color(l->colors[VS::LIGHT_COLOR_DIFFUSE]);
Color col_specular = _convert_color(l->colors[VS::LIGHT_COLOR_SPECULAR]);
for (int j = 0; j < 3; j++) {
light_data[VL_LIGHT_DIFFUSE][j] = col_diffuse[j];
light_data[VL_LIGHT_SPECULAR][j] = col_specular[j];
}
if (l->type != VS::LIGHT_OMNI) {
Vector3 dir = -li->transform.get_basis().get_axis(2);
dir = camera_transform_inverse.basis.xform(dir).normalized();
for (int j = 0; j < 3; j++)
light_data[VL_LIGHT_DIR][j] = dir[j];
}
if (l->type != VS::LIGHT_DIRECTIONAL) {
Vector3 pos = li->transform.get_origin();
pos = camera_transform_inverse.xform(pos);
for (int j = 0; j < 3; j++)
light_data[VL_LIGHT_POS][j] = pos[j];
}
if (li->near_shadow_buffer) {
glActiveTexture(GL_TEXTURE0 + max_texture_units - 1);
glBindTexture(GL_TEXTURE_2D, li->near_shadow_buffer->depth);
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX, li->shadow_projection[0]);
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_TEXEL_SIZE, Vector2(1.0, 1.0) / li->near_shadow_buffer->size);
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_TEXTURE, max_texture_units - 1);
if (shadow_filter == SHADOW_FILTER_ESM)
material_shader.set_uniform(MaterialShaderGLES2::ESM_MULTIPLIER, float(li->base->vars[VS::LIGHT_PARAM_SHADOW_ESM_MULTIPLIER]));
if (li->base->type == VS::LIGHT_DIRECTIONAL) {
if (li->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX2, li->shadow_projection[1]);
material_shader.set_uniform(MaterialShaderGLES2::LIGHT_PSSM_SPLIT, Vector3(li->shadow_split[0], li->shadow_split[1], li->shadow_split[2]));
} else if (li->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX2, li->shadow_projection[1]);
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX3, li->shadow_projection[2]);
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX4, li->shadow_projection[3]);
material_shader.set_uniform(MaterialShaderGLES2::LIGHT_PSSM_SPLIT, Vector3(li->shadow_split[0], li->shadow_split[1], li->shadow_split[2]));
}
//print_line("shadow split: "+rtos(li->shadow_split));
}
material_shader.set_uniform(MaterialShaderGLES2::SHADOW_DARKENING, li->base->vars[VS::LIGHT_PARAM_SHADOW_DARKENING]);
//matrix
}
light_data[VL_LIGHT_ATTENUATION][0] = l->vars[VS::LIGHT_PARAM_ENERGY];
if (l->type == VS::LIGHT_DIRECTIONAL) {
light_data[VL_LIGHT_ATTENUATION][1] = l->directional_shadow_param[VS::LIGHT_DIRECTIONAL_SHADOW_PARAM_MAX_DISTANCE];
} else {
light_data[VL_LIGHT_ATTENUATION][1] = l->vars[VS::LIGHT_PARAM_RADIUS];
}
light_data[VL_LIGHT_ATTENUATION][2] = l->vars[VS::LIGHT_PARAM_ATTENUATION];
light_data[VL_LIGHT_SPOT_ATTENUATION][0] = Math::cos(Math::deg2rad(l->vars[VS::LIGHT_PARAM_SPOT_ANGLE]));
light_data[VL_LIGHT_SPOT_ATTENUATION][1] = l->vars[VS::LIGHT_PARAM_SPOT_ATTENUATION];
//int uf = material_shader.get_uniform(MaterialShaderGLES2::LIGHT_PARAMS);
for (int i = 0; i < VL_LIGHT_MAX; i++) {
glUniform3f(material_shader.get_uniform(light_uniforms[i]), light_data[i][0], light_data[i][1], light_data[i][2]);
}
}
template <bool USE_NORMAL, bool USE_TANGENT, bool INPLACE>
void RasterizerGLES2::_skeleton_xform(const uint8_t *p_src_array, int p_src_stride, uint8_t *p_dst_array, int p_dst_stride, int p_elements, const uint8_t *p_src_bones, const uint8_t *p_src_weights, const Skeleton::Bone *p_bone_xforms) {
uint32_t basesize = 3;
if (USE_NORMAL)
basesize += 3;
if (USE_TANGENT)
basesize += 4;
uint32_t extra = (p_dst_stride - basesize * 4);
const int dstvec_size = 3 + (USE_NORMAL ? 3 : 0) + (USE_TANGENT ? 4 : 0);
float dstcopy[dstvec_size];
for (int i = 0; i < p_elements; i++) {
uint32_t ss = p_src_stride * i;
uint32_t ds = p_dst_stride * i;
const uint16_t *bi = (const uint16_t *)&p_src_bones[ss];
const float *bw = (const float *)&p_src_weights[ss];
const float *src_vec = (const float *)&p_src_array[ss];
float *dst_vec;
if (INPLACE)
dst_vec = dstcopy;
else
dst_vec = (float *)&p_dst_array[ds];
dst_vec[0] = 0.0;
dst_vec[1] = 0.0;
dst_vec[2] = 0.0;
//conditionals simply removed by optimizer
if (USE_NORMAL) {
dst_vec[3] = 0.0;
dst_vec[4] = 0.0;
dst_vec[5] = 0.0;
if (USE_TANGENT) {
dst_vec[6] = 0.0;
dst_vec[7] = 0.0;
dst_vec[8] = 0.0;
dst_vec[9] = src_vec[9];
}
} else {
if (USE_TANGENT) {
dst_vec[3] = 0.0;
dst_vec[4] = 0.0;
dst_vec[5] = 0.0;
dst_vec[6] = src_vec[6];
}
}
#define _XFORM_BONE(m_idx) \
if (bw[m_idx] == 0) \
goto end; \
p_bone_xforms[bi[m_idx]].transform_add_mul3(&src_vec[0], &dst_vec[0], bw[m_idx]); \
if (USE_NORMAL) { \
p_bone_xforms[bi[m_idx]].transform3_add_mul3(&src_vec[3], &dst_vec[3], bw[m_idx]); \
if (USE_TANGENT) { \
p_bone_xforms[bi[m_idx]].transform3_add_mul3(&src_vec[6], &dst_vec[6], bw[m_idx]); \
} \
} else { \
if (USE_TANGENT) { \
p_bone_xforms[bi[m_idx]].transform3_add_mul3(&src_vec[3], &dst_vec[3], bw[m_idx]); \
} \
}
_XFORM_BONE(0);
_XFORM_BONE(1);
_XFORM_BONE(2);
_XFORM_BONE(3);
end:
if (INPLACE) {
const uint8_t *esp = (const uint8_t *)dstcopy;
uint8_t *edp = (uint8_t *)&p_dst_array[ds];
for (uint32_t j = 0; j < dstvec_size * 4; j++) {
edp[j] = esp[j];
}
} else {
//copy extra stuff
const uint8_t *esp = (const uint8_t *)&src_vec[basesize];
uint8_t *edp = (uint8_t *)&dst_vec[basesize];
for (uint32_t j = 0; j < extra; j++) {
edp[j] = esp[j];
}
}
}
}
Error RasterizerGLES2::_setup_geometry(const Geometry *p_geometry, const Material *p_material, const Skeleton *p_skeleton, const float *p_morphs) {
switch (p_geometry->type) {
case Geometry::GEOMETRY_MULTISURFACE:
case Geometry::GEOMETRY_SURFACE: {
const Surface *surf = NULL;
if (p_geometry->type == Geometry::GEOMETRY_SURFACE)
surf = static_cast<const Surface *>(p_geometry);
else if (p_geometry->type == Geometry::GEOMETRY_MULTISURFACE)
surf = static_cast<const MultiMeshSurface *>(p_geometry)->surface;
if (surf->format != surf->configured_format) {
if (OS::get_singleton()->is_stdout_verbose()) {
print_line("has format: " + itos(surf->format));
print_line("configured format: " + itos(surf->configured_format));
}
ERR_EXPLAIN("Missing arrays (not set) in surface");
}
ERR_FAIL_COND_V(surf->format != surf->configured_format, ERR_UNCONFIGURED);
uint8_t *base = 0;
int stride = surf->stride;
bool use_VBO = (surf->array_local == 0);
_setup_geometry_vinfo = surf->array_len;
bool skeleton_valid = p_skeleton && (surf->format & VS::ARRAY_FORMAT_BONES) && (surf->format & VS::ARRAY_FORMAT_WEIGHTS) && !p_skeleton->bones.empty() && p_skeleton->bones.size() > surf->max_bone;
/*
if (surf->packed) {
float scales[4]={surf->vertex_scale,surf->uv_scale,surf->uv2_scale,0.0};
glVertexAttrib4fv( 7, scales );
} else {
glVertexAttrib4f( 7, 1,1,1,1 );
}*/
if (!use_VBO) {
DEBUG_TEST_ERROR("Draw NO VBO");
base = surf->array_local;
glBindBuffer(GL_ARRAY_BUFFER, 0);
bool can_copy_to_local = surf->local_stride * surf->array_len <= skinned_buffer_size;
if (p_morphs && surf->stride * surf->array_len > skinned_buffer_size)
can_copy_to_local = false;
if (!can_copy_to_local)
skeleton_valid = false;
/* compute morphs */
if (p_morphs && surf->morph_target_count && can_copy_to_local) {
base = skinned_buffer;
stride = surf->local_stride;
//copy all first
float coef = 1.0;
for (int i = 0; i < surf->morph_target_count; i++) {
if (surf->mesh->morph_target_mode == VS::MORPH_MODE_NORMALIZED)
coef -= p_morphs[i];
ERR_FAIL_COND_V(surf->morph_format != surf->morph_targets_local[i].configured_format, ERR_INVALID_DATA);
}
int16_t coeffp = CLAMP(coef * 255, 0, 255);
for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
const Surface::ArrayData &ad = surf->array[i];
if (ad.size == 0)
continue;
int ofs = ad.ofs;
int src_stride = surf->stride;
int dst_stride = skeleton_valid ? surf->stride : surf->local_stride;
int count = surf->array_len;
if (!skeleton_valid && i >= VS::ARRAY_MAX - 3)
break;
switch (i) {
case VS::ARRAY_VERTEX:
case VS::ARRAY_NORMAL:
case VS::ARRAY_TANGENT: {
for (int k = 0; k < count; k++) {
const float *src = (const float *)&surf->array_local[ofs + k * src_stride];
float *dst = (float *)&base[ofs + k * dst_stride];
dst[0] = src[0] * coef;
dst[1] = src[1] * coef;
dst[2] = src[2] * coef;
};
} break;
case VS::ARRAY_COLOR: {
for (int k = 0; k < count; k++) {
const uint8_t *src = (const uint8_t *)&surf->array_local[ofs + k * src_stride];
uint8_t *dst = (uint8_t *)&base[ofs + k * dst_stride];
dst[0] = (src[0] * coeffp) >> 8;
dst[1] = (src[1] * coeffp) >> 8;
dst[2] = (src[2] * coeffp) >> 8;
dst[3] = (src[3] * coeffp) >> 8;
}
} break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2: {
for (int k = 0; k < count; k++) {
const float *src = (const float *)&surf->array_local[ofs + k * src_stride];
float *dst = (float *)&base[ofs + k * dst_stride];
dst[0] = src[0] * coef;
dst[1] = src[1] * coef;
}
} break;
case VS::ARRAY_BONES:
case VS::ARRAY_WEIGHTS: {
for (int k = 0; k < count; k++) {
const float *src = (const float *)&surf->array_local[ofs + k * src_stride];
float *dst = (float *)&base[ofs + k * dst_stride];
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
}
} break;
}
}
for (int j = 0; j < surf->morph_target_count; j++) {
for (int i = 0; i < VS::ARRAY_MAX - 3; i++) {
const Surface::ArrayData &ad = surf->array[i];
if (ad.size == 0)
continue;
int ofs = ad.ofs;
int src_stride = surf->local_stride;
int dst_stride = skeleton_valid ? surf->stride : surf->local_stride;
int count = surf->array_len;
const uint8_t *morph = surf->morph_targets_local[j].array;
float w = p_morphs[j];
int16_t wfp = CLAMP(w * 255, 0, 255);
switch (i) {
case VS::ARRAY_VERTEX:
case VS::ARRAY_NORMAL:
case VS::ARRAY_TANGENT: {
for (int k = 0; k < count; k++) {
const float *src_morph = (const float *)&morph[ofs + k * src_stride];
float *dst = (float *)&base[ofs + k * dst_stride];
dst[0] += src_morph[0] * w;
dst[1] += src_morph[1] * w;
dst[2] += src_morph[2] * w;
}
} break;
case VS::ARRAY_COLOR: {
for (int k = 0; k < count; k++) {
const uint8_t *src = (const uint8_t *)&morph[ofs + k * src_stride];
uint8_t *dst = (uint8_t *)&base[ofs + k * dst_stride];
dst[0] = (src[0] * wfp) >> 8;
dst[1] = (src[1] * wfp) >> 8;
dst[2] = (src[2] * wfp) >> 8;
dst[3] = (src[3] * wfp) >> 8;
}
} break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2: {
for (int k = 0; k < count; k++) {
const float *src_morph = (const float *)&morph[ofs + k * src_stride];
float *dst = (float *)&base[ofs + k * dst_stride];
dst[0] += src_morph[0] * w;
dst[1] += src_morph[1] * w;
}
} break;
}
}
}
if (skeleton_valid) {
const uint8_t *src_weights = &surf->array_local[surf->array[VS::ARRAY_WEIGHTS].ofs];
const uint8_t *src_bones = &surf->array_local[surf->array[VS::ARRAY_BONES].ofs];
const Skeleton::Bone *skeleton = &p_skeleton->bones[0];
if (surf->format & VS::ARRAY_FORMAT_NORMAL && surf->format & VS::ARRAY_FORMAT_TANGENT)
_skeleton_xform<true, true, true>(base, surf->stride, base, surf->stride, surf->array_len, src_bones, src_weights, skeleton);
else if (surf->format & (VS::ARRAY_FORMAT_NORMAL))
_skeleton_xform<true, false, true>(base, surf->stride, base, surf->stride, surf->array_len, src_bones, src_weights, skeleton);
else if (surf->format & (VS::ARRAY_FORMAT_TANGENT))
_skeleton_xform<false, true, true>(base, surf->stride, base, surf->stride, surf->array_len, src_bones, src_weights, skeleton);
else
_skeleton_xform<false, false, true>(base, surf->stride, base, surf->stride, surf->array_len, src_bones, src_weights, skeleton);
}
stride = skeleton_valid ? surf->stride : surf->local_stride;
#if 0
{
//in-place skeleton tansformation, only used for morphs, slow.
//should uptimize some day....
const uint8_t *src_weights=&surf->array_local[surf->array[VS::ARRAY_WEIGHTS].ofs];
const uint8_t *src_bones=&surf->array_local[surf->array[VS::ARRAY_BONES].ofs];
int src_stride = surf->stride;
int count = surf->array_len;
const Transform *skeleton = &p_skeleton->bones[0];
for(int i=0;i<VS::ARRAY_MAX-1;i++) {
const Surface::ArrayData& ad=surf->array[i];
if (ad.size==0)
continue;
int ofs = ad.ofs;
switch(i) {
case VS::ARRAY_VERTEX: {
for(int k=0;k<count;k++) {
float *ptr= (float*)&base[ofs+k*stride];
const GLfloat* weights = reinterpret_cast<const GLfloat*>(&src_weights[k*src_stride]);
const GLfloat *bones = reinterpret_cast<const GLfloat*>(&src_bones[k*src_stride]);
Vector3 src( ptr[0], ptr[1], ptr[2] );
Vector3 dst;
for(int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
float w = weights[j];
if (w==0)
break;
//print_line("accum "+itos(i)+" += "+rtos(Math::ftoi(bones[j]))+" * "+skeleton[ Math::ftoi(bones[j]) ]+" * "+rtos(w));
int bidx = Math::fast_ftoi(bones[j]);
dst+=skeleton[ bidx ].xform(src) * w;
}
ptr[0]=dst.x;
ptr[1]=dst.y;
ptr[2]=dst.z;
} break;
} break;
case VS::ARRAY_NORMAL:
case VS::ARRAY_TANGENT: {
for(int k=0;k<count;k++) {
float *ptr= (float*)&base[ofs+k*stride];
const GLfloat* weights = reinterpret_cast<const GLfloat*>(&src_weights[k*src_stride]);
const GLfloat *bones = reinterpret_cast<const GLfloat*>(&src_bones[k*src_stride]);
Vector3 src( ptr[0], ptr[1], ptr[2] );
Vector3 dst;
for(int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
float w = weights[j];
if (w==0)
break;
//print_line("accum "+itos(i)+" += "+rtos(Math::ftoi(bones[j]))+" * "+skeleton[ Math::ftoi(bones[j]) ]+" * "+rtos(w));
int bidx=Math::fast_ftoi(bones[j]);
dst+=skeleton[ bidx ].basis.xform(src) * w;
}
ptr[0]=dst.x;
ptr[1]=dst.y;
ptr[2]=dst.z;
} break;
} break;
}
}
}
#endif
} else if (skeleton_valid) {
base = skinned_buffer;
//copy stuff and get it ready for the skeleton
int dst_stride = surf->stride - (surf->array[VS::ARRAY_BONES].size + surf->array[VS::ARRAY_WEIGHTS].size);
const uint8_t *src_weights = &surf->array_local[surf->array[VS::ARRAY_WEIGHTS].ofs];
const uint8_t *src_bones = &surf->array_local[surf->array[VS::ARRAY_BONES].ofs];
const Skeleton::Bone *skeleton = &p_skeleton->bones[0];
if (surf->format & VS::ARRAY_FORMAT_NORMAL && surf->format & VS::ARRAY_FORMAT_TANGENT)
_skeleton_xform<true, true, false>(surf->array_local, surf->stride, base, dst_stride, surf->array_len, src_bones, src_weights, skeleton);
else if (surf->format & (VS::ARRAY_FORMAT_NORMAL))
_skeleton_xform<true, false, false>(surf->array_local, surf->stride, base, dst_stride, surf->array_len, src_bones, src_weights, skeleton);
else if (surf->format & (VS::ARRAY_FORMAT_TANGENT))
_skeleton_xform<false, true, false>(surf->array_local, surf->stride, base, dst_stride, surf->array_len, src_bones, src_weights, skeleton);
else
_skeleton_xform<false, false, false>(surf->array_local, surf->stride, base, dst_stride, surf->array_len, src_bones, src_weights, skeleton);
stride = dst_stride;
}
} else {
glBindBuffer(GL_ARRAY_BUFFER, surf->vertex_id);
};
for (int i = 0; i < (VS::ARRAY_MAX - 1); i++) {
const Surface::ArrayData &ad = surf->array[i];
/*
if (!gl_texcoord_shader[i])
continue;
*/
if (ad.size == 0 || !ad.bind) {
glDisableVertexAttribArray(i);
if (i == VS::ARRAY_COLOR) {
_set_color_attrib(Color(1, 1, 1, 1));
};
//print_line("disable: "+itos(i));
continue; // this one is disabled.
}
glEnableVertexAttribArray(i);
//print_line("set: "+itos(i)+" - count: "+itos(ad.count)+" datatype: "+itos(ad.datatype)+" ofs: "+itos(ad.ofs)+" stride: "+itos(stride)+" total len: "+itos(surf->array_len));
glVertexAttribPointer(i, ad.count, ad.datatype, ad.normalize, stride, &base[ad.ofs]);
}
#ifdef GLEW_ENABLED
//"desktop" opengl needs this.
