godot/drivers/gles1/rasterizer_gles1.cpp
2014-02-09 22:10:30 -03:00

5866 lines
148 KiB
C++

/*************************************************************************/
/* rasterizer_gles1.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifdef GLES1_ENABLED
#include "rasterizer_gles1.h"
#include "os/os.h"
#include "globals.h"
#include <stdio.h>
#include "drivers/gl_context/context_gl.h"
#include "servers/visual/shader_language.h"
#include "servers/visual/particle_system_sw.h"
#include "gl_context/context_gl.h"
#include <string.h>
_FORCE_INLINE_ static void _gl_load_transform(const Transform& tr) {
GLfloat matrix[16]={ /* build a 16x16 matrix */
tr.basis.elements[0][0],
tr.basis.elements[1][0],
tr.basis.elements[2][0],
0,
tr.basis.elements[0][1],
tr.basis.elements[1][1],
tr.basis.elements[2][1],
0,
tr.basis.elements[0][2],
tr.basis.elements[1][2],
tr.basis.elements[2][2],
0,
tr.origin.x,
tr.origin.y,
tr.origin.z,
1
};
glLoadMatrixf(matrix);
};
_FORCE_INLINE_ static void _gl_mult_transform(const Transform& tr) {
GLfloat matrix[16]={ /* build a 16x16 matrix */
tr.basis.elements[0][0],
tr.basis.elements[1][0],
tr.basis.elements[2][0],
0,
tr.basis.elements[0][1],
tr.basis.elements[1][1],
tr.basis.elements[2][1],
0,
tr.basis.elements[0][2],
tr.basis.elements[1][2],
tr.basis.elements[2][2],
0,
tr.origin.x,
tr.origin.y,
tr.origin.z,
1
};
glMultMatrixf(matrix);
};
_FORCE_INLINE_ static void _gl_mult_transform(const Matrix32& tr) {
GLfloat matrix[16]={ /* build a 16x16 matrix */
tr.elements[0][0],
tr.elements[0][1],
0,
0,
tr.elements[1][0],
tr.elements[1][1],
0,
0,
0,
0,
1,
0,
tr.elements[2][0],
tr.elements[2][1],
0,
1
};
glMultMatrixf(matrix);
};
RasterizerGLES1::FX::FX() {
bgcolor_active=false;
bgcolor=Color(0,1,0,1);
skybox_active=false;
glow_active=false;
glow_passes=4;
glow_attenuation=0.7;
glow_bloom=0.0;
antialias_active=true;
antialias_tolerance=15;
ssao_active=true;
ssao_attenuation=0.7;
ssao_radius=0.18;
ssao_max_distance=1.0;
ssao_range_min=0.25;
ssao_range_max=0.48;
ssao_only=false;
fog_active=false;
fog_near=5;
fog_far=100;
fog_attenuation=1.0;
fog_color_near=Color(1,1,1,1);
fog_color_far=Color(1,1,1,1);
fog_bg=false;
toon_active=false;
toon_treshold=0.4;
toon_soft=0.001;
edge_active=false;
edge_color=Color(0,0,0,1);
edge_size=1.0;
}
static const GLenum prim_type[]={GL_POINTS,GL_LINES,GL_TRIANGLES,GL_TRIANGLE_FAN};
static void _draw_primitive(int p_points, const Vector3 *p_vertices, const Vector3 *p_normals, const Color* p_colors, const Vector3 *p_uvs,const Plane *p_tangents=NULL,int p_instanced=1) {
ERR_FAIL_COND(!p_vertices);
ERR_FAIL_COND(p_points <1 || p_points>4);
GLenum type = prim_type[p_points - 1];
//if (!p_colors) {
// glColor4f(1, 1, 1, 1);
//};
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)p_vertices);
if (p_normals) {
glEnableClientState(GL_NORMAL_ARRAY);
glNormalPointer(GL_FLOAT, 0, (GLvoid*)p_normals);
};
if (p_colors) {
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(4,GL_FLOAT, 0, p_colors);
};
if (p_uvs) {
glClientActiveTexture(GL_TEXTURE0);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(3, GL_FLOAT, 0, p_uvs);
};
glDrawArrays( type, 0, p_points);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
};
/* TEXTURE API */
#define _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
#define _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01
#define _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#define _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03
#define _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
#define _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
#define _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#define _EXT_COMPRESSED_RED_RGTC1_EXT 0x8DBB
#define _EXT_COMPRESSED_RED_RGTC1 0x8DBB
#define _EXT_COMPRESSED_SIGNED_RED_RGTC1 0x8DBC
#define _EXT_COMPRESSED_RG_RGTC2 0x8DBD
#define _EXT_COMPRESSED_SIGNED_RG_RGTC2 0x8DBE
#define _EXT_COMPRESSED_SIGNED_RED_RGTC1_EXT 0x8DBC
#define _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT 0x8DBD
#define _EXT_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT 0x8DBE
#define _EXT_ETC1_RGB8_OES 0x8D64
/* TEXTURE API */
Image RasterizerGLES1::_get_gl_image_and_format(const Image& p_image, Image::Format p_format, uint32_t p_flags,GLenum& r_gl_format,int &r_gl_components,bool &r_has_alpha_cache,bool &r_compressed) {
r_has_alpha_cache=false;
r_compressed=false;
Image image=p_image;
switch(p_format) {
case Image::FORMAT_GRAYSCALE: {
r_gl_components=1;
r_gl_format=GL_LUMINANCE;
} break;
case Image::FORMAT_INTENSITY: {
if (!image.empty())
image.convert(Image::FORMAT_RGBA);
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} break;
case Image::FORMAT_GRAYSCALE_ALPHA: {
//image.convert(Image::FORMAT_RGBA);
r_gl_components=2;
r_gl_format=GL_LUMINANCE_ALPHA;
r_has_alpha_cache=true;
} break;
case Image::FORMAT_INDEXED: {
if (!image.empty())
image.convert(Image::FORMAT_RGB);
r_gl_components=3;
r_gl_format=GL_RGB;
} break;
case Image::FORMAT_INDEXED_ALPHA: {
if (!image.empty())
image.convert(Image::FORMAT_RGBA);
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} break;
case Image::FORMAT_RGB: {
r_gl_components=3;
r_gl_format=GL_RGB;
} break;
case Image::FORMAT_RGBA: {
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} break;
case Image::FORMAT_BC1: {
r_gl_components=1; //doesn't matter much
r_gl_format=_EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT;
r_compressed=true;
} break;
case Image::FORMAT_BC2: {
r_gl_components=1; //doesn't matter much
r_gl_format=_EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT;
r_has_alpha_cache=true;
r_compressed=true;
} break;
case Image::FORMAT_BC3: {
r_gl_components=1; //doesn't matter much
r_gl_format=_EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT;
r_has_alpha_cache=true;
r_compressed=true;
} break;
case Image::FORMAT_BC4: {
r_gl_format=_EXT_COMPRESSED_RED_RGTC1;
r_gl_components=1; //doesn't matter much
r_compressed=true;
} break;
case Image::FORMAT_BC5: {
r_gl_format=_EXT_COMPRESSED_RG_RGTC2;
r_gl_components=1; //doesn't matter much
r_compressed=true;
} break;
case Image::FORMAT_PVRTC2: {
if (!pvr_supported) {
if (!image.empty())
image.decompress();
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
print_line("Load Compat PVRTC2");
} else {
r_gl_format=_EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
r_gl_components=1; //doesn't matter much
r_compressed=true;
print_line("Load Normal PVRTC2");
}
} break;
case Image::FORMAT_PVRTC2_ALPHA: {
if (!pvr_supported) {
if (!image.empty())
image.decompress();
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
print_line("Load Compat PVRTC2A");
} else {
r_gl_format=_EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
r_gl_components=1; //doesn't matter much
r_compressed=true;
print_line("Load Normal PVRTC2A");
}
} break;
case Image::FORMAT_PVRTC4: {
if (!pvr_supported) {
if (!image.empty())
image.decompress();
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
print_line("Load Compat PVRTC4");
} else {
r_gl_format=_EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
r_gl_components=1; //doesn't matter much
r_compressed=true;
print_line("Load Normal PVRTC4");
}
} break;
case Image::FORMAT_PVRTC4_ALPHA: {
if (!pvr_supported) {
if (!image.empty())
image.decompress();
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
print_line("Load Compat PVRTC4A");
} else {
r_gl_format=_EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
r_gl_components=1; //doesn't matter much
r_compressed=true;
print_line("Load Normal PVRTC4A");
}
} break;
case Image::FORMAT_ETC: {
if (!pvr_supported) {
if (!image.empty())
image.decompress();
} else {
r_gl_format=_EXT_ETC1_RGB8_OES;
r_gl_components=1; //doesn't matter much
r_compressed=true;
}
} break;
case Image::FORMAT_YUV_422:
case Image::FORMAT_YUV_444: {
if (!image.empty())
image.convert(Image::FORMAT_RGB);
r_gl_format=GL_RGB;
r_gl_components=3;
} break;
default: {
ERR_FAIL_V(Image());
}
}
return image;
}
RID RasterizerGLES1::texture_create() {
Texture *texture = memnew(Texture);
ERR_FAIL_COND_V(!texture,RID());
glGenTextures(1, &texture->tex_id);
texture->active=false;
texture->total_data_size=0;
return texture_owner.make_rid( texture );
}
void RasterizerGLES1::texture_allocate(RID p_texture,int p_width, int p_height,Image::Format p_format,uint32_t p_flags) {