if (surf->primitive == VS::PRIMITIVE_POINTS) {
glEnable(GL_POINT_SPRITE);
glEnable(GL_VERTEX_PROGRAM_POINT_SIZE);
} else {
glDisable(GL_POINT_SPRITE);
glDisable(GL_VERTEX_PROGRAM_POINT_SIZE);
}
#endif
} break;
default: break;
};
return OK;
};
static const GLenum gl_primitive[] = {
GL_POINTS,
GL_LINES,
GL_LINE_STRIP,
GL_LINE_LOOP,
GL_TRIANGLES,
GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN
};
void RasterizerGLES2::_render(const Geometry *p_geometry, const Material *p_material, const Skeleton *p_skeleton, const GeometryOwner *p_owner, const Transform &p_xform) {
_rinfo.object_count++;
switch (p_geometry->type) {
case Geometry::GEOMETRY_SURFACE: {
Surface *s = (Surface *)p_geometry;
_rinfo.vertex_count += s->array_len;
if (s->index_array_len > 0) {
if (s->index_array_local) {
//print_line("LOCAL F: "+itos(s->format)+" C: "+itos(s->index_array_len)+" VC: "+itos(s->array_len));
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len > (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, s->index_array_local);
} else {
//print_line("indices: "+itos(s->index_array_local) );
//print_line("VBO F: "+itos(s->format)+" C: "+itos(s->index_array_len)+" VC: "+itos(s->array_len));
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len > (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
}
} else {
glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
};
_rinfo.draw_calls++;
} break;
case Geometry::GEOMETRY_MULTISURFACE: {
material_shader.bind_uniforms();
Surface *s = static_cast<const MultiMeshSurface *>(p_geometry)->surface;
const MultiMesh *mm = static_cast<const MultiMesh *>(p_owner);
int element_count = mm->elements.size();
if (element_count == 0)
return;
if (mm->visible >= 0) {
element_count = MIN(element_count, mm->visible);
}
const MultiMesh::Element *elements = &mm->elements[0];
_rinfo.vertex_count += s->array_len * element_count;
_rinfo.draw_calls += element_count;
if (use_texture_instancing) {
//this is probably the fastest all around way if vertex texture fetch is supported
float twd = (1.0 / mm->tw) * 4.0;
float thd = 1.0 / mm->th;
float parm[3] = { 0.0, 01.0, (1.0f / mm->tw) };
glActiveTexture(GL_TEXTURE0 + max_texture_units - 2);
glDisableVertexAttribArray(6);
glBindTexture(GL_TEXTURE_2D, mm->tex_id);
material_shader.set_uniform(MaterialShaderGLES2::INSTANCE_MATRICES, GL_TEXTURE0 + max_texture_units - 2);
if (s->index_array_len > 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
for (int i = 0; i < element_count; i++) {
parm[0] = (i % (mm->tw >> 2)) * twd;
parm[1] = (i / (mm->tw >> 2)) * thd;
glVertexAttrib3fv(6, parm);
glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len > (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
}
} else {
for (int i = 0; i < element_count; i++) {
//parm[0]=(i%(mm->tw>>2))*twd;
//parm[1]=(i/(mm->tw>>2))*thd;
glVertexAttrib3fv(6, parm);
glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
}
};
} else if (use_attribute_instancing) {
//if not, using attributes instead of uniforms can be really fast in forward rendering architectures
if (s->index_array_len > 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
for (int i = 0; i < element_count; i++) {
glVertexAttrib4fv(8, &elements[i].matrix[0]);
glVertexAttrib4fv(9, &elements[i].matrix[4]);
glVertexAttrib4fv(10, &elements[i].matrix[8]);
glVertexAttrib4fv(11, &elements[i].matrix[12]);
glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len > (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
}
} else {
for (int i = 0; i < element_count; i++) {
glVertexAttrib4fv(8, &elements[i].matrix[0]);
glVertexAttrib4fv(9, &elements[i].matrix[4]);
glVertexAttrib4fv(10, &elements[i].matrix[8]);
glVertexAttrib4fv(11, &elements[i].matrix[12]);
glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
}
};
} else {
//nothing to do, slow path (hope no hardware has to use it... but you never know)
if (s->index_array_len > 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
for (int i = 0; i < element_count; i++) {
glUniformMatrix4fv(material_shader.get_uniform_location(MaterialShaderGLES2::INSTANCE_TRANSFORM), 1, false, elements[i].matrix);
glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len > (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
}
} else {
for (int i = 0; i < element_count; i++) {
glUniformMatrix4fv(material_shader.get_uniform_location(MaterialShaderGLES2::INSTANCE_TRANSFORM), 1, false, elements[i].matrix);
glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
}
};
}
} break;
case Geometry::GEOMETRY_IMMEDIATE: {
bool restore_tex = false;
const Immediate *im = static_cast<const Immediate *>(p_geometry);
if (im->building) {
return;
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
for (const List<Immediate::Chunk>::Element *E = im->chunks.front(); E; E = E->next()) {
const Immediate::Chunk &c = E->get();
if (c.vertices.empty()) {
continue;
}
for (int i = 0; i < c.vertices.size(); i++)
if (c.texture.is_valid() && texture_owner.owns(c.texture)) {
const Texture *t = texture_owner.get(c.texture);
glActiveTexture(GL_TEXTURE0 + tc0_idx);
glBindTexture(t->target, t->tex_id);
restore_tex = true;
} else if (restore_tex) {
glActiveTexture(GL_TEXTURE0 + tc0_idx);
glBindTexture(GL_TEXTURE_2D, tc0_id_cache);
restore_tex = false;
}
if (!c.normals.empty()) {
glEnableVertexAttribArray(VS::ARRAY_NORMAL);
glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, false, sizeof(Vector3), c.normals.ptr());
} else {
glDisableVertexAttribArray(VS::ARRAY_NORMAL);
}
if (!c.tangents.empty()) {
glEnableVertexAttribArray(VS::ARRAY_TANGENT);
glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, false, sizeof(Plane), c.tangents.ptr());
} else {
glDisableVertexAttribArray(VS::ARRAY_TANGENT);
}
if (!c.colors.empty()) {
glEnableVertexAttribArray(VS::ARRAY_COLOR);
glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(Color), c.colors.ptr());
} else {
glDisableVertexAttribArray(VS::ARRAY_COLOR);
_set_color_attrib(Color(1, 1, 1, 1));
}
if (!c.uvs.empty()) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(Vector2), c.uvs.ptr());
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
}
if (!c.uvs2.empty()) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV2);
glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, false, sizeof(Vector2), c.uvs2.ptr());
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV2);
}
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, false, sizeof(Vector3), c.vertices.ptr());
glDrawArrays(gl_primitive[c.primitive], 0, c.vertices.size());
}
if (restore_tex) {
glActiveTexture(GL_TEXTURE0 + tc0_idx);
glBindTexture(GL_TEXTURE_2D, tc0_id_cache);
restore_tex = false;
}
} break;
case Geometry::GEOMETRY_PARTICLES: {
//print_line("particulinas");
const Particles *particles = static_cast<const Particles *>(p_geometry);
ERR_FAIL_COND(!p_owner);
ParticlesInstance *particles_instance = (ParticlesInstance *)p_owner;
ParticleSystemProcessSW &pp = particles_instance->particles_process;
float td = time_delta; //MIN(time_delta,1.0/10.0);
pp.process(&particles->data, particles_instance->transform, td);
ERR_EXPLAIN("A parameter in the particle system is not correct.");
ERR_FAIL_COND(!pp.valid);
Transform camera;
if (shadow)
camera = shadow->transform;
else
camera = camera_transform;
particle_draw_info.prepare(&particles->data, &pp, particles_instance->transform, camera);
_rinfo.draw_calls += particles->data.amount;
_rinfo.vertex_count += 4 * particles->data.amount;
{
static const Vector3 points[4] = {
Vector3(-1.0, 1.0, 0),
Vector3(1.0, 1.0, 0),
Vector3(1.0, -1.0, 0),
Vector3(-1.0, -1.0, 0)
};
static const Vector3 uvs[4] = {
Vector3(0.0, 0.0, 0.0),
Vector3(1.0, 0.0, 0.0),
Vector3(1.0, 1.0, 0.0),
Vector3(0, 1.0, 0.0)
};
static const Vector3 normals[4] = {
Vector3(0, 0, 1),
Vector3(0, 0, 1),
Vector3(0, 0, 1),
Vector3(0, 0, 1)
};
static const Plane tangents[4] = {
Plane(Vector3(1, 0, 0), 0),
Plane(Vector3(1, 0, 0), 0),
Plane(Vector3(1, 0, 0), 0),
Plane(Vector3(1, 0, 0), 0)
};
for (int i = 0; i < particles->data.amount; i++) {
ParticleSystemDrawInfoSW::ParticleDrawInfo &pinfo = *particle_draw_info.draw_info_order[i];
if (!pinfo.data->active)
continue;
material_shader.set_uniform(MaterialShaderGLES2::WORLD_TRANSFORM, pinfo.transform);
_set_color_attrib(pinfo.color);
_draw_primitive(4, points, normals, NULL, uvs, tangents);
}
}
} break;
default: break;
};
};
void RasterizerGLES2::_setup_shader_params(const Material *p_material) {
#if 0
int idx=0;
int tex_idx=0;
for(Map<StringName,Variant>::Element *E=p_material->shader_cache->params.front();E;E=E->next(),idx++) {
Variant v; //
v = E->get();
const Map<StringName,Variant>::Element *F=p_material->shader_params.find(E->key());
if (F)
v=F->get();
switch(v.get_type() ) {
case Variant::OBJECT:
case Variant::_RID: {
RID tex=v;
if (!tex.is_valid())
break;
Texture *texture = texture_owner.get(tex);
if (!texture)
break;
glUniform1i( material_shader.get_custom_uniform_location(idx), tex_idx);
glActiveTexture(tex_idx);
glBindTexture(texture->target,texture->tex_id);
} break;
case Variant::COLOR: {
Color c=v;
material_shader.set_custom_uniform(idx,Vector3(c.r,c.g,c.b));
} break;
default: {
material_shader.set_custom_uniform(idx,v);
} break;
}
}
#endif
}
void RasterizerGLES2::_setup_skeleton(const Skeleton *p_skeleton) {
material_shader.set_conditional(MaterialShaderGLES2::USE_SKELETON, p_skeleton != NULL);
if (p_skeleton && p_skeleton->tex_id) {
glActiveTexture(GL_TEXTURE0 + max_texture_units - 2);
glBindTexture(GL_TEXTURE_2D, p_skeleton->tex_id);
}
}
void RasterizerGLES2::_render_list_forward(RenderList *p_render_list, const Transform &p_view_transform, const Transform &p_view_transform_inverse, const CameraMatrix &p_projection, bool p_reverse_cull, bool p_fragment_light, bool p_alpha_pass) {
if (current_rt && current_rt_vflip) {
//p_reverse_cull=!p_reverse_cull;
glFrontFace(GL_CCW);
}
const Material *prev_material = NULL;
uint16_t prev_light = 0x777E;
const Geometry *prev_geometry_cmp = NULL;
uint8_t prev_light_type = 0xEF;
const Skeleton *prev_skeleton = NULL;
uint8_t prev_sort_flags = 0xFF;
const BakedLightData *prev_baked_light = NULL;
RID prev_baked_light_texture;
const float *prev_morph_values = NULL;
int prev_receive_shadows_state = -1;
material_shader.set_conditional(MaterialShaderGLES2::USE_VERTEX_LIGHTING, !shadow && !p_fragment_light);
material_shader.set_conditional(MaterialShaderGLES2::USE_FRAGMENT_LIGHTING, !shadow && p_fragment_light);
material_shader.set_conditional(MaterialShaderGLES2::USE_SKELETON, false);
if (shadow) {
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_DIRECTIONAL, false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_OMNI, false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_SPOT, false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_SHADOW, false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM, false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM4, false);
material_shader.set_conditional(MaterialShaderGLES2::SHADELESS, false);
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_OCTREE, false);
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_LIGHTMAP, false);
//material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_TEXTURE,false);
}
bool stores_glow = !shadow && (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) && !p_alpha_pass;
float sampled_light_dp_multiplier = 1.0;
bool prev_blend = false;
glDisable(GL_BLEND);
for (int i = 0; i < p_render_list->element_count; i++) {
RenderList::Element *e = p_render_list->elements[i];
const Material *material = e->material;
uint16_t light = e->light;
uint8_t light_type = e->light_type;
uint8_t sort_flags = e->sort_flags;
const Skeleton *skeleton = e->skeleton;
const Geometry *geometry_cmp = e->geometry_cmp;
const BakedLightData *baked_light = e->instance->baked_light;
const float *morph_values = e->instance->morph_values.ptr();
int receive_shadows_state = e->instance->receive_shadows == true ? 1 : 0;
bool rebind = false;
bool bind_baked_light_octree = false;
bool bind_baked_lightmap = false;
bool additive = false;
bool bind_dp_sampler = false;
if (!shadow) {
if (texscreen_used && !texscreen_copied && material->shader_cache && material->shader_cache->valid && material->shader_cache->has_texscreen) {
texscreen_copied = true;
_copy_to_texscreen();
//force reset state
prev_material = NULL;
prev_light = 0x777E;
prev_geometry_cmp = NULL;
prev_light_type = 0xEF;
prev_skeleton = NULL;
prev_sort_flags = 0xFF;
prev_morph_values = NULL;
prev_receive_shadows_state = -1;
glEnable(GL_BLEND);
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
}
if (light_type != prev_light_type || receive_shadows_state != prev_receive_shadows_state) {
if (material->flags[VS::MATERIAL_FLAG_UNSHADED] || current_debug == VS::SCENARIO_DEBUG_SHADELESS) {
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_DIRECTIONAL, false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_OMNI, false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_SPOT, false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_SHADOW, false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM, false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM4, false);
material_shader.set_conditional(MaterialShaderGLES2::SHADELESS, true);
} else {
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_DIRECTIONAL, (light_type & 0x3) == VS::LIGHT_DIRECTIONAL);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_OMNI, (light_type & 0x3) == VS::LIGHT_OMNI);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_SPOT, (light_type & 0x3) == VS::LIGHT_SPOT);
if (receive_shadows_state == 1) {
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_SHADOW, (light_type & 0x8));
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM, (light_type & 0x10));
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM4, (light_type & 0x20));
} else {
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_SHADOW, false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM, false);
material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM4, false);
}
material_shader.set_conditional(MaterialShaderGLES2::SHADELESS, false);
}
rebind = true;
}
if (!*e->additive_ptr) {
additive = false;
*e->additive_ptr = true;
} else {
additive = true;
}
if (stores_glow)
material_shader.set_conditional(MaterialShaderGLES2::USE_GLOW, !additive);
bool desired_blend = false;
VS::MaterialBlendMode desired_blend_mode = VS::MATERIAL_BLEND_MODE_MIX;
if (additive) {
desired_blend = true;
desired_blend_mode = VS::MATERIAL_BLEND_MODE_ADD;
} else {
desired_blend = p_alpha_pass;
desired_blend_mode = material->blend_mode;
}
if (prev_blend != desired_blend) {
if (desired_blend) {
glEnable(GL_BLEND);
if (!current_rt || !current_rt_transparent)
glColorMask(1, 1, 1, 0);
} else {
glDisable(GL_BLEND);
glColorMask(1, 1, 1, 1);
}
prev_blend = desired_blend;
}
if (desired_blend && desired_blend_mode != current_blend_mode) {
switch (desired_blend_mode) {
case VS::MATERIAL_BLEND_MODE_MIX: {
glBlendEquation(GL_FUNC_ADD);
if (current_rt && current_rt_transparent) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
} break;
case VS::MATERIAL_BLEND_MODE_ADD: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(p_alpha_pass ? GL_SRC_ALPHA : GL_ONE, GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_SUB: {
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_MUL: {
glBlendEquation(GL_FUNC_ADD);
if (current_rt && current_rt_transparent) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
} break;
}
current_blend_mode = desired_blend_mode;
}
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_OCTREE, false);
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_LIGHTMAP, false);
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_DP_SAMPLER, false);
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_COLOR, false);
if (material->flags[VS::MATERIAL_FLAG_UNSHADED] == false && current_debug != VS::SCENARIO_DEBUG_SHADELESS) {
if (baked_light != NULL) {
if (baked_light->realtime_color_enabled) {
float realtime_energy = baked_light->realtime_energy;
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_COLOR, true);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_COLOR, Vector3(baked_light->realtime_color.r * realtime_energy, baked_light->realtime_color.g * realtime_energy, baked_light->realtime_color.b * realtime_energy));
}
}
if (e->instance->sampled_light.is_valid()) {
SampledLight *sl = sampled_light_owner.get(e->instance->sampled_light);
if (sl) {
baked_light = NULL; //can't mix
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_DP_SAMPLER, true);
glActiveTexture(GL_TEXTURE0 + max_texture_units - 3);
glBindTexture(GL_TEXTURE_2D, sl->texture); //bind the texture
sampled_light_dp_multiplier = sl->multiplier;
bind_dp_sampler = true;
}
}
if (!additive && baked_light) {
if (baked_light->mode == VS::BAKED_LIGHT_OCTREE && baked_light->octree_texture.is_valid() && e->instance->baked_light_octree_xform) {
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_OCTREE, true);
bind_baked_light_octree = true;
if (prev_baked_light != baked_light) {
Texture *tex = texture_owner.get(baked_light->octree_texture);
if (tex) {
glActiveTexture(GL_TEXTURE0 + max_texture_units - 3);
glBindTexture(tex->target, tex->tex_id); //bind the texture
}
if (baked_light->light_texture.is_valid()) {
Texture *texl = texture_owner.get(baked_light->light_texture);
if (texl) {
glActiveTexture(GL_TEXTURE0 + max_texture_units - 4);
glBindTexture(texl->target, texl->tex_id); //bind the light texture
}
}
}
} else if (baked_light->mode == VS::BAKED_LIGHT_LIGHTMAPS) {
int lightmap_idx = e->instance->baked_lightmap_id;
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_LIGHTMAP, false);
bind_baked_lightmap = false;
if (baked_light->lightmaps.has(lightmap_idx)) {
RID texid = baked_light->lightmaps[lightmap_idx];
if (prev_baked_light != baked_light || texid != prev_baked_light_texture) {
Texture *tex = texture_owner.get(texid);
if (tex) {
glActiveTexture(GL_TEXTURE0 + max_texture_units - 3);
glBindTexture(tex->target, tex->tex_id); //bind the texture
}
prev_baked_light_texture = texid;
}
if (texid.is_valid()) {
material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_LIGHTMAP, true);
bind_baked_lightmap = true;
}
}
}
}
if (int(prev_baked_light != NULL) ^ int(baked_light != NULL)) {
rebind = true;
}
}
}
if (sort_flags != prev_sort_flags) {
if (sort_flags & RenderList::SORT_FLAG_INSTANCING) {
material_shader.set_conditional(MaterialShaderGLES2::USE_UNIFORM_INSTANCING, !use_texture_instancing && !use_attribute_instancing);
material_shader.set_conditional(MaterialShaderGLES2::USE_ATTRIBUTE_INSTANCING, use_attribute_instancing);
material_shader.set_conditional(MaterialShaderGLES2::USE_TEXTURE_INSTANCING, use_texture_instancing);
} else {
material_shader.set_conditional(MaterialShaderGLES2::USE_UNIFORM_INSTANCING, false);
material_shader.set_conditional(MaterialShaderGLES2::USE_ATTRIBUTE_INSTANCING, false);
material_shader.set_conditional(MaterialShaderGLES2::USE_TEXTURE_INSTANCING, false);
}
rebind = true;
}
if (use_hw_skeleton_xform && (skeleton != prev_skeleton || morph_values != prev_morph_values)) {
if (!prev_skeleton || !skeleton)
rebind = true; //went from skeleton <-> no skeleton, needs rebind
if (morph_values == NULL)
_setup_skeleton(skeleton);
else
_setup_skeleton(NULL);
}
if (material != prev_material || rebind) {
rebind = _setup_material(e->geometry, material, additive, !p_alpha_pass);
DEBUG_TEST_ERROR("Setup material");
_rinfo.mat_change_count++;
//_setup_material_overrides(e->material,NULL,material_overrides);
//_setup_material_skeleton(material,skeleton);
} else {
if (prev_skeleton != skeleton) {
//_setup_material_skeleton(material,skeleton);
};
}
if (geometry_cmp != prev_geometry_cmp || prev_skeleton != skeleton) {
_setup_geometry(e->geometry, material, e->skeleton, e->instance->morph_values.ptr());
_rinfo.surface_count++;
DEBUG_TEST_ERROR("Setup geometry");
};
if (i == 0 || light != prev_light || rebind) {
if (e->light != 0xFFFF) {
_setup_light(e->light);
}
}
if (bind_baked_light_octree && (baked_light != prev_baked_light || rebind)) {
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_INVERSE_TRANSFORM, *e->instance->baked_light_octree_xform);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LATTICE_SIZE, baked_light->octree_lattice_size);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LATTICE_DIVIDE, baked_light->octree_lattice_divide);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_STEPS, baked_light->octree_steps);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_TEX, max_texture_units - 3);
if (baked_light->light_texture.is_valid()) {
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LIGHT_TEX, max_texture_units - 4);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LIGHT_PIX_SIZE, baked_light->light_tex_pixel_size);
} else {
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LIGHT_TEX, max_texture_units - 3);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LIGHT_PIX_SIZE, baked_light->octree_tex_pixel_size);
}
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_MULTIPLIER, baked_light->texture_multiplier);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_PIX_SIZE, baked_light->octree_tex_pixel_size);
}
if (bind_baked_lightmap && (baked_light != prev_baked_light || rebind)) {
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_LIGHTMAP, max_texture_units - 3);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_LIGHTMAP_MULTIPLIER, baked_light->lightmap_multiplier);
}
if (bind_dp_sampler) {
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_DP_SAMPLER_MULTIPLIER, sampled_light_dp_multiplier);
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_DP_SAMPLER, max_texture_units - 3);
}
_set_cull(e->mirror, p_reverse_cull);
if (i == 0 || rebind) {
material_shader.set_uniform(MaterialShaderGLES2::CAMERA_INVERSE_TRANSFORM, p_view_transform_inverse);
material_shader.set_uniform(MaterialShaderGLES2::PROJECTION_TRANSFORM, p_projection);
if (!shadow) {
if (!additive && current_env && current_env->fx_enabled[VS::ENV_FX_AMBIENT_LIGHT]) {
Color ambcolor = _convert_color(current_env->fx_param[VS::ENV_FX_PARAM_AMBIENT_LIGHT_COLOR]);
float ambnrg = current_env->fx_param[VS::ENV_FX_PARAM_AMBIENT_LIGHT_ENERGY];
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_LIGHT, Vector3(ambcolor.r * ambnrg, ambcolor.g * ambnrg, ambcolor.b * ambnrg));
} else {
material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_LIGHT, Vector3());
}
}
_rinfo.shader_change_count++;
}
if (skeleton != prev_skeleton || rebind) {
if (skeleton && morph_values == NULL) {
material_shader.set_uniform(MaterialShaderGLES2::SKELETON_MATRICES, max_texture_units - 2);
material_shader.set_uniform(MaterialShaderGLES2::SKELTEX_PIXEL_SIZE, skeleton->pixel_size);
}
}
if (e->instance->billboard || e->instance->billboard_y || e->instance->depth_scale) {
Transform xf = e->instance->transform;
if (e->instance->depth_scale) {
if (p_projection.matrix[3][3]) {
//orthogonal matrix, try to do about the same
//with viewport size
//real_t w = Math::abs( 1.0/(2.0*(p_projection.matrix[0][0])) );
real_t h = Math::abs(1.0 / (2.0 * p_projection.matrix[1][1]));
float sc = (h * 2.0); //consistent with Y-fov
xf.basis.scale(Vector3(sc, sc, sc));
} else {
//just scale by depth
real_t sc = -camera_plane.distance_to(xf.origin);
xf.basis.scale(Vector3(sc, sc, sc));
}
}
if (e->instance->billboard) {
Vector3 scale = xf.basis.get_scale();
if (current_rt && current_rt_vflip) {
xf.set_look_at(xf.origin, xf.origin + p_view_transform.get_basis().get_axis(2), -p_view_transform.get_basis().get_axis(1));
} else {
xf.set_look_at(xf.origin, xf.origin + p_view_transform.get_basis().get_axis(2), p_view_transform.get_basis().get_axis(1));
}
xf.basis.scale(scale);
}
if (e->instance->billboard_y) {
Vector3 scale = xf.basis.get_scale();
Vector3 look_at = p_view_transform.get_origin();
look_at.y = 0.0;
Vector3 look_at_norm = look_at.normalized();
if (current_rt && current_rt_vflip) {
xf.set_look_at(xf.origin, xf.origin + look_at_norm, Vector3(0.0, -1.0, 0.0));
} else {
xf.set_look_at(xf.origin, xf.origin + look_at_norm, Vector3(0.0, 1.0, 0.0));
}
xf.basis.scale(scale);
}
material_shader.set_uniform(MaterialShaderGLES2::WORLD_TRANSFORM, xf);
} else {
material_shader.set_uniform(MaterialShaderGLES2::WORLD_TRANSFORM, e->instance->transform);
}
material_shader.set_uniform(MaterialShaderGLES2::NORMAL_MULT, e->mirror ? -1.0 : 1.0);
material_shader.set_uniform(MaterialShaderGLES2::CONST_LIGHT_MULT, additive ? 0.0 : 1.0);
_render(e->geometry, material, skeleton, e->owner, e->instance->transform);
DEBUG_TEST_ERROR("Rendering");
prev_material = material;
prev_skeleton = skeleton;
prev_geometry_cmp = geometry_cmp;
prev_light = e->light;
prev_light_type = e->light_type;
prev_sort_flags = sort_flags;
prev_baked_light = baked_light;
prev_morph_values = morph_values;
prev_receive_shadows_state = receive_shadows_state;
}
//print_line("shaderchanges: "+itos(p_alpha_pass)+": "+itos(_rinfo.shader_change_count));
if (current_rt && current_rt_vflip) {
glFrontFace(GL_CW);
}
};
void RasterizerGLES2::_copy_to_texscreen() {
//what am i missing?
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
#ifdef GLEW_ENABLED
glDisable(GL_POINT_SPRITE);
glDisable(GL_VERTEX_PROGRAM_POINT_SIZE);
#endif
glDisable(GL_BLEND);
glBlendEquation(GL_FUNC_ADD);
if (current_rt && current_rt_transparent) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
//glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
for (int i = 0; i < VS::ARRAY_MAX; i++) {
glDisableVertexAttribArray(i);
}
glActiveTexture(GL_TEXTURE0);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.sample_fbo);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, framebuffer.color);
copy_shader.bind();
_copy_screen_quad();
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo);
}
void RasterizerGLES2::_copy_screen_quad() {
Vector2 dst_pos[4] = {
Vector2(-1, 1),
Vector2(1, 1),
Vector2(1, -1),
Vector2(-1, -1)
};
Size2 uvscale(
(viewport.width / float(framebuffer.scale)) / framebuffer.width,
(viewport.height / float(framebuffer.scale)) / framebuffer.height);
Vector2 src_uv[4] = {
Vector2(0, 1) * uvscale,
Vector2(1, 1) * uvscale,
Vector2(1, 0) * uvscale,
Vector2(0, 0) * uvscale
};
Vector2 full_uv[4] = {
Vector2(0, 1),
Vector2(1, 1),
Vector2(1, 0),
Vector2(0, 0)
};
_draw_gui_primitive2(4, dst_pos, NULL, src_uv, full_uv);
}
void RasterizerGLES2::_process_glow_bloom() {
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[0].fbo);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, framebuffer.color);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_COPY, true);
if (current_vd && current_env->fx_enabled[VS::ENV_FX_HDR]) {
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR, true);
}
copy_shader.bind();
copy_shader.set_uniform(CopyShaderGLES2::BLOOM, float(current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLOOM]));
copy_shader.set_uniform(CopyShaderGLES2::BLOOM_TRESHOLD, float(current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLOOM_TRESHOLD]));
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0);
if (current_vd && current_env->fx_enabled[VS::ENV_FX_HDR]) {
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, current_vd->lum_color);
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::HDR_SOURCE), 2);
copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_EXPOSURE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_EXPOSURE]));
copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_WHITE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_WHITE]));
//copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_WHITE,1.0);
copy_shader.set_uniform(CopyShaderGLES2::HDR_GLOW_TRESHOLD, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_GLOW_TRESHOLD]));
copy_shader.set_uniform(CopyShaderGLES2::HDR_GLOW_SCALE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_GLOW_SCALE]));
glActiveTexture(GL_TEXTURE0);
}
glViewport(0, 0, framebuffer.blur_size, framebuffer.blur_size);
_copy_screen_quad();
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_COPY, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR, false);
int passes = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_PASSES];
Vector2 psize(1.0 / framebuffer.blur_size, 1.0 / framebuffer.blur_size);
float pscale = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_SCALE];
float pmag = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_STRENGTH];
for (int i = 0; i < passes; i++) {
static const Vector2 src_uv[4] = {
Vector2(0, 1),
Vector2(1, 1),
Vector2(1, 0),
Vector2(0, 0)
};
static const Vector2 dst_pos[4] = {
Vector2(-1, 1),
Vector2(1, 1),
Vector2(1, -1),
Vector2(-1, -1)
};
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[1].fbo);
glBindTexture(GL_TEXTURE_2D, framebuffer.blur[0].color);
copy_shader.set_conditional(CopyShaderGLES2::BLUR_V_PASS, true);
copy_shader.set_conditional(CopyShaderGLES2::BLUR_H_PASS, false);
copy_shader.bind();
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE, psize);
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE, pscale);
copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE, pmag);
_draw_gui_primitive(4, dst_pos, NULL, src_uv);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[0].fbo);
glBindTexture(GL_TEXTURE_2D, framebuffer.blur[1].color);
copy_shader.set_conditional(CopyShaderGLES2::BLUR_V_PASS, false);
copy_shader.set_conditional(CopyShaderGLES2::BLUR_H_PASS, true);
copy_shader.bind();
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE, psize);
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE, pscale);
copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE, pmag);
_draw_gui_primitive(4, dst_pos, NULL, src_uv);
}
copy_shader.set_conditional(CopyShaderGLES2::BLUR_V_PASS, false);
copy_shader.set_conditional(CopyShaderGLES2::BLUR_H_PASS, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR, false);
//blur it
}
void RasterizerGLES2::_process_hdr() {
if (framebuffer.luminance.empty()) {
return;
}
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.luminance[0].fbo);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, framebuffer.color);
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_COPY, true);
copy_shader.bind();
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0);
glViewport(0, 0, framebuffer.luminance[0].size, framebuffer.luminance[0].size);
_copy_screen_quad();
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_COPY, false);
//int passes = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_PASSES];
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_REDUCE, true);
copy_shader.bind();
for (int i = 1; i < framebuffer.luminance.size(); i++) {
static const Vector2 src_uv[4] = {
Vector2(0, 1),
Vector2(1, 1),
Vector2(1, 0),
Vector2(0, 0)
};
static const Vector2 dst_pos[4] = {
Vector2(-1, 1),
Vector2(1, 1),
Vector2(1, -1),
Vector2(-1, -1)
};
Vector2 psize(1.0 / framebuffer.luminance[i - 1].size, 1.0 / framebuffer.luminance[i - 1].size);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.luminance[i].fbo);
glBindTexture(GL_TEXTURE_2D, framebuffer.luminance[i - 1].color);
glViewport(0, 0, framebuffer.luminance[i].size, framebuffer.luminance[i].size);
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0);
if (framebuffer.luminance[i].size == 1) {
//last step
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_STORE, true);
copy_shader.bind();
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, current_vd->lum_color);
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE_VD_LUM), 1);
copy_shader.set_uniform(CopyShaderGLES2::HDR_TIME_DELTA, time_delta);
copy_shader.set_uniform(CopyShaderGLES2::HDR_EXP_ADJ_SPEED, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_EXPOSURE_ADJUST_SPEED]));
copy_shader.set_uniform(CopyShaderGLES2::MIN_LUMINANCE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_MIN_LUMINANCE]));
copy_shader.set_uniform(CopyShaderGLES2::MAX_LUMINANCE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_MAX_LUMINANCE]));
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0);
//swap them
SWAP(current_vd->lum_color, framebuffer.luminance[i].color);
SWAP(current_vd->lum_fbo, framebuffer.luminance[i].fbo);
}
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE, psize);
_draw_gui_primitive(4, dst_pos, NULL, src_uv);
}
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_REDUCE, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_STORE, false);
draw_next_frame = true;
}
void RasterizerGLES2::_draw_tex_bg() {
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glColorMask(1, 1, 1, 1);
RID texture;
if (current_env->bg_mode == VS::ENV_BG_TEXTURE) {
texture = current_env->bg_param[VS::ENV_BG_PARAM_TEXTURE];
} else {
texture = current_env->bg_param[VS::ENV_BG_PARAM_CUBEMAP];
}
if (!texture_owner.owns(texture)) {
return;
}
Texture *t = texture_owner.get(texture);
glActiveTexture(GL_TEXTURE0);
glBindTexture(t->target, t->tex_id);
copy_shader.set_conditional(CopyShaderGLES2::USE_ENERGY, true);
if (current_env->bg_mode == VS::ENV_BG_TEXTURE) {
copy_shader.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
} else {
copy_shader.set_conditional(CopyShaderGLES2::USE_CUBEMAP, true);
}
copy_shader.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, true);
copy_shader.bind();
if (current_env->bg_mode == VS::ENV_BG_TEXTURE) {
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0);
} else {
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE_CUBE), 0);
}
float nrg = float(current_env->bg_param[VS::ENV_BG_PARAM_ENERGY]);
if (current_env->fx_enabled[VS::ENV_FX_HDR] && !use_fp16_fb)
nrg *= 0.25; //go down a quarter for hdr
copy_shader.set_uniform(CopyShaderGLES2::ENERGY, nrg);
copy_shader.set_uniform(CopyShaderGLES2::CUSTOM_ALPHA, float(current_env->bg_param[VS::ENV_BG_PARAM_GLOW]));
float flip_sign = (current_env->bg_mode == VS::ENV_BG_TEXTURE && current_rt && current_rt_vflip) ? -1 : 1;
Vector3 vertices[4] = {
Vector3(-1, -1 * flip_sign, 1),
Vector3(1, -1 * flip_sign, 1),
Vector3(1, 1 * flip_sign, 1),
Vector3(-1, 1 * flip_sign, 1)
};
Vector3 src_uv[4] = {
Vector3(0, 1, 0),
Vector3(1, 1, 0),
Vector3(1, 0, 0),
Vector3(0, 0, 0)
};
if (current_env->bg_mode == VS::ENV_BG_TEXTURE) {
//regular texture
//adjust aspect
float aspect_t = t->width / float(t->height);
float aspect_v = viewport.width / float(viewport.height);
if (aspect_v > aspect_t) {
//wider than texture
for (int i = 0; i < 4; i++) {
src_uv[i].y = (src_uv[i].y - 0.5) * (aspect_t / aspect_v) + 0.5;
}
} else {
//narrower than texture
for (int i = 0; i < 4; i++) {
src_uv[i].x = (src_uv[i].x - 0.5) * (aspect_v / aspect_t) + 0.5;
}
}
float scale = current_env->bg_param[VS::ENV_BG_PARAM_SCALE];
for (int i = 0; i < 4; i++) {
src_uv[i].x *= scale;
src_uv[i].y *= scale;
}
} else {
//skybox uv vectors
float vw, vh, zn;
camera_projection.get_viewport_size(vw, vh);
zn = camera_projection.get_z_near();
float scale = current_env->bg_param[VS::ENV_BG_PARAM_SCALE];
for (int i = 0; i < 4; i++) {
Vector3 uv = src_uv[i];
uv.x = (uv.x * 2.0 - 1.0) * vw * scale;
uv.y = -(uv.y * 2.0 - 1.0) * vh * scale;
uv.z = -zn;
src_uv[i] = camera_transform.basis.xform(uv).normalized();
src_uv[i].z = -src_uv[i].z;
}
}
_draw_primitive(4, vertices, NULL, NULL, src_uv);
copy_shader.set_conditional(CopyShaderGLES2::USE_ENERGY, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_RGBE, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
}
void RasterizerGLES2::end_scene() {
glEnable(GL_BLEND);
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
bool use_fb = false;
if (framebuffer.active) {
//detect when to use the framebuffer object
if (using_canvas_bg || texscreen_used || framebuffer.scale != 1) {
use_fb = true;
} else if (current_env) {
use_fb = false;
for (int i = 0; i < VS::ENV_FX_MAX; i++) {
if (i == VS::ENV_FX_FOG) //does not need fb
continue;
if (current_env->fx_enabled[i]) {
use_fb = true;
break;
}
}
}
}
if (use_fb) {
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo);
glViewport(0, 0, viewport.width / framebuffer.scale, viewport.height / framebuffer.scale);
glScissor(0, 0, viewport.width / framebuffer.scale, viewport.height / framebuffer.scale);
material_shader.set_conditional(MaterialShaderGLES2::USE_8BIT_HDR, !use_fp16_fb && current_env && current_env->fx_enabled[VS::ENV_FX_HDR]);
} else {
if (current_rt) {
glScissor(0, 0, viewport.width, viewport.height);
} else {
glScissor(viewport.x, window_size.height - (viewport.height + viewport.y), viewport.width, viewport.height);
}
}
glEnable(GL_SCISSOR_TEST);
_glClearDepth(1.0);
bool draw_tex_background = false;
if (current_debug == VS::SCENARIO_DEBUG_OVERDRAW) {
glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
} else if (current_rt && current_rt_transparent) {
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
} else if (current_env) {
switch (current_env->bg_mode) {
case VS::ENV_BG_CANVAS:
case VS::ENV_BG_KEEP: {
//copy from framebuffer if framebuffer
glClear(GL_DEPTH_BUFFER_BIT);
} break;
case VS::ENV_BG_DEFAULT_COLOR:
case VS::ENV_BG_COLOR: {
Color bgcolor;
if (current_env->bg_mode == VS::ENV_BG_COLOR)
bgcolor = current_env->bg_param[VS::ENV_BG_PARAM_COLOR];
else
bgcolor = GlobalConfig::get_singleton()->get("render/default_clear_color");
bgcolor = _convert_color(bgcolor);
float a = use_fb ? float(current_env->bg_param[VS::ENV_BG_PARAM_GLOW]) : 1.0;
glClearColor(bgcolor.r, bgcolor.g, bgcolor.b, a);
_glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
} break;
case VS::ENV_BG_TEXTURE:
case VS::ENV_BG_CUBEMAP: {
glClear(GL_DEPTH_BUFFER_BIT);
draw_tex_background = true;
} break;
}
} else {
Color c = _convert_color(Color(0.3, 0.3, 0.3));
glClearColor(c.r, c.g, c.b, 0.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
glDisable(GL_SCISSOR_TEST);
//material_shader.set_uniform_camera(MaterialShaderGLES2::PROJECTION_MATRIX, camera_projection);
/*
printf("setting projection to ");
for (int i=0; i<16; i++) {
printf("%f, ", ((float*)camera_projection.matrix)[i]);
};
printf("\n");
print_line(String("setting camera to ")+camera_transform_inverse);
*/
//material_shader.set_uniform_default(MaterialShaderGLES2::CAMERA_INVERSE, camera_transform_inverse);
current_depth_test = true;
current_depth_mask = true;
texscreen_copied = false;
glBlendEquation(GL_FUNC_ADD);
if (current_rt && current_rt_transparent) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
glDisable(GL_BLEND);
current_blend_mode = VS::MATERIAL_BLEND_MODE_MIX;
//material_shader.set_conditional(MaterialShaderGLES2::USE_GLOW,current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]);
opaque_render_list.sort_mat_light_type_flags();
_render_list_forward(&opaque_render_list, camera_transform, camera_transform_inverse, camera_projection, false, fragment_lighting);
if (draw_tex_background) {
//most 3D vendors recommend drawing a texture bg or skybox here,
//after opaque geometry has been drawn
//so the zbuffer can get rid of most pixels
_draw_tex_bg();
}
glBlendEquation(GL_FUNC_ADD);
if (current_rt && current_rt_transparent) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
glDisable(GL_BLEND);
current_blend_mode = VS::MATERIAL_BLEND_MODE_MIX;
material_shader.set_conditional(MaterialShaderGLES2::USE_GLOW, false);
if (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) {
glColorMask(1, 1, 1, 0); //don't touch alpha
}
alpha_render_list.sort_z();
_render_list_forward(&alpha_render_list, camera_transform, camera_transform_inverse, camera_projection, false, fragment_lighting, true);
glColorMask(1, 1, 1, 1);
//material_shader.set_conditional( MaterialShaderGLES2::USE_FOG,false);
DEBUG_TEST_ERROR("Drawing Scene");
#ifdef GLEW_ENABLED
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
#endif
if (use_fb) {
for (int i = 0; i < VS::ARRAY_MAX; i++) {
glDisableVertexAttribArray(i);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDisable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_SCISSOR_TEST);
glDepthMask(false);
if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR]) {
int hdr_tm = current_env->fx_param[VS::ENV_FX_PARAM_HDR_TONEMAPPER];
switch (hdr_tm) {
case VS::ENV_FX_HDR_TONE_MAPPER_LINEAR: {
} break;
case VS::ENV_FX_HDR_TONE_MAPPER_LOG: {
copy_shader.set_conditional(CopyShaderGLES2::USE_LOG_TONEMAPPER, true);
} break;
case VS::ENV_FX_HDR_TONE_MAPPER_REINHARDT: {
copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER, true);
} break;
case VS::ENV_FX_HDR_TONE_MAPPER_REINHARDT_AUTOWHITE: {
copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER, true);
copy_shader.set_conditional(CopyShaderGLES2::USE_AUTOWHITE, true);
} break;
}
_process_hdr();
}
if (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) {
_process_glow_bloom();
int glow_transfer_mode = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_BLEND_MODE];
if (glow_transfer_mode == 1)
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SCREEN, true);
if (glow_transfer_mode == 2)
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SOFTLIGHT, true);
}
glBindFramebuffer(GL_FRAMEBUFFER, current_rt ? current_rt->fbo : base_framebuffer);
Size2 size;
if (current_rt) {
glBindFramebuffer(GL_FRAMEBUFFER, current_rt->fbo);
glViewport(0, 0, viewport.width, viewport.height);
size = Size2(viewport.width, viewport.height);
} else {
glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer);
glViewport(viewport.x, window_size.height - (viewport.height + viewport.y), viewport.width, viewport.height);
size = Size2(viewport.width, viewport.height);
}
//time to copy!!!