bool has_alpha_cache;
int components;
GLenum format;
bool compressed;
int po2_width = nearest_power_of_2(p_width);
int po2_height = nearest_power_of_2(p_height);
Texture *texture = texture_owner.get( p_texture );
ERR_FAIL_COND(!texture);
texture->width=p_width;
texture->height=p_height;
texture->format=p_format;
texture->flags=p_flags;
texture->target = /*(p_flags & VS::TEXTURE_FLAG_CUBEMAP) ? GL_TEXTURE_CUBE_MAP :*/ GL_TEXTURE_2D;
bool scale_textures = (!npo2_textures_available || p_format&VS::TEXTURE_FLAG_MIPMAPS);
if (scale_textures) {
texture->alloc_width = po2_width;
texture->alloc_height = po2_height;
} else {
texture->alloc_width = texture->width;
texture->alloc_height = texture->height;
};
_get_gl_image_and_format(Image(),texture->format,texture->flags,format,components,has_alpha_cache,compressed);
texture->gl_components_cache=components;
texture->gl_format_cache=format;
texture->format_has_alpha=has_alpha_cache;
texture->compressed=compressed;
texture->data_size=0;
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
if (compressed) {
glTexParameteri( texture->target, GL_GENERATE_MIPMAP, GL_FALSE );
} else {
if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS) {
glTexParameteri( texture->target, GL_GENERATE_MIPMAP, GL_TRUE );
} else {
glTexParameteri( texture->target, GL_GENERATE_MIPMAP, GL_FALSE );
}
}
if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS)
glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_LINEAR);
else
glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
if (texture->flags&VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_LINEAR); // Linear Filtering
} else {
glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_NEAREST); // raw Filtering
}
bool force_clamp_to_edge = !(p_flags&VS::TEXTURE_FLAG_MIPMAPS) && (nearest_power_of_2(texture->alloc_height)!=texture->alloc_height || nearest_power_of_2(texture->alloc_width)!=texture->alloc_width);
if (!force_clamp_to_edge && texture->flags&VS::TEXTURE_FLAG_REPEAT) {
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf( texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameterf( texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
}
texture->active=true;
}
void RasterizerGLES1::texture_set_data(RID p_texture,const Image& p_image,VS::CubeMapSide p_cube_side) {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(!texture->active);
ERR_FAIL_COND(texture->format != p_image.get_format() );
int components;
GLenum format;
bool alpha;
bool compressed;
if (keep_copies && !(texture->flags&VS::TEXTURE_FLAG_VIDEO_SURFACE) && !(use_reload_hooks && texture->reloader)) {
texture->image[p_cube_side]=p_image;
}
Image img = _get_gl_image_and_format(p_image, p_image.get_format(),texture->flags,format,components,alpha,compressed);
if (texture->alloc_width != img.get_width() || texture->alloc_height != img.get_height()) {
img.resize(texture->alloc_width, texture->alloc_height, Image::INTERPOLATE_BILINEAR);
};
GLenum blit_target = /*(texture->target == GL_TEXTURE_CUBE_MAP)?_cube_side_enum[p_cube_side]:*/GL_TEXTURE_2D;
texture->data_size=img.get_data().size();
DVector<uint8_t>::Read read = img.get_data().read();
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
int mipmaps=(texture->flags&VS::TEXTURE_FLAG_MIPMAPS && img.get_mipmaps()>0) ? img.get_mipmaps() +1 : 1;
int w=img.get_width();
int h=img.get_height();
int tsize=0;
for(int i=0;i<mipmaps;i++) {
int size,ofs;
img.get_mipmap_offset_and_size(i,ofs,size);
if (texture->compressed) {
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glCompressedTexImage2D( blit_target, i, format,w,h,0,size,&read[ofs] );
} else {
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
// glTexImage2D(blit_target, i, format==GL_RGB?GL_RGB8:format, w, h, 0, format, GL_UNSIGNED_BYTE,&read[ofs]);
glTexImage2D(blit_target, i, format, w, h, 0, format, GL_UNSIGNED_BYTE,&read[ofs]);
//glTexSubImage2D( blit_target, i, 0,0,w,h,format,GL_UNSIGNED_BYTE,&read[ofs] );
}
tsize+=size;
w = MAX(1,w>>1);
h = MAX(1,h>>1);
}
_rinfo.texture_mem-=texture->total_data_size;
texture->total_data_size=tsize;
_rinfo.texture_mem+=texture->total_data_size;
printf("texture: %i x %i - size: %i - total: %i\n",texture->width,texture->height,tsize,_rinfo.texture_mem);
if (mipmaps==1 && texture->flags&VS::TEXTURE_FLAG_MIPMAPS) {
glTexParameteri( GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE );
} else {
glTexParameteri( GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_FALSE );
}
if (mipmaps>1) {
//glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, mipmaps-1 ); - assumed to have all, always
}
//texture_set_flags(p_texture,texture->flags);
}
Image RasterizerGLES1::texture_get_data(RID p_texture,VS::CubeMapSide p_cube_side) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,Image());
ERR_FAIL_COND_V(!texture->active,Image());
return texture->image[p_cube_side];
#if 0
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,Image());
ERR_FAIL_COND_V(!texture->active,Image());
ERR_FAIL_COND_V(texture->data_size==0,Image());
DVector<uint8_t> data;
GLenum format,type=GL_UNSIGNED_BYTE;
Image::Format fmt;
int pixelsize=0;
int pixelshift=0;
int minw=1,minh=1;
bool compressed=false;
fmt=texture->format;
switch(texture->format) {
case Image::FORMAT_GRAYSCALE: {
format=GL_LUMINANCE;
type=GL_UNSIGNED_BYTE;
data.resize(texture->alloc_width*texture->alloc_height);
pixelsize=1;
} break;
case Image::FORMAT_INTENSITY: {
return Image();
} break;
case Image::FORMAT_GRAYSCALE_ALPHA: {
format=GL_LUMINANCE_ALPHA;
type=GL_UNSIGNED_BYTE;
pixelsize=2;
} break;
case Image::FORMAT_RGB: {
format=GL_RGB;
type=GL_UNSIGNED_BYTE;
pixelsize=3;
} break;
case Image::FORMAT_RGBA: {
format=GL_RGBA;
type=GL_UNSIGNED_BYTE;
pixelsize=4;
} break;
case Image::FORMAT_INDEXED: {
format=GL_RGB;
type=GL_UNSIGNED_BYTE;
fmt=Image::FORMAT_RGB;
pixelsize=3;
} break;
case Image::FORMAT_INDEXED_ALPHA: {
format=GL_RGBA;
type=GL_UNSIGNED_BYTE;
fmt=Image::FORMAT_RGBA;
pixelsize=4;
} break;
case Image::FORMAT_BC1: {
pixelsize=1; //doesn't matter much
format=GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
compressed=true;
pixelshift=1;
minw=minh=4;
} break;
case Image::FORMAT_BC2: {
pixelsize=1; //doesn't matter much
format=GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
compressed=true;
minw=minh=4;
} break;
case Image::FORMAT_BC3: {
pixelsize=1; //doesn't matter much
format=GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
compressed=true;
minw=minh=4;
} break;
case Image::FORMAT_BC4: {
format=GL_COMPRESSED_RED_RGTC1;
pixelsize=1; //doesn't matter much
compressed=true;
pixelshift=1;
minw=minh=4;
} break;
case Image::FORMAT_BC5: {
format=GL_COMPRESSED_RG_RGTC2;
pixelsize=1; //doesn't matter much
compressed=true;
minw=minh=4;
} break;
default:{}
}
data.resize(texture->data_size);
DVector<uint8_t>::Write wb = data.write();
glActiveTexture(GL_TEXTURE0);
int ofs=0;
glBindTexture(texture->target,texture->tex_id);
int w=texture->alloc_width;
int h=texture->alloc_height;
for(int i=0;i<texture->mipmaps+1;i++) {
if (compressed) {
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glGetCompressedTexImage(texture->target,i,&wb[ofs]);
} else {
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glGetTexImage(texture->target,i,format,type,&wb[ofs]);
}
int size = (w*h*pixelsize)>>pixelshift;
ofs+=size;
w=MAX(minw,w>>1);
h=MAX(minh,h>>1);
}
wb=DVector<uint8_t>::Write();
Image img(texture->alloc_width,texture->alloc_height,texture->mipmaps,fmt,data);
if (texture->format<Image::FORMAT_INDEXED && (texture->alloc_width!=texture->width || texture->alloc_height!=texture->height))
img.resize(texture->width,texture->height);
return img;
#endif
}
void RasterizerGLES1::texture_set_flags(RID p_texture,uint32_t p_flags) {
Texture *texture = texture_owner.get( p_texture );
ERR_FAIL_COND(!texture);
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
uint32_t cube = texture->flags & VS::TEXTURE_FLAG_CUBEMAP;
texture->flags=p_flags|cube; // can't remove a cube from being a cube
bool force_clamp_to_edge = !(p_flags&VS::TEXTURE_FLAG_MIPMAPS) && (nearest_power_of_2(texture->alloc_height)!=texture->alloc_height || nearest_power_of_2(texture->alloc_width)!=texture->alloc_width);
if (!force_clamp_to_edge && texture->flags&VS::TEXTURE_FLAG_REPEAT) {