copy_shader.set_conditional(CopyShaderGLES2::USE_BCS, current_env && current_env->fx_enabled[VS::ENV_FX_BCS]);
copy_shader.set_conditional(CopyShaderGLES2::USE_SRGB, current_env && current_env->fx_enabled[VS::ENV_FX_SRGB]);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW, current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]);
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR, current_env && current_env->fx_enabled[VS::ENV_FX_HDR]);
copy_shader.set_conditional(CopyShaderGLES2::USE_NO_ALPHA, true);
copy_shader.set_conditional(CopyShaderGLES2::USE_FXAA, current_env && current_env->fx_enabled[VS::ENV_FX_FXAA]);
copy_shader.bind();
//copy_shader.set_uniform(CopyShaderGLES2::SOURCE,0);
if (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) {
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, framebuffer.blur[0].color);
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::GLOW_SOURCE), 1);
}
if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR]) {
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, current_vd->lum_color);
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::HDR_SOURCE), 2);
copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_EXPOSURE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_EXPOSURE]));
copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_WHITE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_WHITE]));
}
if (current_env && current_env->fx_enabled[VS::ENV_FX_FXAA])
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE, Size2(1.0 / size.x, 1.0 / size.y));
if (current_env && current_env->fx_enabled[VS::ENV_FX_BCS]) {
Vector3 bcs;
bcs.x = current_env->fx_param[VS::ENV_FX_PARAM_BCS_BRIGHTNESS];
bcs.y = current_env->fx_param[VS::ENV_FX_PARAM_BCS_CONTRAST];
bcs.z = current_env->fx_param[VS::ENV_FX_PARAM_BCS_SATURATION];
copy_shader.set_uniform(CopyShaderGLES2::BCS, bcs);
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, framebuffer.color);
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0);
_copy_screen_quad();
copy_shader.set_conditional(CopyShaderGLES2::USE_BCS, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_SRGB, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_NO_ALPHA, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_FXAA, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SCREEN, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SOFTLIGHT, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_AUTOWHITE, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_LOG_TONEMAPPER, false);
material_shader.set_conditional(MaterialShaderGLES2::USE_8BIT_HDR, false);
if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR] && GLOBAL_DEF("rasterizer/debug_hdr", false)) {
_debug_luminances();
}
}
current_env = NULL;
current_debug = VS::SCENARIO_DEBUG_DISABLED;
if (GLOBAL_DEF("rasterizer/debug_shadow_maps", false)) {
_debug_shadows();
}
//_debug_luminances();
//_debug_samplers();
if (using_canvas_bg) {
using_canvas_bg = false;
glColorMask(1, 1, 1, 1); //don't touch alpha
}
}
void RasterizerGLES2::end_shadow_map() {
ERR_FAIL_COND(!shadow);
glDisable(GL_BLEND);
glDisable(GL_SCISSOR_TEST);
glDisable(GL_DITHER);
glEnable(GL_DEPTH_TEST);
glDepthMask(true);
ShadowBuffer *sb = shadow->near_shadow_buffer;
ERR_FAIL_COND(!sb);
glBindFramebuffer(GL_FRAMEBUFFER, sb->fbo);
if (!use_rgba_shadowmaps)
glColorMask(0, 0, 0, 0);
//glEnable(GL_POLYGON_OFFSET_FILL);
//glPolygonOffset( 8.0f, 16.0f);
CameraMatrix cm;
float z_near, z_far;
Transform light_transform;
float dp_direction = 0.0;
bool flip_facing = false;
Rect2 vp_rect;
switch (shadow->base->type) {
case VS::LIGHT_DIRECTIONAL: {
if (shadow->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
cm = shadow->custom_projection[shadow_pass];
light_transform = shadow->custom_transform[shadow_pass];
if (shadow_pass == 0) {
vp_rect = Rect2(0, sb->size / 2, sb->size / 2, sb->size / 2);
glViewport(0, sb->size / 2, sb->size / 2, sb->size / 2);
glScissor(0, sb->size / 2, sb->size / 2, sb->size / 2);
} else if (shadow_pass == 1) {
vp_rect = Rect2(0, 0, sb->size / 2, sb->size / 2);
glViewport(0, 0, sb->size / 2, sb->size / 2);
glScissor(0, 0, sb->size / 2, sb->size / 2);
} else if (shadow_pass == 2) {
vp_rect = Rect2(sb->size / 2, sb->size / 2, sb->size / 2, sb->size / 2);
glViewport(sb->size / 2, sb->size / 2, sb->size / 2, sb->size / 2);
glScissor(sb->size / 2, sb->size / 2, sb->size / 2, sb->size / 2);
} else if (shadow_pass == 3) {
vp_rect = Rect2(sb->size / 2, 0, sb->size / 2, sb->size / 2);
glViewport(sb->size / 2, 0, sb->size / 2, sb->size / 2);
glScissor(sb->size / 2, 0, sb->size / 2, sb->size / 2);
}
glEnable(GL_SCISSOR_TEST);
} else if (shadow->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
if (shadow_pass == 0) {
cm = shadow->custom_projection[0];
light_transform = shadow->custom_transform[0];
vp_rect = Rect2(0, sb->size / 2, sb->size, sb->size / 2);
glViewport(0, sb->size / 2, sb->size, sb->size / 2);
glScissor(0, sb->size / 2, sb->size, sb->size / 2);
} else {
cm = shadow->custom_projection[1];
light_transform = shadow->custom_transform[1];
vp_rect = Rect2(0, 0, sb->size, sb->size / 2);
glViewport(0, 0, sb->size, sb->size / 2);
glScissor(0, 0, sb->size, sb->size / 2);
}
glEnable(GL_SCISSOR_TEST);
} else {
cm = shadow->custom_projection[0];
light_transform = shadow->custom_transform[0];
vp_rect = Rect2(0, 0, sb->size, sb->size);
glViewport(0, 0, sb->size, sb->size);
}
z_near = cm.get_z_near();
z_far = cm.get_z_far();
_glClearDepth(1.0f);
glClearColor(1, 1, 1, 1);
if (use_rgba_shadowmaps)
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
else
glClear(GL_DEPTH_BUFFER_BIT);
glDisable(GL_SCISSOR_TEST);
} break;
case VS::LIGHT_OMNI: {
material_shader.set_conditional(MaterialShaderGLES2::USE_DUAL_PARABOLOID, true);
dp_direction = shadow_pass ? 1.0 : -1.0;
flip_facing = (shadow_pass == 1);
light_transform = shadow->transform;
z_near = 0;
z_far = shadow->base->vars[VS::LIGHT_PARAM_RADIUS];
shadow->dp.x = 1.0 / z_far;
shadow->dp.y = dp_direction;
if (shadow_pass == 0) {
vp_rect = Rect2(0, sb->size / 2, sb->size, sb->size / 2);
glViewport(0, sb->size / 2, sb->size, sb->size / 2);
glScissor(0, sb->size / 2, sb->size, sb->size / 2);
} else {
vp_rect = Rect2(0, 0, sb->size, sb->size / 2);
glViewport(0, 0, sb->size, sb->size / 2);
glScissor(0, 0, sb->size, sb->size / 2);
}
glEnable(GL_SCISSOR_TEST);
shadow->projection = cm;
glClearColor(1, 1, 1, 1);
_glClearDepth(1.0f);
if (use_rgba_shadowmaps)
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
else
glClear(GL_DEPTH_BUFFER_BIT);
glDisable(GL_SCISSOR_TEST);
} break;
case VS::LIGHT_SPOT: {
float far = shadow->base->vars[VS::LIGHT_PARAM_RADIUS];
ERR_FAIL_COND(far <= 0);
float near = far / 200.0;
if (near < 0.05)
near = 0.05;
float angle = shadow->base->vars[VS::LIGHT_PARAM_SPOT_ANGLE];
cm.set_perspective(angle * 2.0, 1.0, near, far);
shadow->projection = cm; // cache
light_transform = shadow->transform;
z_near = cm.get_z_near();
z_far = cm.get_z_far();
glViewport(0, 0, sb->size, sb->size);
vp_rect = Rect2(0, 0, sb->size, sb->size);
_glClearDepth(1.0f);
glClearColor(1, 1, 1, 1);
if (use_rgba_shadowmaps)
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
else
glClear(GL_DEPTH_BUFFER_BIT);
} break;
}
Transform light_transform_inverse = light_transform.affine_inverse();
opaque_render_list.sort_mat_geom();
_render_list_forward(&opaque_render_list, light_transform, light_transform_inverse, cm, flip_facing, false);
material_shader.set_conditional(MaterialShaderGLES2::USE_DUAL_PARABOLOID, false);
//if (!use_rgba_shadowmaps)
if (shadow_filter == SHADOW_FILTER_ESM) {
copy_shader.set_conditional(CopyShaderGLES2::USE_RGBA_DEPTH, use_rgba_shadowmaps);
copy_shader.set_conditional(CopyShaderGLES2::USE_HIGHP_SOURCE, !use_rgba_shadowmaps);
Vector2 psize(1.0 / sb->size, 1.0 / sb->size);
float pscale = 1.0;
int passes = shadow->base->vars[VS::LIGHT_PARAM_SHADOW_BLUR_PASSES];
glDisable(GL_BLEND);
glDisable(GL_CULL_FACE);
#ifdef GLEW_ENABLED
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
#endif
for (int i = 0; i < VS::ARRAY_MAX; i++) {
glDisableVertexAttribArray(i);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDisable(GL_SCISSOR_TEST);
if (!use_rgba_shadowmaps) {
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_ALWAYS);
glDepthMask(true);
} else {
glDisable(GL_DEPTH_TEST);
}
for (int i = 0; i < passes; i++) {
Vector2 src_sb_uv[4] = {
(vp_rect.pos + Vector2(0, vp_rect.size.y)) / sb->size,
(vp_rect.pos + vp_rect.size) / sb->size,
(vp_rect.pos + Vector2(vp_rect.size.x, 0)) / sb->size,
(vp_rect.pos) / sb->size
};
/*
Vector2 src_uv[4]={
Vector2( 0, 1),
Vector2( 1, 1),
Vector2( 1, 0),
Vector2( 0, 0)
};
*/
static const Vector2 dst_pos[4] = {
Vector2(-1, 1),
Vector2(1, 1),
Vector2(1, -1),
Vector2(-1, -1)
};
glBindFramebuffer(GL_FRAMEBUFFER, blur_shadow_buffer.fbo);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, sb->depth);
#ifdef GLEW_ENABLED
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
#endif
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_V_PASS, true);
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_H_PASS, false);
copy_shader.bind();
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE, psize);
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE, pscale);
copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE, 1);
//copy_shader.set_uniform(CopyShaderGLES2::SOURCE,0);
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0);
_draw_gui_primitive(4, dst_pos, NULL, src_sb_uv);
Vector2 src_bb_uv[4] = {
(vp_rect.pos + Vector2(0, vp_rect.size.y)) / blur_shadow_buffer.size,
(vp_rect.pos + vp_rect.size) / blur_shadow_buffer.size,
(vp_rect.pos + Vector2(vp_rect.size.x, 0)) / blur_shadow_buffer.size,
(vp_rect.pos) / blur_shadow_buffer.size,
};
glBindFramebuffer(GL_FRAMEBUFFER, sb->fbo);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, blur_shadow_buffer.depth);
#ifdef GLEW_ENABLED
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
#endif
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_V_PASS, false);
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_H_PASS, true);
copy_shader.bind();
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE, psize);
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE, pscale);
copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE, 1);
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0);
_draw_gui_primitive(4, dst_pos, NULL, src_bb_uv);
}
glDepthFunc(GL_LEQUAL);
copy_shader.set_conditional(CopyShaderGLES2::USE_RGBA_DEPTH, false);
copy_shader.set_conditional(CopyShaderGLES2::USE_HIGHP_SOURCE, false);
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_V_PASS, false);
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_H_PASS, false);
}
DEBUG_TEST_ERROR("Drawing Shadow");
shadow = NULL;
glBindFramebuffer(GL_FRAMEBUFFER, current_rt ? current_rt->fbo : base_framebuffer);
glColorMask(1, 1, 1, 1);
//glDisable(GL_POLYGON_OFFSET_FILL);
}
void RasterizerGLES2::_debug_draw_shadow(GLuint tex, const Rect2 &p_rect) {
Transform2D modelview;
modelview.translate(p_rect.pos.x, p_rect.pos.y);
canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, modelview);
glBindTexture(GL_TEXTURE_2D, tex);
Vector3 coords[4] = {
Vector3(p_rect.pos.x, p_rect.pos.y, 0),
Vector3(p_rect.pos.x + p_rect.size.width,
p_rect.pos.y, 0),
Vector3(p_rect.pos.x + p_rect.size.width,
p_rect.pos.y + p_rect.size.height, 0),
Vector3(p_rect.pos.x,
p_rect.pos.y + p_rect.size.height, 0)
};
Vector3 texcoords[4] = {
Vector3(0.0f, 0.0f, 0),
Vector3(1.0f, 0.0f, 0),
Vector3(1.0f, 1.0f, 0),
Vector3(0.0f, 1.0f, 0),
};
_draw_primitive(4, coords, 0, 0, texcoords);
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE);
}
void RasterizerGLES2::_debug_draw_shadows_type(Vector<ShadowBuffer> &p_shadows, Point2 &ofs) {
Size2 debug_size(128, 128);
//Size2 debug_size(512,512);
int useblur = shadow_filter == SHADOW_FILTER_ESM ? 1 : 0;
for (int i = 0; i < p_shadows.size() + useblur; i++) {
ShadowBuffer *sb = i == p_shadows.size() ? &blur_shadow_buffer : &p_shadows[i];
if (!sb->owner && i != p_shadows.size())
continue;
_debug_draw_shadow(sb->depth, Rect2(ofs, debug_size));
ofs.x += debug_size.x;
if ((ofs.x + debug_size.x) > viewport.width) {
ofs.x = 0;
ofs.y += debug_size.y;
}
}
}
void RasterizerGLES2::_debug_luminances() {
canvas_shader.set_conditional(CanvasShaderGLES2::DEBUG_ENCODED_32, !use_fp16_fb);
canvas_begin();
glDisable(GL_BLEND);
canvas_shader.bind();
Size2 debug_size(128, 128);
Size2 ofs;
for (int i = 0; i <= framebuffer.luminance.size(); i++) {
if (i == framebuffer.luminance.size()) {
if (!current_vd)
break;
_debug_draw_shadow(current_vd->lum_color, Rect2(ofs, debug_size));
} else {
_debug_draw_shadow(framebuffer.luminance[i].color, Rect2(ofs, debug_size));
}
ofs.x += debug_size.x / 2;
if ((ofs.x + debug_size.x) > viewport.width) {
ofs.x = 0;
ofs.y += debug_size.y;
}
}
canvas_shader.set_conditional(CanvasShaderGLES2::DEBUG_ENCODED_32, false);
}
void RasterizerGLES2::_debug_samplers() {
canvas_shader.set_conditional(CanvasShaderGLES2::DEBUG_ENCODED_32, false);
canvas_begin();
glDisable(GL_BLEND);
_set_color_attrib(Color(1, 1, 1, 1));
canvas_shader.bind();
List<RID> samplers;
sampled_light_owner.get_owned_list(&samplers);
Size2 debug_size(128, 128);
Size2 ofs;
for (List<RID>::Element *E = samplers.front(); E; E = E->next()) {
SampledLight *sl = sampled_light_owner.get(E->get());
_debug_draw_shadow(sl->texture, Rect2(ofs, debug_size));
ofs.x += debug_size.x / 2;
if ((ofs.x + debug_size.x) > viewport.width) {
ofs.x = 0;
ofs.y += debug_size.y;
}
}
}
void RasterizerGLES2::_debug_shadows() {
canvas_begin();
glDisable(GL_BLEND);
Size2 ofs;
/*
for(int i=0;i<16;i++) {
glActiveTexture(GL_TEXTURE0+i);
//glDisable(GL_TEXTURE_2D);
}
glActiveTexture(GL_TEXTURE0);
//glEnable(GL_TEXTURE_2D);
*/
_debug_draw_shadows_type(near_shadow_buffers, ofs);
//_debug_draw_shadows_type(far_shadow_buffers,ofs);
}
void RasterizerGLES2::end_frame() {
//print_line("VTX: "+itos(_rinfo.vertex_count)+" OBJ: "+itos(_rinfo.object_count)+" MAT: "+itos(_rinfo.mat_change_count)+" SHD: "+itos(_rinfo.shader_change_count)+" CI: "+itos(_rinfo.ci_draw_commands));
//print_line("TOTAL VTX: "+itos(_rinfo.vertex_count));
OS::get_singleton()->swap_buffers();
}
void RasterizerGLES2::flush_frame() {
glFlush();
}
/* CANVAS API */
void RasterizerGLES2::begin_canvas_bg() {
if (framebuffer.active) {
using_canvas_bg = true;
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo);
glViewport(0, 0, viewport.width, viewport.height);
} else {
using_canvas_bg = false;
}
}
void RasterizerGLES2::canvas_begin() {
if (using_canvas_bg) {
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo);
glColorMask(1, 1, 1, 0); //don't touch alpha
}
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
#ifdef GLEW_ENABLED
glDisable(GL_POINT_SPRITE);
glDisable(GL_VERTEX_PROGRAM_POINT_SIZE);
#endif
glEnable(GL_BLEND);
glBlendEquation(GL_FUNC_ADD);
if (current_rt && current_rt_transparent) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
//glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
glLineWidth(1.0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
for (int i = 0; i < VS::ARRAY_MAX; i++) {
glDisableVertexAttribArray(i);
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, white_tex);
canvas_tex = RID();
//material_shader.unbind();
canvas_shader.unbind();
canvas_shader.set_custom_shader(0);
canvas_shader.set_conditional(CanvasShaderGLES2::USE_MODULATE, false);
canvas_shader.bind();
canvas_shader.set_uniform(CanvasShaderGLES2::TEXTURE, 0);
canvas_use_modulate = false;
_set_color_attrib(Color(1, 1, 1));
canvas_transform = Transform();
canvas_transform.translate(-(viewport.width / 2.0f), -(viewport.height / 2.0f), 0.0f);
float csy = 1.0;
if (current_rt && current_rt_vflip)
csy = -1.0;
canvas_transform.scale(Vector3(2.0f / viewport.width, csy * -2.0f / viewport.height, 1.0f));
canvas_shader.set_uniform(CanvasShaderGLES2::PROJECTION_MATRIX, canvas_transform);
canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, Transform2D());
canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX, Transform2D());
canvas_opacity = 1.0;
canvas_blend_mode = VS::MATERIAL_BLEND_MODE_MIX;
canvas_texscreen_used = false;
uses_texpixel_size = false;
canvas_last_material = NULL;
}
void RasterizerGLES2::canvas_disable_blending() {
glDisable(GL_BLEND);
}
void RasterizerGLES2::canvas_set_opacity(float p_opacity) {
canvas_opacity = p_opacity;
}
void RasterizerGLES2::canvas_set_blend_mode(VS::MaterialBlendMode p_mode) {
if (p_mode == canvas_blend_mode)
return;
switch (p_mode) {
case VS::MATERIAL_BLEND_MODE_MIX: {
glBlendEquation(GL_FUNC_ADD);
if (current_rt && current_rt_transparent) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
} break;
case VS::MATERIAL_BLEND_MODE_ADD: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_SUB: {
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_MUL: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_DST_COLOR, GL_ZERO);
} break;
case VS::MATERIAL_BLEND_MODE_PREMULT_ALPHA: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} break;
}
canvas_blend_mode = p_mode;
}
void RasterizerGLES2::canvas_begin_rect(const Transform2D &p_transform) {
canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, p_transform);
canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX, Transform2D());
}
void RasterizerGLES2::canvas_set_clip(bool p_clip, const Rect2 &p_rect) {
if (p_clip) {
glEnable(GL_SCISSOR_TEST);
//glScissor(viewport.x+p_rect.pos.x,viewport.y+ (viewport.height-(p_rect.pos.y+p_rect.size.height)),
int x = p_rect.pos.x;
int y = window_size.height - (p_rect.pos.y + p_rect.size.y);
int w = p_rect.size.x;
int h = p_rect.size.y;
glScissor(x, y, w, h);
} else {
glDisable(GL_SCISSOR_TEST);
}
}
void RasterizerGLES2::canvas_end_rect() {
//glPopMatrix();
}
RasterizerGLES2::Texture *RasterizerGLES2::_bind_canvas_texture(const RID &p_texture) {
if (p_texture == canvas_tex && !rebind_texpixel_size) {
if (canvas_tex.is_valid()) {
Texture *texture = texture_owner.get(p_texture);
return texture;
}
return NULL;
}
rebind_texpixel_size = false;
if (p_texture.is_valid()) {
Texture *texture = texture_owner.get(p_texture);
if (!texture) {
canvas_tex = RID();
glBindTexture(GL_TEXTURE_2D, white_tex);
return NULL;
}
if (texture->render_target)
texture->render_target->last_pass = frame;
glBindTexture(GL_TEXTURE_2D, texture->tex_id);
canvas_tex = p_texture;
if (uses_texpixel_size) {
canvas_shader.set_uniform(CanvasShaderGLES2::TEXPIXEL_SIZE, Size2(1.0 / texture->width, 1.0 / texture->height));
}
return texture;
} else {
glBindTexture(GL_TEXTURE_2D, white_tex);
canvas_tex = p_texture;
}
return NULL;
}
void RasterizerGLES2::canvas_draw_line(const Point2 &p_from, const Point2 &p_to, const Color &p_color, float p_width, bool p_antialiased) {
_bind_canvas_texture(RID());
Color c = p_color;
c.a *= canvas_opacity;
_set_color_attrib(c);
Vector3 verts[2] = {
Vector3(p_from.x, p_from.y, 0),
Vector3(p_to.x, p_to.y, 0)
};
#ifdef GLEW_ENABLED
if (p_antialiased)
glEnable(GL_LINE_SMOOTH);
#endif
glLineWidth(p_width);
_draw_primitive(2, verts, 0, 0, 0);
#ifdef GLEW_ENABLED
if (p_antialiased)
glDisable(GL_LINE_SMOOTH);
#endif
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::_draw_gui_primitive(int p_points, const Vector2 *p_vertices, const Color *p_colors, const Vector2 *p_uvs) {
static const GLenum prim[5] = { GL_POINTS, GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLE_FAN };
//#define GLES_USE_PRIMITIVE_BUFFER
#ifndef GLES_NO_CLIENT_ARRAYS
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, false, sizeof(Vector2), p_vertices);
if (p_colors) {
glEnableVertexAttribArray(VS::ARRAY_COLOR);
glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(Color), p_colors);
} else {
glDisableVertexAttribArray(VS::ARRAY_COLOR);
}
if (p_uvs) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(Vector2), p_uvs);
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
}
glDrawArrays(prim[p_points], 0, p_points);
#else
glBindBuffer(GL_ARRAY_BUFFER, gui_quad_buffer);
float b[32];
int ofs = 0;
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, false, sizeof(float) * 2, ((float *)0) + ofs);
for (int i = 0; i < p_points; i++) {
b[ofs++] = p_vertices[i].x;
b[ofs++] = p_vertices[i].y;
}
if (p_colors) {
glEnableVertexAttribArray(VS::ARRAY_COLOR);
glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(float) * 4, ((float *)0) + ofs);
for (int i = 0; i < p_points; i++) {
b[ofs++] = p_colors[i].r;
b[ofs++] = p_colors[i].g;
b[ofs++] = p_colors[i].b;
b[ofs++] = p_colors[i].a;
}
} else {
glDisableVertexAttribArray(VS::ARRAY_COLOR);
}
if (p_uvs) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(float) * 2, ((float *)0) + ofs);
for (int i = 0; i < p_points; i++) {
b[ofs++] = p_uvs[i].x;
b[ofs++] = p_uvs[i].y;
}
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
}
glBufferSubData(GL_ARRAY_BUFFER, 0, ofs * 4, &b[0]);
glDrawArrays(prim[p_points], 0, p_points);
glBindBuffer(GL_ARRAY_BUFFER, 0);
#endif
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::_draw_gui_primitive2(int p_points, const Vector2 *p_vertices, const Color *p_colors, const Vector2 *p_uvs, const Vector2 *p_uvs2) {
static const GLenum prim[5] = { GL_POINTS, GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLE_FAN };
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, false, sizeof(Vector2), p_vertices);
if (p_colors) {
glEnableVertexAttribArray(VS::ARRAY_COLOR);
glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(Color), p_colors);
} else {
glDisableVertexAttribArray(VS::ARRAY_COLOR);
}
if (p_uvs) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(Vector2), p_uvs);
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
}
if (p_uvs2) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV2);
glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, false, sizeof(Vector2), p_uvs2);
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV2);
}
glDrawArrays(prim[p_points], 0, p_points);
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::_draw_textured_quad(const Rect2 &p_rect, const Rect2 &p_src_region, const Size2 &p_tex_size, bool p_h_flip, bool p_v_flip, bool p_transpose) {
Vector2 texcoords[4] = {
Vector2(p_src_region.pos.x / p_tex_size.width,
p_src_region.pos.y / p_tex_size.height),
Vector2((p_src_region.pos.x + p_src_region.size.width) / p_tex_size.width,
p_src_region.pos.y / p_tex_size.height),
Vector2((p_src_region.pos.x + p_src_region.size.width) / p_tex_size.width,
(p_src_region.pos.y + p_src_region.size.height) / p_tex_size.height),
Vector2(p_src_region.pos.x / p_tex_size.width,
(p_src_region.pos.y + p_src_region.size.height) / p_tex_size.height)
};
if (p_transpose) {
SWAP(texcoords[1], texcoords[3]);
}
if (p_h_flip) {
SWAP(texcoords[0], texcoords[1]);
SWAP(texcoords[2], texcoords[3]);
}
if (p_v_flip) {
SWAP(texcoords[1], texcoords[2]);
SWAP(texcoords[0], texcoords[3]);
}
Vector2 coords[4] = {
Vector2(p_rect.pos.x, p_rect.pos.y),
Vector2(p_rect.pos.x + p_rect.size.width, p_rect.pos.y),
Vector2(p_rect.pos.x + p_rect.size.width, p_rect.pos.y + p_rect.size.height),
Vector2(p_rect.pos.x, p_rect.pos.y + p_rect.size.height)
};
_draw_gui_primitive(4, coords, 0, texcoords);
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::_draw_quad(const Rect2 &p_rect) {
Vector2 coords[4] = {
Vector2(p_rect.pos.x, p_rect.pos.y),
Vector2(p_rect.pos.x + p_rect.size.width, p_rect.pos.y),
Vector2(p_rect.pos.x + p_rect.size.width, p_rect.pos.y + p_rect.size.height),
Vector2(p_rect.pos.x, p_rect.pos.y + p_rect.size.height)
};
_draw_gui_primitive(4, coords, 0, 0);
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::canvas_draw_rect(const Rect2 &p_rect, int p_flags, const Rect2 &p_source, RID p_texture, const Color &p_modulate) {
Color m = p_modulate;
m.a *= canvas_opacity;
_set_color_attrib(m);
Texture *texture = _bind_canvas_texture(p_texture);
if (texture) {
bool untile = false;
if (p_flags & CANVAS_RECT_TILE && !(texture->flags & VS::TEXTURE_FLAG_REPEAT)) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
untile = true;
}
if (!(p_flags & CANVAS_RECT_REGION)) {
Rect2 region = Rect2(0, 0, texture->width, texture->height);
_draw_textured_quad(p_rect, region, region.size, p_flags & CANVAS_RECT_FLIP_H, p_flags & CANVAS_RECT_FLIP_V, p_flags & CANVAS_RECT_TRANSPOSE);
} else {
_draw_textured_quad(p_rect, p_source, Size2(texture->width, texture->height), p_flags & CANVAS_RECT_FLIP_H, p_flags & CANVAS_RECT_FLIP_V, p_flags & CANVAS_RECT_TRANSPOSE);
}
if (untile) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
} else {
//glDisable(GL_TEXTURE_2D);
_draw_quad(p_rect);
//print_line("rect: "+p_rect);
}
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::canvas_draw_style_box(const Rect2 &p_rect, const Rect2 &p_src_region, RID p_texture, const float *p_margin, bool p_draw_center, const Color &p_modulate) {
Color m = p_modulate;
m.a *= canvas_opacity;
_set_color_attrib(m);
Texture *texture = _bind_canvas_texture(p_texture);
ERR_FAIL_COND(!texture);
Rect2 region = p_src_region;
if (region.size.width <= 0)
region.size.width = texture->width;
if (region.size.height <= 0)
region.size.height = texture->height;
/* CORNERS */
_draw_textured_quad( // top left
Rect2(p_rect.pos, Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP])),
Rect2(region.pos, Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP])),
Size2(texture->width, texture->height));
_draw_textured_quad( // top right
Rect2(Point2(p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_TOP])),
Rect2(Point2(region.pos.x + region.size.width - p_margin[MARGIN_RIGHT], region.pos.y), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_TOP])),
Size2(texture->width, texture->height));
_draw_textured_quad( // bottom left
Rect2(Point2(p_rect.pos.x, p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_BOTTOM])),
Rect2(Point2(region.pos.x, region.pos.y + region.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_BOTTOM])),
Size2(texture->width, texture->height));
_draw_textured_quad( // bottom right
Rect2(Point2(p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_BOTTOM])),
Rect2(Point2(region.pos.x + region.size.width - p_margin[MARGIN_RIGHT], region.pos.y + region.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_BOTTOM])),
Size2(texture->width, texture->height));
Rect2 rect_center(p_rect.pos + Point2(p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2(p_rect.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], p_rect.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM]));
Rect2 src_center(Point2(region.pos.x + p_margin[MARGIN_LEFT], region.pos.y + p_margin[MARGIN_TOP]), Size2(region.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], region.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM]));
_draw_textured_quad( // top
Rect2(Point2(rect_center.pos.x, p_rect.pos.y), Size2(rect_center.size.width, p_margin[MARGIN_TOP])),
Rect2(Point2(src_center.pos.x, region.pos.y), Size2(src_center.size.width, p_margin[MARGIN_TOP])),
Size2(texture->width, texture->height));
_draw_textured_quad( // bottom
Rect2(Point2(rect_center.pos.x, rect_center.pos.y + rect_center.size.height), Size2(rect_center.size.width, p_margin[MARGIN_BOTTOM])),
Rect2(Point2(src_center.pos.x, src_center.pos.y + src_center.size.height), Size2(src_center.size.width, p_margin[MARGIN_BOTTOM])),
Size2(texture->width, texture->height));
_draw_textured_quad( // left
Rect2(Point2(p_rect.pos.x, rect_center.pos.y), Size2(p_margin[MARGIN_LEFT], rect_center.size.height)),
Rect2(Point2(region.pos.x, region.pos.y + p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_LEFT], src_center.size.height)),
Size2(texture->width, texture->height));
_draw_textured_quad( // right
Rect2(Point2(rect_center.pos.x + rect_center.size.width, rect_center.pos.y), Size2(p_margin[MARGIN_RIGHT], rect_center.size.height)),
Rect2(Point2(src_center.pos.x + src_center.size.width, region.pos.y + p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_RIGHT], src_center.size.height)),
Size2(texture->width, texture->height));
if (p_draw_center) {
_draw_textured_quad(
rect_center,
src_center,
Size2(texture->width, texture->height));
}
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::canvas_draw_primitive(const Vector<Point2> &p_points, const Vector<Color> &p_colors, const Vector<Point2> &p_uvs, RID p_texture, float p_width) {
ERR_FAIL_COND(p_points.size() < 1);
_set_color_attrib(Color(1, 1, 1, canvas_opacity));
_bind_canvas_texture(p_texture);
_draw_gui_primitive(p_points.size(), p_points.ptr(), p_colors.ptr(), p_uvs.ptr());
_rinfo.ci_draw_commands++;
}
void RasterizerGLES2::canvas_draw_polygon(int p_vertex_count, const int *p_indices, const Vector2 *p_vertices, const Vector2 *p_uvs, const Color *p_colors, const RID &p_texture, bool p_singlecolor) {
bool do_colors = false;
Color m;
if (p_singlecolor) {
m = *p_colors;
m.a *= canvas_opacity;
_set_color_attrib(m);
} else if (!p_colors) {
m = Color(1, 1, 1, canvas_opacity);
_set_color_attrib(m);
} else
do_colors = true;
Texture *texture = _bind_canvas_texture(p_texture);
#ifndef GLES_NO_CLIENT_ARRAYS
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, false, sizeof(Vector2), p_vertices);
if (do_colors) {
glEnableVertexAttribArray(VS::ARRAY_COLOR);
glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(Color), p_colors);
} else {
glDisableVertexAttribArray(VS::ARRAY_COLOR);
}
if (texture && p_uvs) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(Vector2), p_uvs);
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
}
if (p_indices) {
#ifdef GLEW_ENABLED
glDrawElements(GL_TRIANGLES, p_vertex_count, GL_UNSIGNED_INT, p_indices);
#else
static const int _max_draw_poly_indices = 16 * 1024; // change this size if needed!!!
ERR_FAIL_COND(p_vertex_count > _max_draw_poly_indices);
static uint16_t _draw_poly_indices[_max_draw_poly_indices];
for (int i = 0; i < p_vertex_count; i++) {
_draw_poly_indices[i] = p_indices[i];
};
glDrawElements(GL_TRIANGLES, p_vertex_count, GL_UNSIGNED_SHORT, _draw_poly_indices);
#endif
} else {
glDrawArrays(GL_TRIANGLES, 0, p_vertex_count);
}
#else //WebGL specific impl.
glBindBuffer(GL_ARRAY_BUFFER, gui_quad_buffer);
float *b = GlobalVertexBuffer;
int ofs = 0;
if (p_vertex_count > MAX_POLYGON_VERTICES) {
print_line("Too many vertices to render");
return;
}
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, false, sizeof(float) * 2, ((float *)0) + ofs);
for (int i = 0; i < p_vertex_count; i++) {
b[ofs++] = p_vertices[i].x;
b[ofs++] = p_vertices[i].y;
}
if (p_colors && do_colors) {
glEnableVertexAttribArray(VS::ARRAY_COLOR);
glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(float) * 4, ((float *)0) + ofs);
for (int i = 0; i < p_vertex_count; i++) {
b[ofs++] = p_colors[i].r;
b[ofs++] = p_colors[i].g;
b[ofs++] = p_colors[i].b;
b[ofs++] = p_colors[i].a;
}
} else {
glDisableVertexAttribArray(VS::ARRAY_COLOR);
}
if (p_uvs) {
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(float) * 2, ((float *)0) + ofs);
for (int i = 0; i < p_vertex_count; i++) {
b[ofs++] = p_uvs[i].x;
b[ofs++] = p_uvs[i].y;
}
} else {
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
}
glBufferSubData(GL_ARRAY_BUFFER, 0, ofs * 4, &b[0]);
//bind the indices buffer.
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indices_buffer);
static const int _max_draw_poly_indices = 16 * 1024; // change this size if needed!!!
ERR_FAIL_COND(p_vertex_count > _max_draw_poly_indices);
static uint16_t _draw_poly_indices[_max_draw_poly_indices];
for (int i = 0; i < p_vertex_count; i++) {
_draw_poly_indices[i] = p_indices[i];
//OS::get_singleton()->print("ind: %d ", p_indices[i]);
};
//copy the data to GPU.
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, p_vertex_count * sizeof(uint16_t), &_draw_poly_indices[0]);
//draw the triangles.
glDrawElements(GL_TRIANGLES, p_vertex_count, GL_UNSIGNED_SHORT, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
#endif
_rinfo.ci_draw_commands++;
};
void RasterizerGLES2::canvas_set_transform(const Transform2D &p_transform) {
canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX, p_transform);
//canvas_transform = Variant(p_transform);
}
RID RasterizerGLES2::canvas_light_occluder_create() {
CanvasOccluder *co = memnew(CanvasOccluder);
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
return canvas_occluder_owner.make_rid(co);
}
void RasterizerGLES2::canvas_light_occluder_set_polylines(RID p_occluder, const PoolVector<Vector2> &p_lines) {
CanvasOccluder *co = canvas_occluder_owner.get(p_occluder);
ERR_FAIL_COND(!co);
co->lines = p_lines;
if (p_lines.size() != co->len) {
if (co->index_id)
glDeleteBuffers(1, &co->index_id);
if (co->vertex_id)
glDeleteBuffers(1, &co->vertex_id);
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
}
if (p_lines.size()) {
PoolVector<float> geometry;
PoolVector<uint16_t> indices;
int lc = p_lines.size();
geometry.resize(lc * 6);
indices.resize(lc * 3);
PoolVector<float>::Write vw = geometry.write();
PoolVector<uint16_t>::Write iw = indices.write();
PoolVector<Vector2>::Read lr = p_lines.read();
const int POLY_HEIGHT = 16384;
for (int i = 0; i < lc / 2; i++) {
vw[i * 12 + 0] = lr[i * 2 + 0].x;
vw[i * 12 + 1] = lr[i * 2 + 0].y;
vw[i * 12 + 2] = POLY_HEIGHT;
vw[i * 12 + 3] = lr[i * 2 + 1].x;
vw[i * 12 + 4] = lr[i * 2 + 1].y;
vw[i * 12 + 5] = POLY_HEIGHT;
vw[i * 12 + 6] = lr[i * 2 + 1].x;
vw[i * 12 + 7] = lr[i * 2 + 1].y;
vw[i * 12 + 8] = -POLY_HEIGHT;
vw[i * 12 + 9] = lr[i * 2 + 0].x;
vw[i * 12 + 10] = lr[i * 2 + 0].y;
vw[i * 12 + 11] = -POLY_HEIGHT;
iw[i * 6 + 0] = i * 4 + 0;
iw[i * 6 + 1] = i * 4 + 1;
iw[i * 6 + 2] = i * 4 + 2;
iw[i * 6 + 3] = i * 4 + 2;
iw[i * 6 + 4] = i * 4 + 3;
iw[i * 6 + 5] = i * 4 + 0;
}
//if same buffer len is being set, just use BufferSubData to avoid a pipeline flush
if (!co->vertex_id) {
glGenBuffers(1, &co->vertex_id);
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(real_t), vw.ptr(), GL_STATIC_DRAW);
} else {
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferSubData(GL_ARRAY_BUFFER, 0, lc * 6 * sizeof(real_t), vw.ptr());
}
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
if (!co->index_id) {
glGenBuffers(1, &co->index_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, lc * 3 * sizeof(uint16_t), iw.ptr(), GL_STATIC_DRAW);
} else {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, lc * 3 * sizeof(uint16_t), iw.ptr());
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
co->len = lc;
}
}
RID RasterizerGLES2::canvas_light_shadow_buffer_create(int p_width) {
CanvasLightShadow *cls = memnew(CanvasLightShadow);
if (p_width > max_texture_size)
p_width = max_texture_size;
cls->size = p_width;
glActiveTexture(GL_TEXTURE0);
glGenFramebuffers(1, &cls->fbo);
glBindFramebuffer(GL_FRAMEBUFFER, cls->fbo);
// Create a render buffer
glGenRenderbuffers(1, &cls->rbo);
glBindRenderbuffer(GL_RENDERBUFFER, cls->rbo);
// Create a texture for storing the depth
glGenTextures(1, &cls->depth);
glBindTexture(GL_TEXTURE_2D, cls->depth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// Remove artifact on the edges of the shadowmap
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
cls->height = 16;
//print_line("ERROR? "+itos(glGetError()));
if (read_depth_supported) {
// We'll use a depth texture to store the depths in the shadow map
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, cls->size, cls->height, 0,
GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
#ifdef GLEW_ENABLED
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
#endif
// Attach the depth texture to FBO depth attachment point
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_TEXTURE_2D, cls->depth, 0);
#ifdef GLEW_ENABLED
glDrawBuffer(GL_NONE);
#endif
} else {
// We'll use a RGBA texture into which we pack the depth info
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, cls->size, cls->height, 0,
GL_RGBA, GL_UNSIGNED_BYTE, NULL);
// Attach the RGBA texture to FBO color attachment point
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, cls->depth, 0);
cls->rgba = cls->depth;
// Allocate 16-bit depth buffer
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, cls->size, cls->height);
// Attach the render buffer as depth buffer - will be ignored
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_RENDERBUFFER, cls->rbo);
}
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
//printf("errnum: %x\n",status);
#ifdef GLEW_ENABLED
if (read_depth_supported) {
//glDrawBuffer(GL_BACK);
}
#endif
glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer);
DEBUG_TEST_ERROR("2D Shadow Buffer Init");
ERR_FAIL_COND_V(status != GL_FRAMEBUFFER_COMPLETE, RID());
#ifdef GLEW_ENABLED
if (read_depth_supported) {
//glDrawBuffer(GL_BACK);
}
#endif
return canvas_light_shadow_owner.make_rid(cls);
}
void RasterizerGLES2::canvas_light_shadow_buffer_update(RID p_buffer, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, CanvasLightOccluderInstance *p_occluders, CameraMatrix *p_xform_cache) {
CanvasLightShadow *cls = canvas_light_shadow_owner.get(p_buffer);
ERR_FAIL_COND(!cls);
glDisable(GL_BLEND);
glDisable(GL_SCISSOR_TEST);
glDisable(GL_DITHER);
glDisable(GL_CULL_FACE);
glDepthFunc(GL_LEQUAL);
glEnable(GL_DEPTH_TEST);
glDepthMask(true);
glBindFramebuffer(GL_FRAMEBUFFER, cls->fbo);
if (!use_rgba_shadowmaps)
glColorMask(0, 0, 0, 0);
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
canvas_shadow_shader.bind();
glViewport(0, 0, cls->size, cls->height);
_glClearDepth(1.0f);
glClearColor(1, 1, 1, 1);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
VS::CanvasOccluderPolygonCullMode cull = VS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED;
for (int i = 0; i < 4; i++) {
//make sure it remains orthogonal, makes easy to read angle later
Transform light;
light.origin[0] = p_light_xform[2][0];
light.origin[1] = p_light_xform[2][1];
light.basis[0][0] = p_light_xform[0][0];
light.basis[0][1] = p_light_xform[1][0];
light.basis[1][0] = p_light_xform[0][1];
light.basis[1][1] = p_light_xform[1][1];
//light.basis.scale(Vector3(to_light.elements[0].length(),to_light.elements[1].length(),1));
/ //p_near=1;
CameraMatrix projection;
{
real_t fov = 90;
real_t near = p_near;
real_t far = p_far;
real_t aspect = 1.0;
real_t ymax = near * Math::tan(Math::deg2rad(fov * 0.5));
real_t ymin = -ymax;
real_t xmin = ymin * aspect;
real_t xmax = ymax * aspect;
projection.set_frustum(xmin, xmax, ymin, ymax, near, far);
}
Vector3 cam_target = Matrix3(Vector3(0, 0, Math_PI * 2 * (i / 4.0))).xform(Vector3(0, 1, 0));
projection = projection * CameraMatrix(Transform().looking_at(cam_target, Vector3(0, 0, -1)).affine_inverse());
canvas_shadow_shader.set_uniform(CanvasShadowShaderGLES2::PROJECTION_MATRIX, projection);
canvas_shadow_shader.set_uniform(CanvasShadowShaderGLES2::LIGHT_MATRIX, light);
if (i == 0)
*p_xform_cache = projection;
glViewport(0, (cls->height / 4) * i, cls->size, cls->height / 4);
CanvasLightOccluderInstance *instance = p_occluders;
while (instance) {
CanvasOccluder *cc = canvas_occluder_owner.get(instance->polygon_buffer);
if (!cc || cc->len == 0 || !(p_light_mask & instance->light_mask)) {
instance = instance->next;
continue;
}
canvas_shadow_shader.set_uniform(CanvasShadowShaderGLES2::WORLD_MATRIX, instance->xform_cache);
if (cull != instance->cull_cache) {
cull = instance->cull_cache;
switch (cull) {
case VS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED: {
glDisable(GL_CULL_FACE);
} break;
case VS::CANVAS_OCCLUDER_POLYGON_CULL_CLOCKWISE: {
glEnable(GL_CULL_FACE);
glCullFace(GL_FRONT);
} break;
case VS::CANVAS_OCCLUDER_POLYGON_CULL_COUNTER_CLOCKWISE: {
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
} break;
}
}
/*
if (i==0) {
for(int i=0;i<cc->lines.size();i++) {
Vector2 p = instance->xform_cache.xform(cc->lines.get(i));
Plane pp(Vector3(p.x,p.y,0),1);
pp.normal = light.xform(pp.normal);
pp = projection.xform4(pp);
print_line(itos(i)+": "+pp.normal/pp.d);
//pp=light_mat.xform4(pp);
//print_line(itos(i)+": "+pp.normal/pp.d);
}
}
*/
glBindBuffer(GL_ARRAY_BUFFER, cc->vertex_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cc->index_id);
glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, false, 0, 0);
glDrawElements(GL_TRIANGLES, cc->len * 3, GL_UNSIGNED_SHORT, 0);
instance = instance->next;
}
}
glDisableVertexAttribArray(VS::ARRAY_VERTEX);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
if (shadow_filter == SHADOW_FILTER_ESM) {
//blur the buffer
#if 0
//this is ignord, it did not make any difference..