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf( texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameterf( texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
}
if (texture->flags&VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_LINEAR); // Linear Filtering
if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS)
glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_LINEAR);
else
glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR); // Linear Filtering
} else {
glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_NEAREST); // nearest
}
}
uint32_t RasterizerGLES1::texture_get_flags(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,0);
return texture->flags;
}
Image::Format RasterizerGLES1::texture_get_format(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,Image::FORMAT_GRAYSCALE);
return texture->format;
}
uint32_t RasterizerGLES1::texture_get_width(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,0);
return texture->width;
}
uint32_t RasterizerGLES1::texture_get_height(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,0);
return texture->height;
}
bool RasterizerGLES1::texture_has_alpha(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,0);
return false;
}
void RasterizerGLES1::texture_set_size_override(RID p_texture,int p_width, int p_height) {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(p_width<=0 || p_width>4096);
ERR_FAIL_COND(p_height<=0 || p_height>4096);
//real texture size is in alloc width and height
texture->width=p_width;
texture->height=p_height;
}
void RasterizerGLES1::texture_set_reload_hook(RID p_texture,ObjectID p_owner,const StringName& p_function) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
texture->reloader=p_owner;
texture->reloader_func=p_function;
if (use_reload_hooks && p_owner && keep_copies) {
for(int i=0;i<6;i++)
texture->image[i]=Image();
}
}
/* SHADER API */
/* SHADER API */
RID RasterizerGLES1::shader_create(VS::ShaderMode p_mode) {
Shader *shader = memnew( Shader );
shader->mode=p_mode;
shader->valid=false;
shader->has_alpha=false;
shader->fragment_line=0;
shader->vertex_line=0;
RID rid = shader_owner.make_rid(shader);
shader_set_mode(rid,p_mode);
// _shader_make_dirty(shader);
return rid;
}
void RasterizerGLES1::shader_set_mode(RID p_shader,VS::ShaderMode p_mode) {
ERR_FAIL_INDEX(p_mode,3);
Shader *shader=shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
// if (shader->custom_code_id && p_mode==shader->mode)
// return;
shader->mode=p_mode;
}
VS::ShaderMode RasterizerGLES1::shader_get_mode(RID p_shader) const {
Shader *shader=shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader,VS::SHADER_MATERIAL);
return shader->mode;
}
void RasterizerGLES1::shader_set_code(RID p_shader, const String& p_vertex, const String& p_fragment,int p_vertex_ofs,int p_fragment_ofs) {
Shader *shader=shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
#ifdef DEBUG_ENABLED
if (shader->vertex_code==p_vertex && shader->fragment_code==p_fragment)
return;
#endif
shader->fragment_code=p_fragment;
shader->vertex_code=p_vertex;
shader->fragment_line=p_fragment_ofs;
shader->vertex_line=p_vertex_ofs;
}
String RasterizerGLES1::shader_get_vertex_code(RID p_shader) const {
Shader *shader=shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader,String());
return shader->vertex_code;
}
String RasterizerGLES1::shader_get_fragment_code(RID p_shader) const {
Shader *shader=shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader,String());
return shader->fragment_code;
}
void RasterizerGLES1::shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const {
Shader *shader=shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
#if 0
if (shader->dirty_list.in_list())
_update_shader(shader); // ok should be not anymore dirty
Map<int,StringName> order;
for(Map<StringName,ShaderLanguage::Uniform>::Element *E=shader->uniforms.front();E;E=E->next()) {
order[E->get().order]=E->key();
}
for(Map<int,StringName>::Element *E=order.front();E;E=E->next()) {
PropertyInfo pi;
ShaderLanguage::Uniform &u=shader->uniforms[E->get()];
pi.name=E->get();
switch(u.type) {
case ShaderLanguage::TYPE_VOID:
case ShaderLanguage::TYPE_BOOL:
case ShaderLanguage::TYPE_FLOAT:
case ShaderLanguage::TYPE_VEC2:
case ShaderLanguage::TYPE_VEC3:
case ShaderLanguage::TYPE_MAT3:
case ShaderLanguage::TYPE_MAT4:
case ShaderLanguage::TYPE_VEC4:
pi.type=u.default_value.get_type();
break;
case ShaderLanguage::TYPE_TEXTURE:
pi.type=Variant::_RID;
pi.hint=PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string="Texture";
break;
case ShaderLanguage::TYPE_CUBEMAP:
pi.type=Variant::_RID;
pi.hint=PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string="Texture";
break;
};
p_param_list->push_back(pi);
}
#endif
}
/* COMMON MATERIAL API */
RID RasterizerGLES1::material_create() {
return material_owner.make_rid( memnew( Material ) );
}
void RasterizerGLES1::material_set_shader(RID p_material, RID p_shader) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->shader=p_shader;
}
RID RasterizerGLES1::material_get_shader(RID p_material) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material,RID());
return material->shader;
}
#if 0
void RasterizerGLES1::_material_check_alpha(Material *p_material) {
p_material->has_alpha=false;
Color diffuse=p_material->parameters[VS::FIXED_MATERIAL_PARAM_DIFFUSE];
if (diffuse.a<0.98) {
p_material->has_alpha=true;
return;
}
if (p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE].is_valid()) {
Texture *tex = texture_owner.get(p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE]);
if (!tex)
return;
if (tex->has_alpha) {
p_material->has_alpha=true;
return;
}
}
}
#endif
void RasterizerGLES1::material_set_param(RID p_material, const StringName& p_param, const Variant& p_value) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
if (p_value.get_type()==Variant::NIL)
material->shader_params.erase(p_param);
else
material->shader_params[p_param]=p_value;
}
Variant RasterizerGLES1::material_get_param(RID p_material, const StringName& p_param) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material,Variant());
if (material->shader_params.has(p_param))
return material->shader_params[p_param];
else
return Variant();
}
void RasterizerGLES1::material_set_flag(RID p_material, VS::MaterialFlag p_flag,bool p_enabled) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
ERR_FAIL_INDEX(p_flag,VS::MATERIAL_FLAG_MAX);
material->flags[p_flag]=p_enabled;
}
bool RasterizerGLES1::material_get_flag(RID p_material,VS::MaterialFlag p_flag) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material,false);
ERR_FAIL_INDEX_V(p_flag,VS::MATERIAL_FLAG_MAX,false);
return material->flags[p_flag];
}
void RasterizerGLES1::material_set_hint(RID p_material, VS::MaterialHint p_hint,bool p_enabled) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
ERR_FAIL_INDEX(p_hint,VS::MATERIAL_HINT_MAX);
material->hints[p_hint]=p_enabled;
}
bool RasterizerGLES1::material_get_hint(RID p_material,VS::MaterialHint p_hint) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material,false);
ERR_FAIL_INDEX_V(p_hint,VS::MATERIAL_HINT_MAX,false);
return material->hints[p_hint];
}
void RasterizerGLES1::material_set_shade_model(RID p_material, VS::MaterialShadeModel p_model) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->shade_model=p_model;
};
VS::MaterialShadeModel RasterizerGLES1::material_get_shade_model(RID p_material) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material,VS::MATERIAL_SHADE_MODEL_LAMBERT);
return material->shade_model;
};
void RasterizerGLES1::material_set_blend_mode(RID p_material,VS::MaterialBlendMode p_mode) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->blend_mode=p_mode;
}
VS::MaterialBlendMode RasterizerGLES1::material_get_blend_mode(RID p_material) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material,VS::MATERIAL_BLEND_MODE_ADD);
return material->blend_mode;
}
void RasterizerGLES1::material_set_line_width(RID p_material,float p_line_width) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->line_width=p_line_width;
}
float RasterizerGLES1::material_get_line_width(RID p_material) const {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material,0);
return material->line_width;
}
/* FIXED MATERIAL */