if (read_depth_supported) {
glDepthFunc(GL_ALWAYS);
} else {
glDisable(GL_DEPTH_TEST);
glDepthMask(false);
}
glDisable(GL_CULL_FACE);
glViewport(0, 0, cls->size,cls->height);
int passes=1;
CanvasLightShadow *blur = canvas_light_shadow_owner.get(canvas_shadow_blur);
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_H_PASS,true);
copy_shader.bind();
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE,1);
copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE,1);
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE),0);
for(int i=0;i<passes;i++) {
glBindFramebuffer(GL_FRAMEBUFFER, blur->fbo);
glActiveTexture(GL_TEXTURE0);
if (read_depth_supported)
glBindTexture(GL_TEXTURE_2D,cls->depth);
else
glBindTexture(GL_TEXTURE_2D,cls->rgba);
{
Vector2 src_sb_uv[4]={
Vector2( 0, 1),
Vector2( 1, 1),
Vector2( 1, 0),
Vector2( 0, 0)
};
static const Vector2 dst_pos[4]={
Vector2(-1, 1),
Vector2( 1, 1),
Vector2( 1,-1),
Vector2(-1,-1)
};
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE,Vector2(1.0,1.0)/cls->size);
_draw_gui_primitive(4,dst_pos,NULL,src_sb_uv);
}
glActiveTexture(GL_TEXTURE0);
if (read_depth_supported)
glBindTexture(GL_TEXTURE_2D,blur->depth);
else
glBindTexture(GL_TEXTURE_2D,blur->rgba);
glBindFramebuffer(GL_FRAMEBUFFER, cls->fbo);
{
float hlimit = float(cls->size) / blur->size;
//hlimit*=2.0;
Vector2 src_sb_uv[4]={
Vector2( 0, 1),
Vector2( hlimit, 1),
Vector2( hlimit, 0),
Vector2( 0, 0)
};
static const Vector2 dst_pos[4]={
Vector2(-1, 1),
Vector2( 1, 1),
Vector2( 1,-1),
Vector2(-1,-1)
};
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE,Vector2(1.0,1.0)/blur->size);
_draw_gui_primitive(4,dst_pos,NULL,src_sb_uv);
}
}
copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_H_PASS,false);
glDepthFunc(GL_LEQUAL);
#endif
}
glBindFramebuffer(GL_FRAMEBUFFER, current_rt ? current_rt->fbo : base_framebuffer);
glColorMask(1, 1, 1, 1);
}
void RasterizerGLES2::canvas_debug_viewport_shadows(CanvasLight *p_lights_with_shadow) {
CanvasLight *light = p_lights_with_shadow;
canvas_begin(); //reset
int h = 10;
int w = viewport.width;
int ofs = h;
//print_line(" debug lights ");
while (light) {
//print_line("debug light");
if (light->shadow_buffer.is_valid()) {
//print_line("sb is valid");
CanvasLightShadow *sb = canvas_light_shadow_owner.get(light->shadow_buffer);
if (sb) {
glActiveTexture(GL_TEXTURE0);
if (read_depth_supported)
glBindTexture(GL_TEXTURE_2D, sb->depth);
else
glBindTexture(GL_TEXTURE_2D, sb->rgba);
_draw_textured_quad(Rect2(h, ofs, w - h * 2, h), Rect2(0, 0, sb->size, 10), Size2(sb->size, 10), false, false);
ofs += h * 2;
}
}
light = light->shadows_next_ptr;
}
}
void RasterizerGLES2::_canvas_normal_set_flip(const Vector2 &p_flip) {
if (p_flip == normal_flip)
return;
normal_flip = p_flip;
canvas_shader.set_uniform(CanvasShaderGLES2::NORMAL_FLIP, normal_flip);
}
template <bool use_normalmap>
void RasterizerGLES2::_canvas_item_render_commands(CanvasItem *p_item, CanvasItem *current_clip, bool &reclip) {
int cc = p_item->commands.size();
CanvasItem::Command **commands = p_item->commands.ptr();
for (int i = 0; i < cc; i++) {
CanvasItem::Command *c = commands[i];
switch (c->type) {
case CanvasItem::Command::TYPE_LINE: {
CanvasItem::CommandLine *line = static_cast<CanvasItem::CommandLine *>(c);
canvas_draw_line(line->from, line->to, line->color, line->width, line->antialiased);
} break;
case CanvasItem::Command::TYPE_RECT: {
CanvasItem::CommandRect *rect = static_cast<CanvasItem::CommandRect *>(c);
//canvas_draw_rect(rect->rect,rect->region,rect->source,rect->flags&CanvasItem::CommandRect::FLAG_TILE,rect->flags&CanvasItem::CommandRect::FLAG_FLIP_H,rect->flags&CanvasItem::CommandRect::FLAG_FLIP_V,rect->texture,rect->modulate);
#if 0
int flags=0;
if (rect->flags&CanvasItem::CommandRect::FLAG_REGION) {
flags|=Rasterizer::CANVAS_RECT_REGION;
}
if (rect->flags&CanvasItem::CommandRect::FLAG_TILE) {
flags|=Rasterizer::CANVAS_RECT_TILE;
}
if (rect->flags&CanvasItem::CommandRect::FLAG_FLIP_H) {
flags|=Rasterizer::CANVAS_RECT_FLIP_H;
}
if (rect->flags&CanvasItem::CommandRect::FLAG_FLIP_V) {
flags|=Rasterizer::CANVAS_RECT_FLIP_V;
}
#else
int flags = rect->flags;
#endif
if (use_normalmap)
_canvas_normal_set_flip(Vector2((flags & CANVAS_RECT_FLIP_H) ? -1 : 1, (flags & CANVAS_RECT_FLIP_V) ? -1 : 1));
canvas_draw_rect(rect->rect, flags, rect->source, rect->texture, rect->modulate);
} break;
case CanvasItem::Command::TYPE_STYLE: {
CanvasItem::CommandStyle *style = static_cast<CanvasItem::CommandStyle *>(c);
if (use_normalmap)
_canvas_normal_set_flip(Vector2(1, 1));
canvas_draw_style_box(style->rect, style->source, style->texture, style->margin, style->draw_center, style->color);
} break;
case CanvasItem::Command::TYPE_PRIMITIVE: {
if (use_normalmap)
_canvas_normal_set_flip(Vector2(1, 1));
CanvasItem::CommandPrimitive *primitive = static_cast<CanvasItem::CommandPrimitive *>(c);
canvas_draw_primitive(primitive->points, primitive->colors, primitive->uvs, primitive->texture, primitive->width);
} break;
case CanvasItem::Command::TYPE_POLYGON: {
if (use_normalmap)
_canvas_normal_set_flip(Vector2(1, 1));
CanvasItem::CommandPolygon *polygon = static_cast<CanvasItem::CommandPolygon *>(c);
canvas_draw_polygon(polygon->count, polygon->indices.ptr(), polygon->points.ptr(), polygon->uvs.ptr(), polygon->colors.ptr(), polygon->texture, polygon->colors.size() == 1);
} break;
case CanvasItem::Command::TYPE_POLYGON_PTR: {
if (use_normalmap)
_canvas_normal_set_flip(Vector2(1, 1));
CanvasItem::CommandPolygonPtr *polygon = static_cast<CanvasItem::CommandPolygonPtr *>(c);
canvas_draw_polygon(polygon->count, polygon->indices, polygon->points, polygon->uvs, polygon->colors, polygon->texture, false);
} break;
case CanvasItem::Command::TYPE_CIRCLE: {
CanvasItem::CommandCircle *circle = static_cast<CanvasItem::CommandCircle *>(c);
static const int numpoints = 32;
Vector2 points[numpoints + 1];
points[numpoints] = circle->pos;
int indices[numpoints * 3];
for (int i = 0; i < numpoints; i++) {
points[i] = circle->pos + Vector2(Math::sin(i * Math_PI * 2.0 / numpoints), Math::cos(i * Math_PI * 2.0 / numpoints)) * circle->radius;
indices[i * 3 + 0] = i;
indices[i * 3 + 1] = (i + 1) % numpoints;
indices[i * 3 + 2] = numpoints;
}
canvas_draw_polygon(numpoints * 3, indices, points, NULL, &circle->color, RID(), true);
//canvas_draw_circle(circle->indices.size(),circle->indices.ptr(),circle->points.ptr(),circle->uvs.ptr(),circle->colors.ptr(),circle->texture,circle->colors.size()==1);
} break;
case CanvasItem::Command::TYPE_TRANSFORM: {
CanvasItem::CommandTransform *transform = static_cast<CanvasItem::CommandTransform *>(c);
canvas_set_transform(transform->xform);
} break;
case CanvasItem::Command::TYPE_BLEND_MODE: {
CanvasItem::CommandBlendMode *bm = static_cast<CanvasItem::CommandBlendMode *>(c);
canvas_set_blend_mode(bm->blend_mode);
} break;
case CanvasItem::Command::TYPE_CLIP_IGNORE: {
CanvasItem::CommandClipIgnore *ci = static_cast<CanvasItem::CommandClipIgnore *>(c);
if (current_clip) {
if (ci->ignore != reclip) {
if (ci->ignore) {
glDisable(GL_SCISSOR_TEST);
reclip = true;
} else {
glEnable(GL_SCISSOR_TEST);
//glScissor(viewport.x+current_clip->final_clip_rect.pos.x,viewport.y+ (viewport.height-(current_clip->final_clip_rect.pos.y+current_clip->final_clip_rect.size.height)),
//current_clip->final_clip_rect.size.width,current_clip->final_clip_rect.size.height);
int x;
int y;
int w;
int h;
if (current_rt) {
x = current_clip->final_clip_rect.pos.x;
y = current_clip->final_clip_rect.pos.y;
w = current_clip->final_clip_rect.size.x;
h = current_clip->final_clip_rect.size.y;
} else {
x = current_clip->final_clip_rect.pos.x;
y = window_size.height - (current_clip->final_clip_rect.pos.y + current_clip->final_clip_rect.size.y);
w = current_clip->final_clip_rect.size.x;
h = current_clip->final_clip_rect.size.y;
}
glScissor(x, y, w, h);
reclip = false;
}
}
}
} break;
}
}
}
void RasterizerGLES2::_canvas_item_setup_shader_params(CanvasItemMaterial *material, Shader *shader) {
if (canvas_shader.bind())
rebind_texpixel_size = true;
if (material->shader_version != shader->version) {
//todo optimize uniforms
material->shader_version = shader->version;
}
if (shader->has_texscreen && framebuffer.active) {
int x = viewport.x;
int y = window_size.height - (viewport.height + viewport.y);
canvas_shader.set_uniform(CanvasShaderGLES2::TEXSCREEN_SCREEN_MULT, Vector2(float(viewport.width) / framebuffer.width, float(viewport.height) / framebuffer.height));
canvas_shader.set_uniform(CanvasShaderGLES2::TEXSCREEN_SCREEN_CLAMP, Color(float(x) / framebuffer.width, float(y) / framebuffer.height, float(x + viewport.width) / framebuffer.width, float(y + viewport.height) / framebuffer.height));
canvas_shader.set_uniform(CanvasShaderGLES2::TEXSCREEN_TEX, max_texture_units - 1);
glActiveTexture(GL_TEXTURE0 + max_texture_units - 1);
glBindTexture(GL_TEXTURE_2D, framebuffer.sample_color);
if (framebuffer.scale == 1 && !canvas_texscreen_used) {
#ifdef GLEW_ENABLED
if (current_rt) {
glReadBuffer(GL_COLOR_ATTACHMENT0);
} else {
glReadBuffer(GL_BACK);
}
#endif
if (current_rt) {
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, viewport.x, viewport.y, viewport.x, viewport.y, viewport.width, viewport.height);
canvas_shader.set_uniform(CanvasShaderGLES2::TEXSCREEN_SCREEN_CLAMP, Color(float(x) / framebuffer.width, float(viewport.y) / framebuffer.height, float(x + viewport.width) / framebuffer.width, float(y + viewport.height) / framebuffer.height));
//window_size.height-(viewport.height+viewport.y)
} else {
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, x, y, x, y, viewport.width, viewport.height);
}
canvas_texscreen_used = true;
}
glActiveTexture(GL_TEXTURE0);
}
if (shader->has_screen_uv) {
canvas_shader.set_uniform(CanvasShaderGLES2::SCREEN_UV_MULT, Vector2(1.0 / viewport.width, 1.0 / viewport.height));
}
uses_texpixel_size = shader->uses_texpixel_size;
}
void RasterizerGLES2::_canvas_item_setup_shader_uniforms(CanvasItemMaterial *material, Shader *shader) {
//this can be optimized..
int tex_id = 1;
int idx = 0;
for (Map<StringName, ShaderLanguage::Uniform>::Element *E = shader->uniforms.front(); E; E = E->next()) {
Map<StringName, Variant>::Element *F = material->shader_param.find(E->key());
if ((E->get().type == ShaderLanguage::TYPE_TEXTURE || E->get().type == ShaderLanguage::TYPE_CUBEMAP)) {
RID rid;
if (F) {
rid = F->get();
}
if (!rid.is_valid()) {
Map<StringName, RID>::Element *DT = shader->default_textures.find(E->key());
if (DT) {
rid = DT->get();
}
}
if (rid.is_valid()) {
int loc = canvas_shader.get_custom_uniform_location(idx); //should be automatic..
glActiveTexture(GL_TEXTURE0 + tex_id);
Texture *t = texture_owner.get(rid);
if (!t)
glBindTexture(GL_TEXTURE_2D, white_tex);
else
glBindTexture(t->target, t->tex_id);
glUniform1i(loc, tex_id);
tex_id++;
}
} else {
Variant &v = F ? F->get() : E->get().default_value;
canvas_shader.set_custom_uniform(idx, v);
}
idx++;
}
if (tex_id > 1) {
glActiveTexture(GL_TEXTURE0);
}
if (shader->uses_time) {
canvas_shader.set_uniform(CanvasShaderGLES2::TIME, Math::fmod(last_time, shader_time_rollback));
draw_next_frame = true;
}
//if uses TIME - draw_next_frame=true
}
void RasterizerGLES2::canvas_render_items(CanvasItem *p_item_list, int p_z, const Color &p_modulate, CanvasLight *p_light) {
CanvasItem *current_clip = NULL;
Shader *shader_cache = NULL;
bool rebind_shader = true;
canvas_opacity = 1.0;
canvas_use_modulate = p_modulate != Color(1, 1, 1, 1);
canvas_modulate = p_modulate;
canvas_shader.set_conditional(CanvasShaderGLES2::USE_MODULATE, canvas_use_modulate);
canvas_shader.set_conditional(CanvasShaderGLES2::USE_DISTANCE_FIELD, false);
bool reset_modulate = false;
bool prev_distance_field = false;
while (p_item_list) {
CanvasItem *ci = p_item_list;
if (ci->vp_render) {
if (draw_viewport_func) {
draw_viewport_func(ci->vp_render->owner, ci->vp_render->udata, ci->vp_render->rect);
}
memdelete(ci->vp_render);
ci->vp_render = NULL;
canvas_last_material = NULL;
canvas_use_modulate = p_modulate != Color(1, 1, 1, 1);
canvas_modulate = p_modulate;
canvas_shader.set_conditional(CanvasShaderGLES2::USE_MODULATE, canvas_use_modulate);
canvas_shader.set_conditional(CanvasShaderGLES2::USE_DISTANCE_FIELD, false);
prev_distance_field = false;
rebind_shader = true;
reset_modulate = true;
}
if (prev_distance_field != ci->distance_field) {
canvas_shader.set_conditional(CanvasShaderGLES2::USE_DISTANCE_FIELD, ci->distance_field);
prev_distance_field = ci->distance_field;
rebind_shader = true;
}
if (current_clip != ci->final_clip_owner) {
current_clip = ci->final_clip_owner;
//setup clip
if (current_clip) {
glEnable(GL_SCISSOR_TEST);
//glScissor(viewport.x+current_clip->final_clip_rect.pos.x,viewport.y+ (viewport.height-(current_clip->final_clip_rect.pos.y+current_clip->final_clip_rect.size.height)),
//current_clip->final_clip_rect.size.width,current_clip->final_clip_rect.size.height);
/* int x = viewport.x+current_clip->final_clip_rect.pos.x;
int y = window_size.height-(viewport.y+current_clip->final_clip_rect.pos.y+current_clip->final_clip_rect.size.y);
int w = current_clip->final_clip_rect.size.x;
int h = current_clip->final_clip_rect.size.y;
*/
int x;
int y;
int w;
int h;
if (current_rt) {
x = current_clip->final_clip_rect.pos.x;
y = current_clip->final_clip_rect.pos.y;
w = current_clip->final_clip_rect.size.x;
h = current_clip->final_clip_rect.size.y;
} else {
x = current_clip->final_clip_rect.pos.x;
y = window_size.height - (current_clip->final_clip_rect.pos.y + current_clip->final_clip_rect.size.y);
w = current_clip->final_clip_rect.size.x;
h = current_clip->final_clip_rect.size.y;
}
glScissor(x, y, w, h);
} else {
glDisable(GL_SCISSOR_TEST);
}
}
if (ci->copy_back_buffer && framebuffer.active && framebuffer.scale == 1) {
Rect2 rect;
int x, y;
if (ci->copy_back_buffer->full) {
x = viewport.x;
y = window_size.height - (viewport.height + viewport.y);
} else {
x = viewport.x + ci->copy_back_buffer->screen_rect.pos.x;
y = window_size.height - (viewport.y + ci->copy_back_buffer->screen_rect.pos.y + ci->copy_back_buffer->screen_rect.size.y);
}
glActiveTexture(GL_TEXTURE0 + max_texture_units - 1);
glBindTexture(GL_TEXTURE_2D, framebuffer.sample_color);
#ifdef GLEW_ENABLED
if (current_rt) {
glReadBuffer(GL_COLOR_ATTACHMENT0);
} else {
glReadBuffer(GL_BACK);
}
#endif
if (current_rt) {
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, viewport.x, viewport.y, viewport.x, viewport.y, viewport.width, viewport.height);
//window_size.height-(viewport.height+viewport.y)
} else {
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, x, y, x, y, viewport.width, viewport.height);
}
canvas_texscreen_used = true;
glActiveTexture(GL_TEXTURE0);
}
//begin rect
CanvasItem *material_owner = ci->material_owner ? ci->material_owner : ci;
CanvasItemMaterial *material = material_owner->material;
if (material != canvas_last_material || rebind_shader) {
Shader *shader = NULL;
if (material && material->shader.is_valid()) {
shader = shader_owner.get(material->shader);
if (shader && !shader->valid) {
shader = NULL;
}
}
shader_cache = shader;
if (shader) {
canvas_shader.set_custom_shader(shader->custom_code_id);
_canvas_item_setup_shader_params(material, shader);
} else {
shader_cache = NULL;
canvas_shader.set_custom_shader(0);
canvas_shader.bind();
uses_texpixel_size = false;
}
canvas_shader.set_uniform(CanvasShaderGLES2::PROJECTION_MATRIX, canvas_transform);
if (canvas_use_modulate)
reset_modulate = true;
canvas_last_material = material;
rebind_shader = false;
}
if (material && shader_cache) {
_canvas_item_setup_shader_uniforms(material, shader_cache);
}
bool unshaded = (material && material->shading_mode == VS::CANVAS_ITEM_SHADING_UNSHADED) || ci->blend_mode != VS::MATERIAL_BLEND_MODE_MIX;
if (unshaded) {
canvas_shader.set_uniform(CanvasShaderGLES2::MODULATE, Color(1, 1, 1, 1));
reset_modulate = true;
} else if (reset_modulate) {
canvas_shader.set_uniform(CanvasShaderGLES2::MODULATE, canvas_modulate);
reset_modulate = false;
}
canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, ci->final_transform);
canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX, Transform2D());
bool reclip = false;
if (ci == p_item_list || ci->blend_mode != canvas_blend_mode) {
switch (ci->blend_mode) {
case VS::MATERIAL_BLEND_MODE_MIX: {
glBlendEquation(GL_FUNC_ADD);
if (current_rt && current_rt_transparent) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
} break;
case VS::MATERIAL_BLEND_MODE_ADD: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_SUB: {
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_MUL: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_DST_COLOR, GL_ZERO);
} break;
case VS::MATERIAL_BLEND_MODE_PREMULT_ALPHA: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} break;
}
canvas_blend_mode = ci->blend_mode;
}
canvas_opacity = ci->final_opacity;
if (unshaded || (p_modulate.a > 0.001 && (!material || material->shading_mode != VS::CANVAS_ITEM_SHADING_ONLY_LIGHT) && !ci->light_masked))
_canvas_item_render_commands<false>(ci, current_clip, reclip);
if (canvas_blend_mode == VS::MATERIAL_BLEND_MODE_MIX && p_light && !unshaded) {
CanvasLight *light = p_light;
bool light_used = false;
VS::CanvasLightMode mode = VS::CANVAS_LIGHT_MODE_ADD;
while (light) {
if (ci->light_mask & light->item_mask && p_z >= light->z_min && p_z <= light->z_max && ci->global_rect_cache.intersects_transformed(light->xform_cache, light->rect_cache)) {
//intersects this light
if (!light_used || mode != light->mode) {
mode = light->mode;
switch (mode) {
case VS::CANVAS_LIGHT_MODE_ADD: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
} break;
case VS::CANVAS_LIGHT_MODE_SUB: {
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
} break;
case VS::CANVAS_LIGHT_MODE_MIX:
case VS::CANVAS_LIGHT_MODE_MASK: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
} break;
}
}
if (!light_used) {
canvas_shader.set_conditional(CanvasShaderGLES2::USE_LIGHTING, true);
canvas_shader.set_conditional(CanvasShaderGLES2::USE_MODULATE, false);
light_used = true;
normal_flip = Vector2(1, 1);
}
bool has_shadow = light->shadow_buffer.is_valid() && ci->light_mask & light->item_shadow_mask;
canvas_shader.set_conditional(CanvasShaderGLES2::USE_SHADOWS, has_shadow);
bool light_rebind = canvas_shader.bind();
if (light_rebind) {
if (material && shader_cache) {
_canvas_item_setup_shader_params(material, shader_cache);
_canvas_item_setup_shader_uniforms(material, shader_cache);
}
canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, ci->final_transform);
canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX, Transform2D());
canvas_shader.set_uniform(CanvasShaderGLES2::PROJECTION_MATRIX, canvas_transform);
if (canvas_use_modulate)
canvas_shader.set_uniform(CanvasShaderGLES2::MODULATE, canvas_modulate);
canvas_shader.set_uniform(CanvasShaderGLES2::NORMAL_FLIP, Vector2(1, 1));
canvas_shader.set_uniform(CanvasShaderGLES2::SHADOWPIXEL_SIZE, 1.0 / light->shadow_buffer_size);
}
canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_MATRIX, light->light_shader_xform);
canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_POS, light->light_shader_pos);
canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_COLOR, Color(light->color.r * light->energy, light->color.g * light->energy, light->color.b * light->energy, light->color.a));
canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_HEIGHT, light->height);
canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_LOCAL_MATRIX, light->xform_cache.affine_inverse());
canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_OUTSIDE_ALPHA, light->mode == VS::CANVAS_LIGHT_MODE_MASK ? 1.0 : 0.0);
if (has_shadow) {
CanvasLightShadow *cls = canvas_light_shadow_owner.get(light->shadow_buffer);
glActiveTexture(GL_TEXTURE0 + max_texture_units - 3);
if (read_depth_supported)
glBindTexture(GL_TEXTURE_2D, cls->depth);
else
glBindTexture(GL_TEXTURE_2D, cls->rgba);
canvas_shader.set_uniform(CanvasShaderGLES2::SHADOW_TEXTURE, max_texture_units - 3);
canvas_shader.set_uniform(CanvasShaderGLES2::SHADOW_MATRIX, light->shadow_matrix_cache);
canvas_shader.set_uniform(CanvasShaderGLES2::SHADOW_ESM_MULTIPLIER, light->shadow_esm_mult);
canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_SHADOW_COLOR, light->shadow_color);
}
glActiveTexture(GL_TEXTURE0 + max_texture_units - 2);
canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_TEXTURE, max_texture_units - 2);
Texture *t = texture_owner.get(light->texture);
if (!t) {
glBindTexture(GL_TEXTURE_2D, white_tex);
} else {
glBindTexture(t->target, t->tex_id);
}
glActiveTexture(GL_TEXTURE0);
_canvas_item_render_commands<true>(ci, current_clip, reclip); //redraw using light
}
light = light->next_ptr;
}
if (light_used) {
canvas_shader.set_conditional(CanvasShaderGLES2::USE_LIGHTING, false);
canvas_shader.set_conditional(CanvasShaderGLES2::USE_MODULATE, canvas_use_modulate);
canvas_shader.set_conditional(CanvasShaderGLES2::USE_SHADOWS, false);
canvas_shader.bind();
if (material && shader_cache) {
_canvas_item_setup_shader_params(material, shader_cache);
_canvas_item_setup_shader_uniforms(material, shader_cache);
}
canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, ci->final_transform);
canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX, Transform2D());
if (canvas_use_modulate)
canvas_shader.set_uniform(CanvasShaderGLES2::MODULATE, canvas_modulate);
glBlendEquation(GL_FUNC_ADD);
if (current_rt && current_rt_transparent) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
}
}
if (reclip) {
glEnable(GL_SCISSOR_TEST);
//glScissor(viewport.x+current_clip->final_clip_rect.pos.x,viewport.y+ (viewport.height-(current_clip->final_clip_rect.pos.y+current_clip->final_clip_rect.size.height)),
//current_clip->final_clip_rect.size.width,current_clip->final_clip_rect.size.height);
int x;
int y;
int w;
int h;
if (current_rt) {
x = current_clip->final_clip_rect.pos.x;
y = current_clip->final_clip_rect.pos.y;
w = current_clip->final_clip_rect.size.x;
h = current_clip->final_clip_rect.size.y;
} else {
x = current_clip->final_clip_rect.pos.x;
y = window_size.height - (current_clip->final_clip_rect.pos.y + current_clip->final_clip_rect.size.y);
w = current_clip->final_clip_rect.size.x;
h = current_clip->final_clip_rect.size.y;
}
glScissor(x, y, w, h);
}
p_item_list = p_item_list->next;
}
if (current_clip) {
glDisable(GL_SCISSOR_TEST);
}
}
/* ENVIRONMENT */
RID RasterizerGLES2::environment_create() {
Environment *env = memnew(Environment);
return environment_owner.make_rid(env);
}
void RasterizerGLES2::environment_set_background(RID p_env, VS::EnvironmentBG p_bg) {
ERR_FAIL_INDEX(p_bg, VS::ENV_BG_MAX);
Environment *env = environment_owner.get(p_env);
ERR_FAIL_COND(!env);
env->bg_mode = p_bg;
}
VS::EnvironmentBG RasterizerGLES2::environment_get_background(RID p_env) const {
const Environment *env = environment_owner.get(p_env);
ERR_FAIL_COND_V(!env, VS::ENV_BG_MAX);
return env->bg_mode;
}
void RasterizerGLES2::environment_set_background_param(RID p_env, VS::EnvironmentBGParam p_param, const Variant &p_value) {