RID RasterizerGLES1::fixed_material_create() {
return material_create();
}
void RasterizerGLES1::fixed_material_set_flag(RID p_material, VS::FixedMaterialFlags p_flag, bool p_enabled) {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND(!m);
ERR_FAIL_INDEX(p_flag, 3);
m->fixed_flags[p_flag]=p_enabled;
}
bool RasterizerGLES1::fixed_material_get_flag(RID p_material, VS::FixedMaterialFlags p_flag) const {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND_V(!m,false);
ERR_FAIL_INDEX_V(p_flag,VS::FIXED_MATERIAL_FLAG_MAX, false);
return m->fixed_flags[p_flag];
}
void RasterizerGLES1::fixed_material_set_parameter(RID p_material, VS::FixedMaterialParam p_parameter, const Variant& p_value) {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND(!m);
ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX);
m->parameters[p_parameter] = p_value;
}
Variant RasterizerGLES1::fixed_material_get_parameter(RID p_material,VS::FixedMaterialParam p_parameter) const {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND_V(!m, Variant());
ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, Variant());
return m->parameters[p_parameter];
}
void RasterizerGLES1::fixed_material_set_texture(RID p_material,VS::FixedMaterialParam p_parameter, RID p_texture) {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND(!m);
ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX);
m->textures[p_parameter] = p_texture;
}
RID RasterizerGLES1::fixed_material_get_texture(RID p_material,VS::FixedMaterialParam p_parameter) const {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND_V(!m, RID());
ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, Variant());
return m->textures[p_parameter];
}
void RasterizerGLES1::fixed_material_set_detail_blend_mode(RID p_material,VS::MaterialBlendMode p_mode) {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND(!m);
m->detail_blend_mode = p_mode;
}
VS::MaterialBlendMode RasterizerGLES1::fixed_material_get_detail_blend_mode(RID p_material) const {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND_V(!m, VS::MATERIAL_BLEND_MODE_MIX);
return m->detail_blend_mode;
}
void RasterizerGLES1::fixed_material_set_texcoord_mode(RID p_material,VS::FixedMaterialParam p_parameter, VS::FixedMaterialTexCoordMode p_mode) {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND(!m);
ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX);
ERR_FAIL_INDEX(p_mode,4);
m->texcoord_mode[p_parameter] = p_mode;
}
VS::FixedMaterialTexCoordMode RasterizerGLES1::fixed_material_get_texcoord_mode(RID p_material,VS::FixedMaterialParam p_parameter) const {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND_V(!m, VS::FIXED_MATERIAL_TEXCOORD_UV);
ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, VS::FIXED_MATERIAL_TEXCOORD_UV);
return m->texcoord_mode[p_parameter]; // for now
}
void RasterizerGLES1::fixed_material_set_uv_transform(RID p_material,const Transform& p_transform) {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND(!m);
m->uv_transform = p_transform;
}
Transform RasterizerGLES1::fixed_material_get_uv_transform(RID p_material) const {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND_V(!m, Transform());
return m->uv_transform;
}
void RasterizerGLES1::fixed_material_set_point_size(RID p_material,float p_size) {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND(!m);
m->point_size=p_size;
}
float RasterizerGLES1::fixed_material_get_point_size(RID p_material) const {
const Material *m=material_owner.get( p_material );
ERR_FAIL_COND_V(!m, 0);
return m->point_size;
}
/* MESH API */
RID RasterizerGLES1::mesh_create() {
return mesh_owner.make_rid( memnew( Mesh ) );
}
void RasterizerGLES1::mesh_add_surface(RID p_mesh,VS::PrimitiveType p_primitive,const Array& p_arrays,const Array& p_blend_shapes,bool p_alpha_sort) {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX( p_primitive, VS::PRIMITIVE_MAX );
ERR_FAIL_COND(p_arrays.size()!=VS::ARRAY_MAX);
uint32_t format=0;
// validation
int index_array_len=0;
int array_len=0;
for(int i=0;i<p_arrays.size();i++) {
if (p_arrays[i].get_type()==Variant::NIL)
continue;
format|=(1<<i);
if (i==VS::ARRAY_VERTEX) {
array_len=Vector3Array(p_arrays[i]).size();
ERR_FAIL_COND(array_len==0);
} else if (i==VS::ARRAY_INDEX) {
index_array_len=IntArray(p_arrays[i]).size();
}
}
ERR_FAIL_COND((format&VS::ARRAY_FORMAT_VERTEX)==0); // mandatory
Surface *surface = memnew( Surface );
ERR_FAIL_COND( !surface );
bool use_VBO=true; //glGenBuffersARB!=NULL; // TODO detect if it's in there
if (format&VS::ARRAY_FORMAT_WEIGHTS || mesh->morph_target_count>0) {
use_VBO=false;
}
surface->packed=pack_arrays && use_VBO;
int total_elem_size=0;
for (int i=0;i<VS::ARRAY_MAX;i++) {
Surface::ArrayData&ad=surface->array[i];
ad.size=0;
ad.ofs=0;
int elem_size=0;
int elem_count=0;
bool valid_local=true;
GLenum datatype;
bool normalize=false;
bool bind=false;
if (!(format&(1<<i))) // no array
continue;
switch(i) {
case VS::ARRAY_VERTEX: {
if (surface->packed) {
elem_size=3*sizeof(int16_t); // vertex
datatype=GL_SHORT;
normalize=true;
} else {
elem_size=3*sizeof(GLfloat); // vertex
datatype=GL_FLOAT;
}
bind=true;
elem_count=3;
} break;
case VS::ARRAY_NORMAL: {
if (surface->packed) {
elem_size=3*sizeof(int8_t); // vertex
datatype=GL_BYTE;
normalize=true;
} else {
elem_size=3*sizeof(GLfloat); // vertex
datatype=GL_FLOAT;
}
bind=true;
elem_count=3;
} break;
case VS::ARRAY_TANGENT: {
if (surface->packed) {
elem_size=4*sizeof(int8_t); // vertex
datatype=GL_BYTE;
normalize=true;
} else {
elem_size=4*sizeof(GLfloat); // vertex
datatype=GL_FLOAT;
}
bind=true;
elem_count=4;
} break;
case VS::ARRAY_COLOR: {
elem_size=4*sizeof(uint8_t); /* RGBA */
datatype=GL_UNSIGNED_BYTE;
elem_count=4;
bind=true;
normalize=true;
} break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2: {
if (surface->packed) {
elem_size=2*sizeof(int16_t); // vertex
datatype=GL_SHORT;
normalize=true;
} else {
elem_size=2*sizeof(GLfloat); // vertex
datatype=GL_FLOAT;
}
bind=true;
elem_count=2;
} break;
case VS::ARRAY_WEIGHTS: {
elem_size=VS::ARRAY_WEIGHTS_SIZE*sizeof(GLfloat);
elem_count=VS::ARRAY_WEIGHTS_SIZE;
valid_local=false;
datatype=GL_FLOAT;
} break;
case VS::ARRAY_BONES: {
elem_size=VS::ARRAY_WEIGHTS_SIZE*sizeof(GLuint);
elem_count=VS::ARRAY_WEIGHTS_SIZE;
valid_local=false;
datatype=GL_FLOAT;
} break;
case VS::ARRAY_INDEX: {
if (index_array_len<=0) {
ERR_PRINT("index_array_len==NO_INDEX_ARRAY");
break;
}
/* determine wether using 16 or 32 bits indices */
elem_size=2;
datatype=GL_UNSIGNED_SHORT;
/*
if (use_VBO) {
glGenBuffers(1,&surface->index_id);
ERR_FAIL_COND(surface->index_id==0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,surface->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,index_array_len*elem_size,NULL,GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind
} else {
surface->index_array_local = (uint8_t*)memalloc(index_array_len*elem_size);
};
*/
surface->index_array_len=index_array_len; // only way it can exist
ad.ofs=0;
ad.size=elem_size;
continue;
} break;
default: {
ERR_FAIL( );
}
}
ad.ofs=total_elem_size;
ad.size=elem_size;
ad.datatype=datatype;
ad.normalize=normalize;
ad.bind=bind;
ad.count=elem_count;
total_elem_size+=elem_size;
if (valid_local) {
surface->local_stride+=elem_size;
surface->morph_format|=(1<<i);
}
}
surface->stride=total_elem_size;
surface->array_len=array_len;
surface->format=format;
surface->primitive=p_primitive;
surface->configured_format=0;
if (keep_copies) {
surface->data=p_arrays;
surface->morph_data=p_blend_shapes;
}
uint8_t *array_ptr=NULL;
uint8_t *index_array_ptr=NULL;
DVector<uint8_t> array_pre_vbo;
DVector<uint8_t>::Write vaw;
DVector<uint8_t> index_array_pre_vbo;
DVector<uint8_t>::Write iaw;
/* create pointers */
if (use_VBO) {
array_pre_vbo.resize(surface->array_len*surface->stride);
vaw = array_pre_vbo.write();
array_ptr=vaw.ptr();
if (surface->index_array_len) {
index_array_pre_vbo.resize(surface->index_array_len*surface->array[VS::ARRAY_INDEX].size);
iaw = index_array_pre_vbo.write();
index_array_ptr=iaw.ptr();
}
} else {
surface->array_local = (uint8_t*)memalloc(surface->array_len*surface->stride);
array_ptr=(uint8_t*)surface->array_local;
if (surface->index_array_len) {
surface->index_array_local = (uint8_t*)memalloc(index_array_len*surface->array[VS::ARRAY_INDEX].size);
index_array_ptr=(uint8_t*)surface->index_array_local;
}
}
_surface_set_arrays(surface,array_ptr,index_array_ptr,p_arrays,true);
/* create buffers!! */
if (use_VBO) {
glGenBuffers(1,&surface->vertex_id);
ERR_FAIL_COND(surface->vertex_id==0);
glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id);
glBufferData(GL_ARRAY_BUFFER,surface->array_len*surface->stride,array_ptr,GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER,0); //unbind
if (surface->index_array_len) {
glGenBuffers(1,&surface->index_id);
ERR_FAIL_COND(surface->index_id==0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,surface->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,index_array_len*surface->array[VS::ARRAY_INDEX].size,index_array_ptr,GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind
}
}
mesh->surfaces.push_back(surface);
}
Error RasterizerGLES1::_surface_set_arrays(Surface *p_surface, uint8_t *p_mem,uint8_t *p_index_mem,const Array& p_arrays,bool p_main) {
uint32_t stride = p_main ? p_surface->stride : p_surface->local_stride;
for(int ai=0;ai<VS::ARRAY_MAX;ai++) {
if (ai>=p_arrays.size())
break;
if (p_arrays[ai].get_type()==Variant::NIL)
continue;
Surface::ArrayData &a=p_surface->array[ai];
switch(ai) {
case VS::ARRAY_VERTEX: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER );
DVector<Vector3> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_surface->array_len, ERR_INVALID_PARAMETER );
DVector<Vector3>::Read read = array.read();
const Vector3* src=read.ptr();
// setting vertices means regenerating the AABB
AABB aabb;
float scale=1;
float max=0;
for (int i=0;i<p_surface->array_len;i++) {
GLfloat vector[3]={ src[i].x, src[i].y, src[i].z };
copymem(&p_mem[a.ofs+i*stride], vector, a.size);
if (i==0) {
aabb=AABB(src[i],Vector3());
} else {
aabb.expand_to( src[i] );
}
}
if (p_main) {
p_surface->aabb=aabb;
p_surface->vertex_scale=scale;
}
} break;
case VS::ARRAY_NORMAL: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER );
DVector<Vector3> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_surface->array_len, ERR_INVALID_PARAMETER );
DVector<Vector3>::Read read = array.read();
const Vector3* src=read.ptr();
// setting vertices means regenerating the AABB
for (int i=0;i<p_surface->array_len;i++) {
GLfloat vector[3]={ src[i].x, src[i].y, src[i].z };
copymem(&p_mem[a.ofs+i*stride], vector, a.size);
}
} break;
case VS::ARRAY_TANGENT: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER );
DVector<real_t> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_surface->array_len*4, ERR_INVALID_PARAMETER );
DVector<real_t>::Read read = array.read();
const real_t* src = read.ptr();
for (int i=0;i<p_surface->array_len;i++) {
GLfloat xyzw[4]={
src[i*4+0],
src[i*4+1],
src[i*4+2],
src[i*4+3]
};
copymem(&p_mem[a.ofs+i*stride], xyzw, a.size);
}
} break;
case VS::ARRAY_COLOR: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::COLOR_ARRAY, ERR_INVALID_PARAMETER );
DVector<Color> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_surface->array_len, ERR_INVALID_PARAMETER );
DVector<Color>::Read read = array.read();
const Color* src = read.ptr();
bool alpha=false;
for (int i=0;i<p_surface->array_len;i++) {
if (src[i].a<0.98) // tolerate alpha a bit, for crappy exporters
alpha=true;
uint8_t colors[4];
for(int j=0;j<4;j++) {
colors[j]=CLAMP( int((src[i][j])*255.0), 0,255 );
}
copymem(&p_mem[a.ofs+i*stride], colors, a.size);
}
if (p_main)
p_surface->has_alpha=alpha;
} break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY && p_arrays[ai].get_type() != Variant::VECTOR2_ARRAY, ERR_INVALID_PARAMETER );
DVector<Vector2> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_surface->array_len , ERR_INVALID_PARAMETER);
DVector<Vector2>::Read read = array.read();
const Vector2 * src=read.ptr();
float scale=1.0;
for (int i=0;i<p_surface->array_len;i++) {
GLfloat uv[2]={ src[i].x , src[i].y };
copymem(&p_mem[a.ofs+i*stride], uv, a.size);
}
if (p_main) {
if (ai==VS::ARRAY_TEX_UV) {
p_surface->uv_scale=scale;
}
if (ai==VS::ARRAY_TEX_UV2) {
p_surface->uv2_scale=scale;
}
}
} break;
case VS::ARRAY_BONES:
case VS::ARRAY_WEIGHTS: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER );
DVector<real_t> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_surface->array_len*VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER );
DVector<real_t>::Read read = array.read();
const real_t * src = read.ptr();
p_surface->max_bone=0;
for (int i=0;i<p_surface->array_len;i++) {
GLfloat data[VS::ARRAY_WEIGHTS_SIZE];
for (int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
data[j]=src[i*VS::ARRAY_WEIGHTS_SIZE+j];
if (ai==VS::ARRAY_BONES) {
p_surface->max_bone=MAX(data[j],p_surface->max_bone);
}
}
copymem(&p_mem[a.ofs+i*stride], data, a.size);
}
} break;
case VS::ARRAY_INDEX: {
ERR_FAIL_COND_V( p_surface->index_array_len<=0, ERR_INVALID_DATA );
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::INT_ARRAY, ERR_INVALID_PARAMETER );
DVector<int> indices = p_arrays[ai];
ERR_FAIL_COND_V( indices.size() == 0, ERR_INVALID_PARAMETER );
ERR_FAIL_COND_V( indices.size() != p_surface->index_array_len, ERR_INVALID_PARAMETER );
/* determine wether using 16 or 32 bits indices */
DVector<int>::Read read = indices.read();
const int *src=read.ptr();
for (int i=0;i<p_surface->index_array_len;i++) {
if (a.size==2) {
uint16_t v=src[i];
copymem(&p_index_mem[i*a.size], &v, a.size);
} else {
uint32_t v=src[i];
copymem(&p_index_mem[i*a.size], &v, a.size);
}
}
} break;
default: { ERR_FAIL_V(ERR_INVALID_PARAMETER);}
}
p_surface->configured_format|=(1<<ai);
}
return OK;
}
void RasterizerGLES1::mesh_add_custom_surface(RID p_mesh,const Variant& p_dat) {
ERR_EXPLAIN("OpenGL Rasterizer does not support custom surfaces. Running on wrong platform?");
ERR_FAIL_V();
}
Array RasterizerGLES1::mesh_get_surface_arrays(RID p_mesh,int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,Array());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Array() );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, Array() );
return surface->data;
}
Array RasterizerGLES1::mesh_get_surface_morph_arrays(RID p_mesh,int p_surface) const{
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,Array());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Array() );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, Array() );
return surface->morph_data;
}
void RasterizerGLES1::mesh_set_morph_target_count(RID p_mesh,int p_amount) {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
ERR_FAIL_COND( mesh->surfaces.size()!=0 );
mesh->morph_target_count=p_amount;
}
int RasterizerGLES1::mesh_get_morph_target_count(RID p_mesh) const{
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,-1);
return mesh->morph_target_count;
}
void RasterizerGLES1::mesh_set_morph_target_mode(RID p_mesh,VS::MorphTargetMode p_mode) {
ERR_FAIL_INDEX(p_mode,2);
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
mesh->morph_target_mode=p_mode;
}
VS::MorphTargetMode RasterizerGLES1::mesh_get_morph_target_mode(RID p_mesh) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,VS::MORPH_MODE_NORMALIZED);
return mesh->morph_target_mode;
}
void RasterizerGLES1::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material,bool p_owned) {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_surface, mesh->surfaces.size() );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND( !surface);
if (surface->material_owned && surface->material.is_valid())
free(surface->material);
surface->material_owned=p_owned;
surface->material=p_material;
}
RID RasterizerGLES1::mesh_surface_get_material(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,RID());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), RID() );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, RID() );
return surface->material;
}
int RasterizerGLES1::mesh_surface_get_array_len(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,-1);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1 );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, -1 );
return surface->array_len;
}
int RasterizerGLES1::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,-1);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1 );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, -1 );
return surface->index_array_len;
}