ERR_FAIL_INDEX(p_param, VS::ENV_BG_PARAM_MAX);
Environment *env = environment_owner.get(p_env);
ERR_FAIL_COND(!env);
env->bg_param[p_param] = p_value;
}
Variant RasterizerGLES2::environment_get_background_param(RID p_env, VS::EnvironmentBGParam p_param) const {
ERR_FAIL_INDEX_V(p_param, VS::ENV_BG_PARAM_MAX, Variant());
const Environment *env = environment_owner.get(p_env);
ERR_FAIL_COND_V(!env, Variant());
return env->bg_param[p_param];
}
void RasterizerGLES2::environment_set_enable_fx(RID p_env, VS::EnvironmentFx p_effect, bool p_enabled) {
ERR_FAIL_INDEX(p_effect, VS::ENV_FX_MAX);
Environment *env = environment_owner.get(p_env);
ERR_FAIL_COND(!env);
env->fx_enabled[p_effect] = p_enabled;
}
bool RasterizerGLES2::environment_is_fx_enabled(RID p_env, VS::EnvironmentFx p_effect) const {
ERR_FAIL_INDEX_V(p_effect, VS::ENV_FX_MAX, false);
const Environment *env = environment_owner.get(p_env);
ERR_FAIL_COND_V(!env, false);
return env->fx_enabled[p_effect];
}
void RasterizerGLES2::environment_fx_set_param(RID p_env, VS::EnvironmentFxParam p_param, const Variant &p_value) {
ERR_FAIL_INDEX(p_param, VS::ENV_FX_PARAM_MAX);
Environment *env = environment_owner.get(p_env);
ERR_FAIL_COND(!env);
env->fx_param[p_param] = p_value;
}
Variant RasterizerGLES2::environment_fx_get_param(RID p_env, VS::EnvironmentFxParam p_param) const {
ERR_FAIL_INDEX_V(p_param, VS::ENV_FX_PARAM_MAX, Variant());
const Environment *env = environment_owner.get(p_env);
ERR_FAIL_COND_V(!env, Variant());
return env->fx_param[p_param];
}
RID RasterizerGLES2::sampled_light_dp_create(int p_width, int p_height) {
SampledLight *slight = memnew(SampledLight);
slight->w = p_width;
slight->h = p_height;
slight->multiplier = 1.0;
slight->is_float = float_linear_supported;
glActiveTexture(GL_TEXTURE0);
glGenTextures(1, &slight->texture);
glBindTexture(GL_TEXTURE_2D, slight->texture);
// for debug, but glitchy
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// Remove artifact on the edges of the shadowmap
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
if (slight->is_float) {
#ifdef GLEW_ENABLED
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, p_width, p_height, 0, GL_RGBA, GL_FLOAT, NULL);
#else
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, p_width, p_height, 0, GL_RGBA, GL_FLOAT, NULL);
#endif
} else {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, p_width, p_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
}
return sampled_light_owner.make_rid(slight);
}
void RasterizerGLES2::sampled_light_dp_update(RID p_sampled_light, const Color *p_data, float p_multiplier) {
SampledLight *slight = sampled_light_owner.get(p_sampled_light);
ERR_FAIL_COND(!slight);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, slight->texture);
if (slight->is_float) {
#ifdef GLEW_ENABLED
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, slight->w, slight->h, GL_RGBA, GL_FLOAT, p_data);
#else
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, slight->w, slight->h, GL_RGBA, GL_FLOAT, p_data);
#endif
} else {
//convert to bytes
uint8_t *tex8 = (uint8_t *)alloca(slight->w * slight->h * 4);
const float *src = (const float *)p_data;
for (int i = 0; i < slight->w * slight->h * 4; i++) {
tex8[i] = Math::fast_ftoi(CLAMP(src[i] * 255.0, 0.0, 255.0));
}
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, slight->w, slight->h, GL_RGBA, GL_UNSIGNED_BYTE, p_data);
}
slight->multiplier = p_multiplier;
}
/*MISC*/
bool RasterizerGLES2::is_texture(const RID &p_rid) const {
return texture_owner.owns(p_rid);
}
bool RasterizerGLES2::is_material(const RID &p_rid) const {
return material_owner.owns(p_rid);
}
bool RasterizerGLES2::is_mesh(const RID &p_rid) const {
return mesh_owner.owns(p_rid);
}
bool RasterizerGLES2::is_immediate(const RID &p_rid) const {
return immediate_owner.owns(p_rid);
}
bool RasterizerGLES2::is_multimesh(const RID &p_rid) const {
return multimesh_owner.owns(p_rid);
}
bool RasterizerGLES2::is_particles(const RID &p_beam) const {
return particles_owner.owns(p_beam);
}
bool RasterizerGLES2::is_light(const RID &p_rid) const {
return light_owner.owns(p_rid);
}
bool RasterizerGLES2::is_light_instance(const RID &p_rid) const {
return light_instance_owner.owns(p_rid);
}
bool RasterizerGLES2::is_particles_instance(const RID &p_rid) const {
return particles_instance_owner.owns(p_rid);
}
bool RasterizerGLES2::is_skeleton(const RID &p_rid) const {
return skeleton_owner.owns(p_rid);
}
bool RasterizerGLES2::is_environment(const RID &p_rid) const {
return environment_owner.owns(p_rid);
}
bool RasterizerGLES2::is_shader(const RID &p_rid) const {
return shader_owner.owns(p_rid);
}
bool RasterizerGLES2::is_canvas_light_occluder(const RID &p_rid) const {
return false;
}
void RasterizerGLES2::free(const RID &p_rid) {
if (texture_owner.owns(p_rid)) {
// delete the texture
Texture *texture = texture_owner.get(p_rid);
//glDeleteTextures( 1,&texture->tex_id );
_rinfo.texture_mem -= texture->total_data_size;
texture_owner.free(p_rid);
memdelete(texture);
} else if (shader_owner.owns(p_rid)) {
// delete the texture
Shader *shader = shader_owner.get(p_rid);
switch (shader->mode) {
case VS::SHADER_MATERIAL: {
material_shader.free_custom_shader(shader->custom_code_id);
} break;
case VS::SHADER_POST_PROCESS: {
//postprocess_shader.free_custom_shader(shader->custom_code_id);
} break;
}
if (shader->dirty_list.in_list())
_shader_dirty_list.remove(&shader->dirty_list);
//material_shader.free_custom_shader(shader->custom_code_id);
shader_owner.free(p_rid);
memdelete(shader);
} else if (material_owner.owns(p_rid)) {
Material *material = material_owner.get(p_rid);
ERR_FAIL_COND(!material);
_free_fixed_material(p_rid); //just in case
material_owner.free(p_rid);
memdelete(material);
} else if (mesh_owner.owns(p_rid)) {
Mesh *mesh = mesh_owner.get(p_rid);
ERR_FAIL_COND(!mesh);
for (int i = 0; i < mesh->surfaces.size(); i++) {
Surface *surface = mesh->surfaces[i];
if (surface->array_local != 0) {
memfree(surface->array_local);
};
if (surface->index_array_local != 0) {
memfree(surface->index_array_local);
};
if (mesh->morph_target_count > 0) {
for (int i = 0; i < mesh->morph_target_count; i++) {
memdelete_arr(surface->morph_targets_local[i].array);
}
memdelete_arr(surface->morph_targets_local);
surface->morph_targets_local = NULL;
}
if (surface->vertex_id)
glDeleteBuffers(1, &surface->vertex_id);
if (surface->index_id)
glDeleteBuffers(1, &surface->index_id);
memdelete(surface);
};
mesh->surfaces.clear();
mesh_owner.free(p_rid);
memdelete(mesh);
} else if (multimesh_owner.owns(p_rid)) {
MultiMesh *multimesh = multimesh_owner.get(p_rid);
ERR_FAIL_COND(!multimesh);
if (multimesh->tex_id) {
glDeleteTextures(1, &multimesh->tex_id);
}
multimesh_owner.free(p_rid);
memdelete(multimesh);
} else if (immediate_owner.owns(p_rid)) {
Immediate *immediate = immediate_owner.get(p_rid);
ERR_FAIL_COND(!immediate);
immediate_owner.free(p_rid);
memdelete(immediate);
} else if (particles_owner.owns(p_rid)) {
Particles *particles = particles_owner.get(p_rid);
ERR_FAIL_COND(!particles);
particles_owner.free(p_rid);
memdelete(particles);
} else if (particles_instance_owner.owns(p_rid)) {
ParticlesInstance *particles_isntance = particles_instance_owner.get(p_rid);
ERR_FAIL_COND(!particles_isntance);
particles_instance_owner.free(p_rid);
memdelete(particles_isntance);
} else if (skeleton_owner.owns(p_rid)) {
Skeleton *skeleton = skeleton_owner.get(p_rid);
ERR_FAIL_COND(!skeleton);
if (skeleton->dirty_list.in_list())
_skeleton_dirty_list.remove(&skeleton->dirty_list);
if (skeleton->tex_id) {
glDeleteTextures(1, &skeleton->tex_id);
}
skeleton_owner.free(p_rid);
memdelete(skeleton);
} else if (light_owner.owns(p_rid)) {
Light *light = light_owner.get(p_rid);
ERR_FAIL_COND(!light)
light_owner.free(p_rid);
memdelete(light);
} else if (light_instance_owner.owns(p_rid)) {
LightInstance *light_instance = light_instance_owner.get(p_rid);
ERR_FAIL_COND(!light_instance);
light_instance->clear_shadow_buffers();
light_instance_owner.free(p_rid);
memdelete(light_instance);
} else if (environment_owner.owns(p_rid)) {
Environment *env = environment_owner.get(p_rid);
ERR_FAIL_COND(!env);
environment_owner.free(p_rid);
memdelete(env);
} else if (viewport_data_owner.owns(p_rid)) {
ViewportData *viewport_data = viewport_data_owner.get(p_rid);
ERR_FAIL_COND(!viewport_data);
glDeleteFramebuffers(1, &viewport_data->lum_fbo);
glDeleteTextures(1, &viewport_data->lum_color);
viewport_data_owner.free(p_rid);
memdelete(viewport_data);
} else if (render_target_owner.owns(p_rid)) {
RenderTarget *render_target = render_target_owner.get(p_rid);
ERR_FAIL_COND(!render_target);
render_target_set_size(p_rid, 0, 0); //clears framebuffer
texture_owner.free(render_target->texture);
memdelete(render_target->texture_ptr);
render_target_owner.free(p_rid);
memdelete(render_target);
} else if (sampled_light_owner.owns(p_rid)) {
SampledLight *sampled_light = sampled_light_owner.get(p_rid);
ERR_FAIL_COND(!sampled_light);
glDeleteTextures(1, &sampled_light->texture);
sampled_light_owner.free(p_rid);
memdelete(sampled_light);
} else if (canvas_occluder_owner.owns(p_rid)) {
CanvasOccluder *co = canvas_occluder_owner.get(p_rid);
if (co->index_id)
glDeleteBuffers(1, &co->index_id);
if (co->vertex_id)
glDeleteBuffers(1, &co->vertex_id);
canvas_occluder_owner.free(p_rid);
memdelete(co);
} else if (canvas_light_shadow_owner.owns(p_rid)) {
CanvasLightShadow *cls = canvas_light_shadow_owner.get(p_rid);
glDeleteFramebuffers(1, &cls->fbo);
glDeleteRenderbuffers(1, &cls->rbo);
glDeleteTextures(1, &cls->depth);
/*
if (!read_depth_supported) {
glDeleteTextures(1,&cls->rgba);
}
*/
canvas_light_shadow_owner.free(p_rid);
memdelete(cls);
};
}
bool RasterizerGLES2::ShadowBuffer::init(int p_size, bool p_use_depth) {
size = p_size;
// Create a framebuffer object
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
// Create a render buffer
glGenRenderbuffers(1, &rbo);
glBindRenderbuffer(GL_RENDERBUFFER, rbo);
// Create a texture for storing the depth
glGenTextures(1, &depth);
glBindTexture(GL_TEXTURE_2D, depth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
// Remove artifact on the edges of the shadowmap
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
//print_line("ERROR? "+itos(glGetError()));
if (p_use_depth) {
// We'll use a depth texture to store the depths in the shadow map
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, size, size, 0,
GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
#ifdef GLEW_ENABLED
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
#endif
// Attach the depth texture to FBO depth attachment point
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_TEXTURE_2D, depth, 0);
#ifdef GLEW_ENABLED
glDrawBuffer(GL_NONE);
#endif
} else {
// We'll use a RGBA texture into which we pack the depth info
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size, size, 0,
GL_RGBA, GL_UNSIGNED_BYTE, NULL);
// Attach the RGBA texture to FBO color attachment point
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, depth, 0);
// Allocate 16-bit depth buffer
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, size, size);
// Attach the render buffer as depth buffer - will be ignored
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_RENDERBUFFER, rbo);
}
#if 0
if (!p_use_depth) {
print_line("try no depth!");
glGenTextures(1, &rgba);
glBindTexture(GL_TEXTURE_2D, rgba);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size, size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rgba, 0);
/*
glGenRenderbuffers(1, &depth);
glBindRenderbuffer(GL_RENDERBUFFER, depth);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, p_size, p_size);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depth);
*/
glGenTextures(1, &depth);
glBindTexture(GL_TEXTURE_2D, depth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16, size, size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0);
} else {
//glGenRenderbuffers(1, &rbo);
//glBindRenderbuffer(GL_RENDERBUFFER, rbo);
glGenTextures(1, &depth);
glBindTexture(GL_TEXTURE_2D, depth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, size, size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0);
}
#endif
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
//printf("errnum: %x\n",status);
#ifdef GLEW_ENABLED
if (p_use_depth) {
//glDrawBuffer(GL_BACK);
}
#endif
glBindFramebuffer(GL_FRAMEBUFFER, 0);
DEBUG_TEST_ERROR("Shadow Buffer Init");
ERR_FAIL_COND_V(status != GL_FRAMEBUFFER_COMPLETE, false);
#ifdef GLEW_ENABLED
if (p_use_depth) {
//glDrawBuffer(GL_BACK);
}
#endif
#if 0
glGenFramebuffers(1, &fbo_blur);
glBindFramebuffer(GL_FRAMEBUFFER, fbo_blur);
glGenRenderbuffers(1, &rbo_blur);
glBindRenderbuffer(GL_RENDERBUFFER, rbo_blur);
glGenTextures(1, &blur);
glBindTexture(GL_TEXTURE_2D, blur);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size, size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
//glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16, size, size, 0,
//GL_DEPTH_COMPONENT16, GL_UNSIGNED_SHORT, NULL);
// Attach the RGBA texture to FBO color attachment point
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, blur, 0);
// Allocate 16-bit depth buffer
/*
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, size, size);
// Attach the render buffer as depth buffer - will be ignored
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_RENDERBUFFER, rbo_blur);
*/
status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
OS::get_singleton()->print("Status: %x\n",status);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
DEBUG_TEST_ERROR("Shadow Blur Buffer Init");
ERR_FAIL_COND_V( status != GL_FRAMEBUFFER_COMPLETE,false );
#endif
return true;
}
void RasterizerGLES2::_update_framebuffer() {
if (!use_framebuffers)
return;
int scale = GLOBAL_DEF("rasterizer/framebuffer_shrink", 1);
if (scale < 1)
scale = 1;
int dwidth = OS::get_singleton()->get_video_mode().width / scale;
int dheight = OS::get_singleton()->get_video_mode().height / scale;
if (framebuffer.fbo && dwidth == framebuffer.width && dheight == framebuffer.height)
return;
bool use_fbo = true;
if (framebuffer.fbo != 0) {
glDeleteFramebuffers(1, &framebuffer.fbo);
#if 0
glDeleteTextures(1,&framebuffer.depth);
#else
glDeleteRenderbuffers(1, &framebuffer.depth);
#endif
glDeleteTextures(1, &framebuffer.color);
for (int i = 0; i < framebuffer.luminance.size(); i++) {
glDeleteTextures(1, &framebuffer.luminance[i].color);
glDeleteFramebuffers(1, &framebuffer.luminance[i].fbo);
}
for (int i = 0; i < 3; i++) {
glDeleteTextures(1, &framebuffer.blur[i].color);
glDeleteFramebuffers(1, &framebuffer.blur[i].fbo);
}
glDeleteTextures(1, &framebuffer.sample_color);
glDeleteFramebuffers(1, &framebuffer.sample_fbo);
framebuffer.luminance.clear();
framebuffer.blur_size = 0;
framebuffer.fbo = 0;
}
#ifdef TOOLS_ENABLED
framebuffer.active = use_fbo;
#else
framebuffer.active = use_fbo && !low_memory_2d;
#endif
framebuffer.width = dwidth;
framebuffer.height = dheight;
framebuffer.scale = scale;
if (!framebuffer.active)
return;
glGenFramebuffers(1, &framebuffer.fbo);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo);
//print_line("generating fbo, id: "+itos(framebuffer.fbo));
//depth
// Create a render buffer
#if 0
glGenTextures(1, &framebuffer.depth);
glBindTexture(GL_TEXTURE_2D, framebuffer.depth);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, framebuffer.width, framebuffer.height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE );
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, framebuffer.depth, 0);
#else
glGenRenderbuffers(1, &framebuffer.depth);
glBindRenderbuffer(GL_RENDERBUFFER, framebuffer.depth);
glRenderbufferStorage(GL_RENDERBUFFER, use_depth24 ? _DEPTH_COMPONENT24_OES : GL_DEPTH_COMPONENT16, framebuffer.width, framebuffer.height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, framebuffer.depth);
#endif
//color
//GLuint format_rgba = use_fp16_fb?_GL_RGBA16F_EXT:GL_RGBA;
GLuint format_rgba = GL_RGBA;
GLuint format_type = use_fp16_fb ? _GL_HALF_FLOAT_OES : GL_UNSIGNED_BYTE;
GLuint format_internal = GL_RGBA;
if (use_16bits_fbo) {
format_type = GL_UNSIGNED_SHORT_5_6_5;
format_rgba = GL_RGB;
format_internal = GL_RGB;
}
/*GLuint format_luminance = use_fp16_fb?GL_RGB16F:GL_RGBA;
GLuint format_luminance_type = use_fp16_fb?(use_fu_GL_HALF_FLOAT_OES):GL_UNSIGNED_BYTE;
GLuint format_luminance_components = use_fp16_fb?GL_RGB:GL_RGBA;*/
GLuint format_luminance = use_fp16_fb ? _GL_RG_EXT : GL_RGBA;
GLuint format_luminance_type = use_fp16_fb ? (full_float_fb_supported ? GL_FLOAT : _GL_HALF_FLOAT_OES) : GL_UNSIGNED_BYTE;
GLuint format_luminance_components = use_fp16_fb ? _GL_RG_EXT : GL_RGBA;
glGenTextures(1, &framebuffer.color);
glBindTexture(GL_TEXTURE_2D, framebuffer.color);
glTexImage2D(GL_TEXTURE_2D, 0, format_rgba, framebuffer.width, framebuffer.height, 0, format_internal, format_type, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, framebuffer.color, 0);
#
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
if (status != GL_FRAMEBUFFER_COMPLETE) {
glDeleteFramebuffers(1, &framebuffer.fbo);
#if 0
glDeleteTextures(1,&framebuffer.depth);
#else
glDeleteRenderbuffers(1, &framebuffer.depth);
#endif
glDeleteTextures(1, &framebuffer.color);
framebuffer.fbo = 0;
framebuffer.active = false;
//print_line("**************** NO FAMEBUFFEEEERRRR????");
WARN_PRINT(String("Could not create framebuffer!!, code: " + itos(status)).ascii().get_data());
}
//sample
glGenFramebuffers(1, &framebuffer.sample_fbo);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.sample_fbo);
glGenTextures(1, &framebuffer.sample_color);
glBindTexture(GL_TEXTURE_2D, framebuffer.sample_color);
glTexImage2D(GL_TEXTURE_2D, 0, format_rgba, framebuffer.width, framebuffer.height, 0, format_internal, format_type, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, framebuffer.sample_color, 0);
#
status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
if (status != GL_FRAMEBUFFER_COMPLETE) {
glDeleteFramebuffers(1, &framebuffer.fbo);
#if 0
glDeleteTextures(1,&framebuffer.depth);
#else
glDeleteRenderbuffers(1, &framebuffer.depth);
#endif
glDeleteTextures(1, &framebuffer.color);
glDeleteTextures(1, &framebuffer.sample_color);
glDeleteFramebuffers(1, &framebuffer.sample_fbo);
framebuffer.fbo = 0;
framebuffer.active = false;
//print_line("**************** NO FAMEBUFFEEEERRRR????");
WARN_PRINT("Could not create framebuffer!!");
}
//blur
int size = GLOBAL_DEF("rasterizer/blur_buffer_size", 256);
if (size != framebuffer.blur_size) {
for (int i = 0; i < 3; i++) {
if (framebuffer.blur[i].fbo) {
glDeleteFramebuffers(1, &framebuffer.blur[i].fbo);
glDeleteTextures(1, &framebuffer.blur[i].color);
framebuffer.blur[i].fbo = 0;
framebuffer.blur[i].color = 0;
}
}
framebuffer.blur_size = size;
for (int i = 0; i < 3; i++) {
glGenFramebuffers(1, &framebuffer.blur[i].fbo);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[i].fbo);
glGenTextures(1, &framebuffer.blur[i].color);
glBindTexture(GL_TEXTURE_2D, framebuffer.blur[i].color);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, format_rgba, size, size, 0,
format_internal, format_type, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, framebuffer.blur[i].color, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
DEBUG_TEST_ERROR("Shadow Buffer Init");
ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
}
}
// luminance
int base_size = GLOBAL_DEF("rasterizer/luminance_buffer_size", 81);
if (framebuffer.luminance.empty() || framebuffer.luminance[0].size != base_size) {
for (int i = 0; i < framebuffer.luminance.size(); i++) {
glDeleteFramebuffers(1, &framebuffer.luminance[i].fbo);
glDeleteTextures(1, &framebuffer.luminance[i].color);
}
framebuffer.luminance.clear();
while (base_size > 0) {
FrameBuffer::Luminance lb;
lb.size = base_size;
glGenFramebuffers(1, &lb.fbo);
glBindFramebuffer(GL_FRAMEBUFFER, lb.fbo);
glGenTextures(1, &lb.color);
glBindTexture(GL_TEXTURE_2D, lb.color);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, format_luminance, lb.size, lb.size, 0,
format_luminance_components, format_luminance_type, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, lb.color, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
base_size /= 3;
DEBUG_TEST_ERROR("Shadow Buffer Init");
ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
framebuffer.luminance.push_back(lb);
}
}
}
void RasterizerGLES2::set_base_framebuffer(GLuint p_id, Vector2 p_size) {
base_framebuffer = p_id;
if (p_size.x != 0) {
window_size = p_size;
};
}
#if 0
void RasterizerGLES2::_update_blur_buffer() {
int size = GLOBAL_DEF("rasterizer/blur_buffer_size",256);
if (size!=framebuffer.blur_size) {
for(int i=0;i<3;i++) {
if (framebuffer.blur[i].fbo) {
glDeleteFramebuffers(1,&framebuffer.blur[i].fbo);
glDeleteTextures(1,&framebuffer.blur[i].color);
framebuffer.blur[i].fbo=0;
framebuffer.blur[i].color=0;
}
}
framebuffer.blur_size=size;
for(int i=0;i<3;i++) {
glGenFramebuffers(1, &framebuffer.blur[i].fbo);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[i].fbo);
glGenTextures(1, &framebuffer.blur[i].color);
glBindTexture(GL_TEXTURE_2D, framebuffer.blur[i].color);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size, size, 0,
GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, framebuffer.blur[i].color, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
DEBUG_TEST_ERROR("Shadow Buffer Init");
ERR_CONTINUE( status != GL_FRAMEBUFFER_COMPLETE );
}
}
}
#endif
bool RasterizerGLES2::_test_depth_shadow_buffer() {
int size = 16;
GLuint fbo;
GLuint rbo;
GLuint depth;
glActiveTexture(GL_TEXTURE0);
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
// Create a render buffer
glGenRenderbuffers(1, &rbo);
glBindRenderbuffer(GL_RENDERBUFFER, rbo);
// Create a texture for storing the depth
glGenTextures(1, &depth);
glBindTexture(GL_TEXTURE_2D, depth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// Remove artifact on the edges of the shadowmap
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// We'll use a depth texture to store the depths in the shadow map
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, size, size, 0,
GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
#ifdef GLEW_ENABLED
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
#endif
// Attach the depth texture to FBO depth attachment point
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_TEXTURE_2D, depth, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glDeleteFramebuffers(1, &fbo);
glDeleteRenderbuffers(1, &rbo);
glDeleteTextures(1, &depth);
return status == GL_FRAMEBUFFER_COMPLETE;
}
void RasterizerGLES2::init() {
if (OS::get_singleton()->is_stdout_verbose()) {
print_line("Using GLES2 video driver");
}
#ifdef GLEW_ENABLED
GLuint res = glewInit();
ERR_FAIL_COND(res != GLEW_OK);
if (OS::get_singleton()->is_stdout_verbose()) {
print_line(String("GLES2: Using GLEW ") + (const char *)glewGetString(GLEW_VERSION));
}
// Godot makes use of functions from ARB_framebuffer_object extension which is not implemented by all drivers.