uint32_t RasterizerGLES1::mesh_surface_get_format(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,0);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0 );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, 0 );
return surface->format;
}
VS::PrimitiveType RasterizerGLES1::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,VS::PRIMITIVE_POINTS);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), VS::PRIMITIVE_POINTS );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, VS::PRIMITIVE_POINTS );
return surface->primitive;
}
void RasterizerGLES1::mesh_remove_surface(RID p_mesh,int p_index) {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_index, mesh->surfaces.size() );
Surface *surface = mesh->surfaces[p_index];
ERR_FAIL_COND( !surface);
if (mesh->morph_target_count) {
for(int i=0;i<mesh->morph_target_count;i++)
memfree(surface->morph_targets_local[i].array);
memfree( surface->morph_targets_local );
}
memdelete( mesh->surfaces[p_index] );
mesh->surfaces.remove(p_index);
}
int RasterizerGLES1::mesh_get_surface_count(RID p_mesh) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,-1);
return mesh->surfaces.size();
}
AABB RasterizerGLES1::mesh_get_aabb(RID p_mesh) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,AABB());
AABB aabb;
for (int i=0;i<mesh->surfaces.size();i++) {
if (i==0)
aabb=mesh->surfaces[i]->aabb;
else
aabb.merge_with(mesh->surfaces[i]->aabb);
}
return aabb;
}
/* MULTIMESH API */
RID RasterizerGLES1::multimesh_create() {
return multimesh_owner.make_rid( memnew( MultiMesh ));
}
void RasterizerGLES1::multimesh_set_instance_count(RID p_multimesh,int p_count) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
multimesh->elements.clear(); // make sure to delete everything, so it "fails" in all implementations
multimesh->elements.resize(p_count);
}
int RasterizerGLES1::multimesh_get_instance_count(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh,-1);
return multimesh->elements.size();
}
void RasterizerGLES1::multimesh_set_mesh(RID p_multimesh,RID p_mesh) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
multimesh->mesh=p_mesh;
}
void RasterizerGLES1::multimesh_set_aabb(RID p_multimesh,const AABB& p_aabb) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
multimesh->aabb=p_aabb;
}
void RasterizerGLES1::multimesh_instance_set_transform(RID p_multimesh,int p_index,const Transform& p_transform) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index,multimesh->elements.size());
MultiMesh::Element &e=multimesh->elements[p_index];
e.matrix[0]=p_transform.basis.elements[0][0];
e.matrix[1]=p_transform.basis.elements[1][0];
e.matrix[2]=p_transform.basis.elements[2][0];
e.matrix[3]=0;
e.matrix[4]=p_transform.basis.elements[0][1];
e.matrix[5]=p_transform.basis.elements[1][1];
e.matrix[6]=p_transform.basis.elements[2][1];
e.matrix[7]=0;
e.matrix[8]=p_transform.basis.elements[0][2];
e.matrix[9]=p_transform.basis.elements[1][2];
e.matrix[10]=p_transform.basis.elements[2][2];
e.matrix[11]=0;
e.matrix[12]=p_transform.origin.x;
e.matrix[13]=p_transform.origin.y;
e.matrix[14]=p_transform.origin.z;
e.matrix[15]=1;
}
void RasterizerGLES1::multimesh_instance_set_color(RID p_multimesh,int p_index,const Color& p_color) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh)
ERR_FAIL_INDEX(p_index,multimesh->elements.size());
MultiMesh::Element &e=multimesh->elements[p_index];
e.color[0]=CLAMP(p_color.r*255,0,255);
e.color[1]=CLAMP(p_color.g*255,0,255);
e.color[2]=CLAMP(p_color.b*255,0,255);
e.color[3]=CLAMP(p_color.a*255,0,255);
}
RID RasterizerGLES1::multimesh_get_mesh(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh,RID());
return multimesh->mesh;
}
AABB RasterizerGLES1::multimesh_get_aabb(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh,AABB());
return multimesh->aabb;
}
Transform RasterizerGLES1::multimesh_instance_get_transform(RID p_multimesh,int p_index) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh,Transform());
ERR_FAIL_INDEX_V(p_index,multimesh->elements.size(),Transform());
MultiMesh::Element &e=multimesh->elements[p_index];
Transform tr;
tr.basis.elements[0][0]=e.matrix[0];
tr.basis.elements[1][0]=e.matrix[1];
tr.basis.elements[2][0]=e.matrix[2];
tr.basis.elements[0][1]=e.matrix[4];
tr.basis.elements[1][1]=e.matrix[5];
tr.basis.elements[2][1]=e.matrix[6];
tr.basis.elements[0][2]=e.matrix[8];
tr.basis.elements[1][2]=e.matrix[9];
tr.basis.elements[2][2]=e.matrix[10];
tr.origin.x=e.matrix[12];
tr.origin.y=e.matrix[13];
tr.origin.z=e.matrix[14];
return tr;
}
Color RasterizerGLES1::multimesh_instance_get_color(RID p_multimesh,int p_index) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh,Color());
ERR_FAIL_INDEX_V(p_index,multimesh->elements.size(),Color());
MultiMesh::Element &e=multimesh->elements[p_index];
Color c;
c.r=e.color[0]/255.0;
c.g=e.color[1]/255.0;
c.b=e.color[2]/255.0;
c.a=e.color[3]/255.0;
return c;
}
void RasterizerGLES1::multimesh_set_visible_instances(RID p_multimesh,int p_visible) {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
multimesh->visible=p_visible;
}
int RasterizerGLES1::multimesh_get_visible_instances(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND_V(!multimesh,-1);
return multimesh->visible;
}
/* PARTICLES API */
RID RasterizerGLES1::particles_create() {
Particles *particles = memnew( Particles );
ERR_FAIL_COND_V(!particles,RID());
return particles_owner.make_rid(particles);
}
void RasterizerGLES1::particles_set_amount(RID p_particles, int p_amount) {
ERR_FAIL_COND(p_amount<1);
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.amount=p_amount;
}
int RasterizerGLES1::particles_get_amount(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,-1);
return particles->data.amount;
}
void RasterizerGLES1::particles_set_emitting(RID p_particles, bool p_emitting) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.emitting=p_emitting;;
}
bool RasterizerGLES1::particles_is_emitting(RID p_particles) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,false);
return particles->data.emitting;
}
void RasterizerGLES1::particles_set_visibility_aabb(RID p_particles, const AABB& p_visibility) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.visibility_aabb=p_visibility;
}
void RasterizerGLES1::particles_set_emission_half_extents(RID p_particles, const Vector3& p_half_extents) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.emission_half_extents=p_half_extents;
}
Vector3 RasterizerGLES1::particles_get_emission_half_extents(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,Vector3());
return particles->data.emission_half_extents;
}
void RasterizerGLES1::particles_set_emission_base_velocity(RID p_particles, const Vector3& p_base_velocity) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.emission_base_velocity=p_base_velocity;
}
Vector3 RasterizerGLES1::particles_get_emission_base_velocity(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,Vector3());
return particles->data.emission_base_velocity;
}
void RasterizerGLES1::particles_set_emission_points(RID p_particles, const DVector<Vector3>& p_points) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.emission_points=p_points;
}
DVector<Vector3> RasterizerGLES1::particles_get_emission_points(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,DVector<Vector3>());
return particles->data.emission_points;
}
void RasterizerGLES1::particles_set_gravity_normal(RID p_particles, const Vector3& p_normal) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.gravity_normal=p_normal;
}
Vector3 RasterizerGLES1::particles_get_gravity_normal(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,Vector3());
return particles->data.gravity_normal;
}
AABB RasterizerGLES1::particles_get_visibility_aabb(RID p_particles) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,AABB());
return particles->data.visibility_aabb;
}
void RasterizerGLES1::particles_set_variable(RID p_particles, VS::ParticleVariable p_variable,float p_value) {
ERR_FAIL_INDEX(p_variable,VS::PARTICLE_VAR_MAX);
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.particle_vars[p_variable]=p_value;
}
float RasterizerGLES1::particles_get_variable(RID p_particles, VS::ParticleVariable p_variable) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,-1);
return particles->data.particle_vars[p_variable];
}
void RasterizerGLES1::particles_set_randomness(RID p_particles, VS::ParticleVariable p_variable,float p_randomness) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.particle_randomness[p_variable]=p_randomness;
}
float RasterizerGLES1::particles_get_randomness(RID p_particles, VS::ParticleVariable p_variable) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,-1);
return particles->data.particle_randomness[p_variable];
}
void RasterizerGLES1::particles_set_color_phases(RID p_particles, int p_phases) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
ERR_FAIL_COND( p_phases<0 || p_phases>VS::MAX_PARTICLE_COLOR_PHASES );
particles->data.color_phase_count=p_phases;
}
int RasterizerGLES1::particles_get_color_phases(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,-1);
return particles->data.color_phase_count;
}
void RasterizerGLES1::particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos) {
ERR_FAIL_INDEX(p_phase, VS::MAX_PARTICLE_COLOR_PHASES);
if (p_pos<0.0)
p_pos=0.0;
if (p_pos>1.0)
p_pos=1.0;
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.color_phases[p_phase].pos=p_pos;
}
float RasterizerGLES1::particles_get_color_phase_pos(RID p_particles, int p_phase) const {
ERR_FAIL_INDEX_V(p_phase, VS::MAX_PARTICLE_COLOR_PHASES, -1.0);
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,-1);
return particles->data.color_phases[p_phase].pos;
}
void RasterizerGLES1::particles_set_color_phase_color(RID p_particles, int p_phase, const Color& p_color) {
ERR_FAIL_INDEX(p_phase, VS::MAX_PARTICLE_COLOR_PHASES);
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.color_phases[p_phase].color=p_color;
//update alpha
particles->has_alpha=false;
for(int i=0;i<VS::MAX_PARTICLE_COLOR_PHASES;i++) {
if (particles->data.color_phases[i].color.a<0.99)
particles->has_alpha=true;
}
}
Color RasterizerGLES1::particles_get_color_phase_color(RID p_particles, int p_phase) const {
ERR_FAIL_INDEX_V(p_phase, VS::MAX_PARTICLE_COLOR_PHASES, Color());
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,Color());
return particles->data.color_phases[p_phase].color;
}
void RasterizerGLES1::particles_set_attractors(RID p_particles, int p_attractors) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
ERR_FAIL_COND( p_attractors<0 || p_attractors>VisualServer::MAX_PARTICLE_ATTRACTORS );
particles->data.attractor_count=p_attractors;
}
int RasterizerGLES1::particles_get_attractors(RID p_particles) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,-1);
return particles->data.attractor_count;
}
void RasterizerGLES1::particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3& p_pos) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
ERR_FAIL_INDEX(p_attractor,particles->data.attractor_count);
particles->data.attractors[p_attractor].pos=p_pos;;
}
Vector3 RasterizerGLES1::particles_get_attractor_pos(RID p_particles,int p_attractor) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,Vector3());
ERR_FAIL_INDEX_V(p_attractor,particles->data.attractor_count,Vector3());
return particles->data.attractors[p_attractor].pos;
}
void RasterizerGLES1::particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
ERR_FAIL_INDEX(p_attractor,particles->data.attractor_count);
particles->data.attractors[p_attractor].force=p_force;
}
float RasterizerGLES1::particles_get_attractor_strength(RID p_particles,int p_attractor) const {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,0);
ERR_FAIL_INDEX_V(p_attractor,particles->data.attractor_count,0);
return particles->data.attractors[p_attractor].force;
}
void RasterizerGLES1::particles_set_material(RID p_particles, RID p_material,bool p_owned) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
if (particles->material_owned && particles->material.is_valid())
free(particles->material);
particles->material_owned=p_owned;
particles->material=p_material;
}
RID RasterizerGLES1::particles_get_material(RID p_particles) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,RID());
return particles->material;
}
void RasterizerGLES1::particles_set_use_local_coordinates(RID p_particles, bool p_enable) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.local_coordinates=p_enable;
}
bool RasterizerGLES1::particles_is_using_local_coordinates(RID p_particles) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,false);
return particles->data.local_coordinates;
}
bool RasterizerGLES1::particles_has_height_from_velocity(RID p_particles) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,false);
return particles->data.height_from_velocity;
}
void RasterizerGLES1::particles_set_height_from_velocity(RID p_particles, bool p_enable) {
Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND(!particles);
particles->data.height_from_velocity=p_enable;
}
AABB RasterizerGLES1::particles_get_aabb(RID p_particles) const {
const Particles* particles = particles_owner.get( p_particles );
ERR_FAIL_COND_V(!particles,AABB());
return particles->data.visibility_aabb;
}
/* SKELETON API */
RID RasterizerGLES1::skeleton_create() {
Skeleton *skeleton = memnew( Skeleton );
ERR_FAIL_COND_V(!skeleton,RID());
return skeleton_owner.make_rid( skeleton );
}
void RasterizerGLES1::skeleton_resize(RID p_skeleton,int p_bones) {
Skeleton *skeleton = skeleton_owner.get( p_skeleton );
ERR_FAIL_COND(!skeleton);
if (p_bones == skeleton->bones.size()) {
return;
};
skeleton->bones.resize(p_bones);
}
int RasterizerGLES1::skeleton_get_bone_count(RID p_skeleton) const {
Skeleton *skeleton = skeleton_owner.get( p_skeleton );
ERR_FAIL_COND_V(!skeleton, -1);
return skeleton->bones.size();
}
void RasterizerGLES1::skeleton_bone_set_transform(RID p_skeleton,int p_bone, const Transform& p_transform) {
Skeleton *skeleton = skeleton_owner.get( p_skeleton );
ERR_FAIL_COND(!skeleton);
ERR_FAIL_INDEX( p_bone, skeleton->bones.size() );
skeleton->bones[p_bone] = p_transform;
}
Transform RasterizerGLES1::skeleton_bone_get_transform(RID p_skeleton,int p_bone) {
Skeleton *skeleton = skeleton_owner.get( p_skeleton );
ERR_FAIL_COND_V(!skeleton, Transform());
ERR_FAIL_INDEX_V( p_bone, skeleton->bones.size(), Transform() );
// something
return skeleton->bones[p_bone];
}
/* LIGHT API */
RID RasterizerGLES1::light_create(VS::LightType p_type) {
Light *light = memnew( Light );
light->type=p_type;
return light_owner.make_rid(light);
}
VS::LightType RasterizerGLES1::light_get_type(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light,VS::LIGHT_OMNI);
return light->type;
}
void RasterizerGLES1::light_set_color(RID p_light,VS::LightColor p_type, const Color& p_color) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX( p_type, 3 );
light->colors[p_type]=p_color;
}
Color RasterizerGLES1::light_get_color(RID p_light,VS::LightColor p_type) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, Color());
ERR_FAIL_INDEX_V( p_type, 3, Color() );
return light->colors[p_type];
}
void RasterizerGLES1::light_set_shadow(RID p_light,bool p_enabled) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->shadow_enabled=p_enabled;
}
bool RasterizerGLES1::light_has_shadow(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light,false);
return light->shadow_enabled;
}
void RasterizerGLES1::light_set_volumetric(RID p_light,bool p_enabled) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->volumetric_enabled=p_enabled;
}
bool RasterizerGLES1::light_is_volumetric(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light,false);
return light->volumetric_enabled;
}
void RasterizerGLES1::light_set_projector(RID p_light,RID p_texture) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->projector=p_texture;
}
RID RasterizerGLES1::light_get_projector(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light,RID());
return light->projector;
}
void RasterizerGLES1::light_set_var(RID p_light, VS::LightParam p_var, float p_value) {
Light * light = light_owner.get( p_light );
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX( p_var, VS::LIGHT_PARAM_MAX );
light->vars[p_var]=p_value;
}
float RasterizerGLES1::light_get_var(RID p_light, VS::LightParam p_var) const {
Light * light = light_owner.get( p_light );
ERR_FAIL_COND_V(!light,0);
ERR_FAIL_INDEX_V( p_var, VS::LIGHT_PARAM_MAX,0 );
return light->vars[p_var];
}
void RasterizerGLES1::light_set_operator(RID p_light,VS::LightOp p_op) {
Light * light = light_owner.get( p_light );