// On the other hand, these drivers might implement the older EXT_framebuffer_object extension
// with which current source code is backward compatible.
bool framebuffer_object_is_supported = glewIsSupported("GL_ARB_framebuffer_object");
if (!framebuffer_object_is_supported) {
WARN_PRINT("GL_ARB_framebuffer_object not supported by your graphics card.");
if (glewIsSupported("GL_EXT_framebuffer_object")) {
// falling-back to the older EXT function if present
WARN_PRINT("Falling-back to GL_EXT_framebuffer_object.");
glIsRenderbuffer = glIsRenderbufferEXT;
glBindRenderbuffer = glBindRenderbufferEXT;
glDeleteRenderbuffers = glDeleteRenderbuffersEXT;
glGenRenderbuffers = glGenRenderbuffersEXT;
glRenderbufferStorage = glRenderbufferStorageEXT;
glGetRenderbufferParameteriv = glGetRenderbufferParameterivEXT;
glIsFramebuffer = glIsFramebufferEXT;
glBindFramebuffer = glBindFramebufferEXT;
glDeleteFramebuffers = glDeleteFramebuffersEXT;
glGenFramebuffers = glGenFramebuffersEXT;
glCheckFramebufferStatus = glCheckFramebufferStatusEXT;
glFramebufferTexture1D = glFramebufferTexture1DEXT;
glFramebufferTexture2D = glFramebufferTexture2DEXT;
glFramebufferTexture3D = glFramebufferTexture3DEXT;
glFramebufferRenderbuffer = glFramebufferRenderbufferEXT;
glGetFramebufferAttachmentParameteriv = glGetFramebufferAttachmentParameterivEXT;
glGenerateMipmap = glGenerateMipmapEXT;
framebuffer_object_is_supported = true;
} else {
ERR_PRINT("Framebuffer Object is not supported by your graphics card.");
}
}
// Check for GL 2.1 compatibility, if not bail out
if (!(glewIsSupported("GL_VERSION_2_1") && framebuffer_object_is_supported)) {
ERR_PRINT("Your system's graphic drivers seem not to support OpenGL 2.1 / GLES 2.0, sorry :(\n"
"Try a drivers update, buy a new GPU or try software rendering on Linux; Godot is now going to terminate.");
OS::get_singleton()->alert("Your system's graphic drivers seem not to support OpenGL 2.1 / GLES 2.0, sorry :(\n"
"Godot Engine will self-destruct as soon as you acknowledge this error message.",
"Fatal error: Insufficient OpenGL / GLES drivers");
exit(1);
}
#endif
scene_pass = 1;
if (extensions.size() == 0) {
set_extensions((const char *)glGetString(GL_EXTENSIONS));
}
GLint tmp = 0;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &tmp);
//print_line("GL_MAX_VERTEX_ATTRIBS "+itos(tmp));
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glFrontFace(GL_CW);
//glEnable(GL_TEXTURE_2D);
default_material = create_default_material();
material_shader.init();
canvas_shader.init();
copy_shader.init();
canvas_shadow_shader.init();
#ifdef GLEW_ENABLED
material_shader.set_conditional(MaterialShaderGLES2::USE_GLES_OVER_GL, true);
canvas_shader.set_conditional(CanvasShaderGLES2::USE_GLES_OVER_GL, true);
canvas_shadow_shader.set_conditional(CanvasShadowShaderGLES2::USE_GLES_OVER_GL, true);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLES_OVER_GL, true);
#endif
#ifdef ANGLE_ENABLED
// Fix for ANGLE
material_shader.set_conditional(MaterialShaderGLES2::DISABLE_FRONT_FACING, true);
#endif
shadow = NULL;
shadow_pass = 0;
framebuffer.fbo = 0;
framebuffer.width = 0;
framebuffer.height = 0;
//framebuffer.buff16=false;
//framebuffer.blur[0].fbo=false;
//framebuffer.blur[1].fbo=false;
framebuffer.active = false;
//do a single initial clear
glClearColor(0, 0, 0, 1);
//glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glGenTextures(1, &white_tex);
unsigned char whitetexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i++) {
whitetexdata[i] = 255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, white_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
#ifdef GLEW_ENABLED
pvr_supported = false;
etc_supported = false;
use_depth24 = true;
s3tc_supported = true;
atitc_supported = false;
//use_texture_instancing=false;
//use_attribute_instancing=true;
use_texture_instancing = false;
use_attribute_instancing = true;
full_float_fb_supported = true;
srgb_supported = true;
latc_supported = true;
s3tc_srgb_supported = true;
use_anisotropic_filter = true;
float_linear_supported = true;
GLint vtf;
glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, &vtf);
float_supported = extensions.has("GL_OES_texture_float") || extensions.has("GL_ARB_texture_float");
use_hw_skeleton_xform = vtf > 0 && float_supported;
read_depth_supported = _test_depth_shadow_buffer();
use_rgba_shadowmaps = !read_depth_supported;
//print_line("read depth support? "+itos(read_depth_supported));
glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &anisotropic_level);
anisotropic_level = MIN(anisotropic_level, float(GLOBAL_DEF("rasterizer/anisotropic_filter_level", 4.0)));
#ifdef OSX_ENABLED
use_rgba_shadowmaps = true;
use_fp16_fb = false;
#else
#endif
use_half_float = true;
#else
for (Set<String>::Element *E = extensions.front(); E; E = E->next()) {
print_line(E->get());
}
read_depth_supported = extensions.has("GL_OES_depth_texture");
use_rgba_shadowmaps = !read_depth_supported;
if (shadow_filter >= SHADOW_FILTER_ESM && !extensions.has("GL_EXT_frag_depth")) {
use_rgba_shadowmaps = true; //no other way, go back to rgba
}
pvr_supported = extensions.has("GL_IMG_texture_compression_pvrtc");
pvr_srgb_supported = extensions.has("GL_EXT_pvrtc_sRGB");
etc_supported = extensions.has("GL_OES_compressed_ETC1_RGB8_texture");
use_depth24 = extensions.has("GL_OES_depth24");
s3tc_supported = extensions.has("GL_EXT_texture_compression_dxt1") || extensions.has("GL_EXT_texture_compression_s3tc") || extensions.has("WEBGL_compressed_texture_s3tc");
use_half_float = extensions.has("GL_OES_vertex_half_float");
atitc_supported = extensions.has("GL_AMD_compressed_ATC_texture");
srgb_supported = extensions.has("GL_EXT_sRGB");
#ifndef ANGLE_ENABLED
s3tc_srgb_supported = s3tc_supported && extensions.has("GL_EXT_texture_compression_s3tc");
#else
s3tc_srgb_supported = s3tc_supported;
#endif
latc_supported = extensions.has("GL_EXT_texture_compression_latc");
anisotropic_level = 1.0;
use_anisotropic_filter = extensions.has("GL_EXT_texture_filter_anisotropic");
if (use_anisotropic_filter) {
glGetFloatv(_GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &anisotropic_level);
anisotropic_level = MIN(anisotropic_level, float(GLOBAL_DEF("rasterizer/anisotropic_filter_level", 4.0)));
}
print_line("S3TC: " + itos(s3tc_supported) + " ATITC: " + itos(atitc_supported));
GLint vtf;
glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, &vtf);
float_supported = extensions.has("GL_OES_texture_float") || extensions.has("GL_ARB_texture_float");
use_hw_skeleton_xform = vtf > 0 && float_supported;
float_linear_supported = extensions.has("GL_OES_texture_float_linear");
/*
if (extensions.has("GL_QCOM_tiled_rendering"))
use_hw_skeleton_xform=false;
*/
GLint mva;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &mva);
if (vtf == 0 && mva > 8) {
//tegra 3, mali 400
use_attribute_instancing = true;
use_texture_instancing = false;
} else if (vtf > 0 && extensions.has("GL_OES_texture_float")) {
//use_texture_instancing=true;
use_texture_instancing = false; // i don't get it, uniforms are faster.
use_attribute_instancing = false;
} else {
use_texture_instancing = false;
use_attribute_instancing = false;
}
if (use_fp16_fb) {
use_fp16_fb = extensions.has("GL_OES_texture_half_float") && extensions.has("GL_EXT_color_buffer_half_float") && extensions.has("GL_EXT_texture_rg");
}
full_float_fb_supported = extensions.has("GL_EXT_color_buffer_float");
//etc_supported=false;
#endif
//use_rgba_shadowmaps=true;
glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &max_texture_units);
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &max_texture_size);
//read_depth_supported=false;
canvas_shadow_blur = canvas_light_shadow_buffer_create(max_texture_size);
{
//shadowmaps
//don't use a shadowbuffer too big in GLES, this should be the maximum
int max_shadow_size = GLOBAL_DEF("rasterizer/max_shadow_buffer_size", 1024);
int smsize = max_shadow_size;
while (smsize >= 16) {
ShadowBuffer sb;
bool s = sb.init(smsize, !use_rgba_shadowmaps);
if (s)
near_shadow_buffers.push_back(sb);
smsize /= 2;
}
blur_shadow_buffer.init(max_shadow_size, !use_rgba_shadowmaps);
//material_shader
material_shader.set_conditional(MaterialShaderGLES2::USE_DEPTH_SHADOWS, !use_rgba_shadowmaps);
canvas_shadow_shader.set_conditional(CanvasShadowShaderGLES2::USE_DEPTH_SHADOWS, !use_rgba_shadowmaps);
}
shadow_material = material_create(); //empty with nothing
shadow_mat_ptr = material_owner.get(shadow_material);
// Now create a second shadow material for double-sided shadow instances
shadow_material_double_sided = material_create();
shadow_mat_double_sided_ptr = material_owner.get(shadow_material_double_sided);
shadow_mat_double_sided_ptr->flags[VS::MATERIAL_FLAG_DOUBLE_SIDED] = true;
overdraw_material = create_overdraw_debug_material();
copy_shader.set_conditional(CopyShaderGLES2::USE_8BIT_HDR, !use_fp16_fb);
canvas_shader.set_conditional(CanvasShaderGLES2::USE_DEPTH_SHADOWS, read_depth_supported);
canvas_shader.set_conditional(CanvasShaderGLES2::USE_PIXEL_SNAP, GLOBAL_DEF("display/use_2d_pixel_snap", false));
npo2_textures_available = true;
//fragment_lighting=false;
_rinfo.texture_mem = 0;
current_env = NULL;
current_rt = NULL;
current_vd = NULL;
current_debug = VS::SCENARIO_DEBUG_DISABLED;
camera_ortho = false;
glGenBuffers(1, &gui_quad_buffer);
glBindBuffer(GL_ARRAY_BUFFER, gui_quad_buffer);
#ifdef GLES_NO_CLIENT_ARRAYS //WebGL specific implementation.
glBufferData(GL_ARRAY_BUFFER, 8 * MAX_POLYGON_VERTICES, NULL, GL_DYNAMIC_DRAW);
#else
glBufferData(GL_ARRAY_BUFFER, 128, NULL, GL_DYNAMIC_DRAW);
#endif
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
#ifdef GLES_NO_CLIENT_ARRAYS //webgl indices buffer
glGenBuffers(1, &indices_buffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indices_buffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, 16 * 1024, NULL, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); // unbind
#endif
shader_time_rollback = GLOBAL_DEF("rasterizer/shader_time_rollback", 300);
using_canvas_bg = false;
_update_framebuffer();
DEBUG_TEST_ERROR("Initializing");
}
void RasterizerGLES2::finish() {
free(default_material);
free(shadow_material);
free(shadow_material_double_sided);
free(canvas_shadow_blur);
free(overdraw_material);
}
int RasterizerGLES2::get_render_info(VS::RenderInfo p_info) {
switch (p_info) {
case VS::INFO_OBJECTS_IN_FRAME: {
return _rinfo.object_count;
} break;
case VS::INFO_VERTICES_IN_FRAME: {
return _rinfo.vertex_count;
} break;
case VS::INFO_MATERIAL_CHANGES_IN_FRAME: {
return _rinfo.mat_change_count;
} break;
case VS::INFO_SHADER_CHANGES_IN_FRAME: {
return _rinfo.shader_change_count;
} break;
case VS::INFO_DRAW_CALLS_IN_FRAME: {
return _rinfo.draw_calls;
} break;
case VS::INFO_SURFACE_CHANGES_IN_FRAME: {
return _rinfo.surface_count;
} break;
case VS::INFO_USAGE_VIDEO_MEM_TOTAL: {
return 0;
} break;
case VS::INFO_VIDEO_MEM_USED: {
return get_render_info(VS::INFO_TEXTURE_MEM_USED) + get_render_info(VS::INFO_VERTEX_MEM_USED);
} break;
case VS::INFO_TEXTURE_MEM_USED: {
return _rinfo.texture_mem;
} break;
case VS::INFO_VERTEX_MEM_USED: {
return 0;
} break;
}
return 0;
}
void RasterizerGLES2::set_extensions(const char *p_strings) {
Vector<String> strings = String(p_strings).split(" ", false);
for (int i = 0; i < strings.size(); i++) {
extensions.insert(strings[i]);
//print_line(strings[i]);
}
}
bool RasterizerGLES2::needs_to_draw_next_frame() const {
return draw_next_frame;
}
bool RasterizerGLES2::has_feature(VS::Features p_feature) const {
switch (p_feature) {
case VS::FEATURE_SHADERS: return true;
case VS::FEATURE_NEEDS_RELOAD_HOOK: return use_reload_hooks;
default: return false;
}
}
void RasterizerGLES2::reload_vram() {
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glFrontFace(GL_CW);
//do a single initial clear
glClearColor(0, 0, 0, 1);
//glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glGenTextures(1, &white_tex);
unsigned char whitetexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i++) {
whitetexdata[i] = 255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, white_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
List<RID> textures;
texture_owner.get_owned_list(&textures);
keep_copies = false;
for (List<RID>::Element *E = textures.front(); E; E = E->next()) {
RID tid = E->get();
Texture *t = texture_owner.get(tid);
ERR_CONTINUE(!t);
t->tex_id = 0;
t->data_size = 0;
glGenTextures(1, &t->tex_id);
t->active = false;
if (t->render_target)
continue;
texture_allocate(tid, t->width, t->height, t->format, t->flags);
bool had_image = false;
for (int i = 0; i < 6; i++) {
if (!t->image[i].empty()) {
texture_set_data(tid, t->image[i], VS::CubeMapSide(i));
had_image = true;
}
}
if (!had_image && t->reloader) {
Object *rl = ObjectDB::get_instance(t->reloader);
if (rl)
rl->call(t->reloader_func, tid);
}
}
keep_copies = true;
List<RID> render_targets;
render_target_owner.get_owned_list(&render_targets);
for (List<RID>::Element *E = render_targets.front(); E; E = E->next()) {
RenderTarget *rt = render_target_owner.get(E->get());
int w = rt->width;
int h = rt->height;
rt->width = 0;
rt->height = 0;
render_target_set_size(E->get(), w, h);
}
List<RID> meshes;
mesh_owner.get_owned_list(&meshes);
for (List<RID>::Element *E = meshes.front(); E; E = E->next()) {
Mesh *mesh = mesh_owner.get(E->get());
Vector<Surface *> surfaces = mesh->surfaces;
mesh->surfaces.clear();
for (int i = 0; i < surfaces.size(); i++) {
mesh_add_surface(E->get(), surfaces[i]->primitive, surfaces[i]->data, surfaces[i]->morph_data, surfaces[i]->alpha_sort);
mesh_surface_set_material(E->get(), i, surfaces[i]->material);
if (surfaces[i]->array_local != 0) {
memfree(surfaces[i]->array_local);
};
if (surfaces[i]->index_array_local != 0) {
memfree(surfaces[i]->index_array_local);
};
memdelete(surfaces[i]);
}
}
List<RID> skeletons;
skeleton_owner.get_owned_list(&skeletons);
for (List<RID>::Element *E = skeletons.front(); E; E = E->next()) {
Skeleton *sk = skeleton_owner.get(E->get());
if (!sk->tex_id)
continue; //does not use hw transform, leave alone
Vector<Skeleton::Bone> bones = sk->bones;
sk->bones.clear();
sk->tex_id = 0;
sk->pixel_size = 1.0;
skeleton_resize(E->get(), bones.size());
sk->bones = bones;
}
List<RID> multimeshes;
multimesh_owner.get_owned_list(&multimeshes);
for (List<RID>::Element *E = multimeshes.front(); E; E = E->next()) {
MultiMesh *mm = multimesh_owner.get(E->get());
if (!mm->tex_id)
continue; //does not use hw transform, leave alone
Vector<MultiMesh::Element> elements = mm->elements;
mm->elements.clear();
mm->tw = 1;
mm->th = 1;
mm->tex_id = 0;
mm->last_pass = 0;
mm->visible = -1;
multimesh_set_instance_count(E->get(), elements.size());
mm->elements = elements;
}
if (framebuffer.fbo != 0) {
framebuffer.fbo = 0;
framebuffer.depth = 0;
framebuffer.color = 0;
for (int i = 0; i < 3; i++) {
framebuffer.blur[i].fbo = 0;
framebuffer.blur[i].color = 0;
}
framebuffer.luminance.clear();
}
for (int i = 0; i < near_shadow_buffers.size(); i++) {
near_shadow_buffers[i].init(near_shadow_buffers[i].size, !use_rgba_shadowmaps);
}
blur_shadow_buffer.init(near_shadow_buffers[0].size, !use_rgba_shadowmaps);
canvas_shader.clear_caches();
material_shader.clear_caches();
blur_shader.clear_caches();
copy_shader.clear_caches();
List<RID> shaders;
shader_owner.get_owned_list(&shaders);
for (List<RID>::Element *E = shaders.front(); E; E = E->next()) {
Shader *s = shader_owner.get(E->get());
s->custom_code_id = 0;
s->version = 1;
s->valid = false;
shader_set_mode(E->get(), s->mode);
}
List<RID> materials;
material_owner.get_owned_list(&materials);
for (List<RID>::Element *E = materials.front(); E; E = E->next()) {
Material *m = material_owner.get(E->get());
RID shader = m->shader;
m->shader_version = 0;
material_set_shader(E->get(), shader);
}
}
void RasterizerGLES2::set_use_framebuffers(bool p_use) {
use_framebuffers = p_use;
}
RasterizerGLES2 *RasterizerGLES2::get_singleton() {
return _singleton;
};
int RasterizerGLES2::RenderList::max_elements = RenderList::DEFAULT_MAX_ELEMENTS;
void RasterizerGLES2::set_force_16_bits_fbo(bool p_force) {
use_16bits_fbo = p_force;
}
RasterizerGLES2::RasterizerGLES2(bool p_compress_arrays, bool p_keep_ram_copy, bool p_default_fragment_lighting, bool p_use_reload_hooks) {
_singleton = this;
shrink_textures_x2 = false;
RenderList::max_elements = GLOBAL_DEF("rasterizer/max_render_elements", (int)RenderList::DEFAULT_MAX_ELEMENTS);
if (RenderList::max_elements > 64000)
RenderList::max_elements = 64000;
if (RenderList::max_elements < 1024)
RenderList::max_elements = 1024;
opaque_render_list.init();
alpha_render_list.init();
skinned_buffer_size = GLOBAL_DEF("rasterizer/skeleton_buffer_size_kb", DEFAULT_SKINNED_BUFFER_SIZE);
if (skinned_buffer_size < 256)
skinned_buffer_size = 256;
if (skinned_buffer_size > 16384)
skinned_buffer_size = 16384;
skinned_buffer_size *= 1024;
skinned_buffer = memnew_arr(uint8_t, skinned_buffer_size);
keep_copies = p_keep_ram_copy;
use_reload_hooks = p_use_reload_hooks;
pack_arrays = p_compress_arrays;
p_default_fragment_lighting = false;
fragment_lighting = GLOBAL_DEF("rasterizer/use_fragment_lighting", true);
read_depth_supported = true; //todo check for extension
shadow_filter = ShadowFilterTechnique((int)(GLOBAL_DEF("rasterizer/shadow_filter", SHADOW_FILTER_PCF5)));
GlobalConfig::get_singleton()->set_custom_property_info("rasterizer/shadow_filter", PropertyInfo(Variant::INT, "rasterizer/shadow_filter", PROPERTY_HINT_ENUM, "None,PCF5,PCF13,ESM"));
use_fp16_fb = bool(GLOBAL_DEF("rasterizer/fp16_framebuffer", true));
use_shadow_mapping = true;
use_fast_texture_filter = !bool(GLOBAL_DEF("rasterizer/trilinear_mipmap_filter", true));
low_memory_2d = bool(GLOBAL_DEF("rasterizer/low_memory_2d_mode", false));
skel_default.resize(1024 * 4);
for (int i = 0; i < 1024 / 3; i++) {
float *ptr = skel_default.ptr();
ptr += i * 4 * 4;
ptr[0] = 1.0;
ptr[1] = 0.0;
ptr[2] = 0.0;
ptr[3] = 0.0;
ptr[4] = 0.0;
ptr[5] = 1.0;
ptr[6] = 0.0;
ptr[7] = 0.0;
ptr[8] = 0.0;
ptr[9] = 0.0;
ptr[10] = 1.0;
ptr[12] = 0.0;
}
base_framebuffer = 0;
frame = 0;
draw_next_frame = false;
use_framebuffers = true;
framebuffer.active = false;
tc0_id_cache = 0;
tc0_idx = 0;
use_16bits_fbo = false;
};
void RasterizerGLES2::restore_framebuffer() {
glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer);
}
RasterizerGLES2::~RasterizerGLES2() {
memdelete_arr(skinned_buffer);
};
#endif