ERR_FAIL_COND(!light);
};
VS::LightOp RasterizerGLES1::light_get_operator(RID p_light) const {
return VS::LightOp(0);
};
void RasterizerGLES1::light_omni_set_shadow_mode(RID p_light,VS::LightOmniShadowMode p_mode) {
}
VS::LightOmniShadowMode RasterizerGLES1::light_omni_get_shadow_mode(RID p_light) const{
return VS::LightOmniShadowMode(0);
}
void RasterizerGLES1::light_directional_set_shadow_mode(RID p_light,VS::LightDirectionalShadowMode p_mode) {
}
VS::LightDirectionalShadowMode RasterizerGLES1::light_directional_get_shadow_mode(RID p_light) const {
return VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL;
}
void RasterizerGLES1::light_directional_set_shadow_param(RID p_light,VS::LightDirectionalShadowParam p_param, float p_value) {
}
float RasterizerGLES1::light_directional_get_shadow_param(RID p_light,VS::LightDirectionalShadowParam p_param) const {
return 0;
}
AABB RasterizerGLES1::light_get_aabb(RID p_light) const {
Light *light = light_owner.get( p_light );
ERR_FAIL_COND_V(!light,AABB());
switch( light->type ) {
case VS::LIGHT_SPOT: {
float len=light->vars[VS::LIGHT_PARAM_RADIUS];
float size=Math::tan(Math::deg2rad(light->vars[VS::LIGHT_PARAM_SPOT_ANGLE]))*len;
return AABB( Vector3( -size,-size,-len ), Vector3( size*2, size*2, len ) );
} break;
case VS::LIGHT_OMNI: {
float r = light->vars[VS::LIGHT_PARAM_RADIUS];
return AABB( -Vector3(r,r,r), Vector3(r,r,r)*2 );
} break;
case VS::LIGHT_DIRECTIONAL: {
return AABB();
} break;
default: {}
}
ERR_FAIL_V( AABB() );
}
RID RasterizerGLES1::light_instance_create(RID p_light) {
Light *light = light_owner.get( p_light );
ERR_FAIL_COND_V(!light, RID());
LightInstance *light_instance = memnew( LightInstance );
light_instance->light=p_light;
light_instance->base=light;
light_instance->last_pass=0;
return light_instance_owner.make_rid( light_instance );
}
void RasterizerGLES1::light_instance_set_transform(RID p_light_instance,const Transform& p_transform) {
LightInstance *lighti = light_instance_owner.get( p_light_instance );
ERR_FAIL_COND(!lighti);
lighti->transform=p_transform;
}
bool RasterizerGLES1::light_instance_has_shadow(RID p_light_instance) const {
return false;
/*
LightInstance *lighti = light_instance_owner.get( p_light_instance );
ERR_FAIL_COND_V(!lighti, false);
if (!lighti->base->shadow_enabled)
return false;
if (lighti->base->type==VS::LIGHT_DIRECTIONAL) {
if (lighti->shadow_pass!=scene_pass)
return false;
} else {
if (lighti->shadow_pass!=frame)
return false;
}*/
//return !lighti->shadow_buffers.empty();
}
bool RasterizerGLES1::light_instance_assign_shadow(RID p_light_instance) {
return false;
}
Rasterizer::ShadowType RasterizerGLES1::light_instance_get_shadow_type(RID p_light_instance) const {
LightInstance *lighti = light_instance_owner.get( p_light_instance );
ERR_FAIL_COND_V(!lighti,Rasterizer::SHADOW_NONE);
switch(lighti->base->type) {
case VS::LIGHT_DIRECTIONAL: return SHADOW_PSM; break;
case VS::LIGHT_OMNI: return SHADOW_DUAL_PARABOLOID; break;
case VS::LIGHT_SPOT: return SHADOW_SIMPLE; break;
}
return Rasterizer::SHADOW_NONE;
}
Rasterizer::ShadowType RasterizerGLES1::light_instance_get_shadow_type(RID p_light_instance,bool p_far) const {
return SHADOW_NONE;
}
void RasterizerGLES1::light_instance_set_shadow_transform(RID p_light_instance, int p_index, const CameraMatrix& p_camera, const Transform& p_transform, float p_split_near,float p_split_far) {
}
int RasterizerGLES1::light_instance_get_shadow_passes(RID p_light_instance) const {
return 0;
}
void RasterizerGLES1::light_instance_set_custom_transform(RID p_light_instance, int p_index, const CameraMatrix& p_camera, const Transform& p_transform, float p_split_near,float p_split_far) {
LightInstance *lighti = light_instance_owner.get( p_light_instance );
ERR_FAIL_COND(!lighti);
ERR_FAIL_COND(lighti->base->type!=VS::LIGHT_DIRECTIONAL);
ERR_FAIL_INDEX(p_index,1);
lighti->custom_projection=p_camera;
lighti->custom_transform=p_transform;
}
void RasterizerGLES1::shadow_clear_near() {
}
bool RasterizerGLES1::shadow_allocate_near(RID p_light) {
return false;
}
bool RasterizerGLES1::shadow_allocate_far(RID p_light) {
return false;
}
/* PARTICLES INSTANCE */
RID RasterizerGLES1::particles_instance_create(RID p_particles) {
ERR_FAIL_COND_V(!particles_owner.owns(p_particles),RID());
ParticlesInstance *particles_instance = memnew( ParticlesInstance );
ERR_FAIL_COND_V(!particles_instance, RID() );
particles_instance->particles=p_particles;
return particles_instance_owner.make_rid(particles_instance);
}
void RasterizerGLES1::particles_instance_set_transform(RID p_particles_instance,const Transform& p_transform) {
ParticlesInstance *particles_instance=particles_instance_owner.get(p_particles_instance);
ERR_FAIL_COND(!particles_instance);
particles_instance->transform=p_transform;
}
/* RENDER API */
/* all calls (inside begin/end shadow) are always warranted to be in the following order: */
RID RasterizerGLES1::viewport_data_create() {
return RID();
}
RID RasterizerGLES1::render_target_create(){
return RID();
}
void RasterizerGLES1::render_target_set_size(RID p_render_target, int p_width, int p_height){
}
RID RasterizerGLES1::render_target_get_texture(RID p_render_target) const{
return RID();
}
bool RasterizerGLES1::render_target_renedered_in_frame(RID p_render_target){
return false;
}
void RasterizerGLES1::begin_frame() {
window_size = Size2( OS::get_singleton()->get_video_mode().width, OS::get_singleton()->get_video_mode().height );
//print_line("begin frame - winsize: "+window_size);
double time = (OS::get_singleton()->get_ticks_usec()/1000); // get msec
time/=1000.0; // make secs
time_delta=time-last_time;
last_time=time;
frame++;
clear_viewport(Color(1,0,0.5));
_rinfo.vertex_count=0;
_rinfo.object_count=0;
_rinfo.mat_change_count=0;
_rinfo.shader_change_count=0;
// material_shader.set_uniform_default(MaterialShaderGLES1::SCREENZ_SCALE, Math::fmod(time, 3600.0));
/* nehe ?*/
// glClearColor(0,0,1,1);
// glClear(GL_COLOR_BUFFER_BIT); //should not clear if anything else cleared..
}
void RasterizerGLES1::capture_viewport(Image* r_capture) {
}
void RasterizerGLES1::clear_viewport(const Color& p_color) {
glScissor( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height );
glEnable(GL_SCISSOR_TEST);
glClearColor(p_color.r,p_color.g,p_color.b,p_color.a);
glClear(GL_COLOR_BUFFER_BIT); //should not clear if anything else cleared..
glDisable(GL_SCISSOR_TEST);
};
void RasterizerGLES1::set_viewport(const VS::ViewportRect& p_viewport) {
viewport=p_viewport;
//print_line("viewport: "+itos(p_viewport.x)+","+itos(p_viewport.y)+","+itos(p_viewport.width)+","+itos(p_viewport.height));
glViewport( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height );
}
void RasterizerGLES1::set_render_target(RID p_render_target) {
}
void RasterizerGLES1::begin_scene(RID p_viewport_data,RID p_env,VS::ScenarioDebugMode p_debug) {
opaque_render_list.clear();
alpha_render_list.clear();
light_instance_count=0;
scene_fx = NULL; // p_env.is_valid() ? fx_owner.get(p_env) : NULL;
scene_pass++;
last_light_id=0;
directional_light_count=0;
//set state
glCullFace(GL_FRONT);
cull_front=true;
};
void RasterizerGLES1::begin_shadow_map( RID p_light_instance, int p_shadow_pass ) {
}
void RasterizerGLES1::set_camera(const Transform& p_world,const CameraMatrix& p_projection) {
camera_transform=p_world;
camera_transform_inverse=camera_transform.inverse();
camera_projection=p_projection;
camera_plane = Plane( camera_transform.origin, camera_transform.basis.get_axis(2) );
camera_z_near=camera_projection.get_z_near();
camera_z_far=camera_projection.get_z_far();
camera_projection.get_viewport_size(camera_vp_size.x,camera_vp_size.y);
}
void RasterizerGLES1::add_light( RID p_light_instance ) {
#define LIGHT_FADE_TRESHOLD 0.05
ERR_FAIL_COND( light_instance_count >= MAX_SCENE_LIGHTS );
LightInstance *li = light_instance_owner.get(p_light_instance);
ERR_FAIL_COND(!li);
/* make light hash */
// actually, not really a hash, but helps to sort the lights
// and avoid recompiling redudant shader versions
li->last_pass=scene_pass;
li->sort_key=light_instance_count;
switch(li->base->type) {
case VisualServer::LIGHT_DIRECTIONAL: {
li->light_vector = camera_transform_inverse.basis.xform(li->transform.basis.get_axis(2)).normalized();
if (directional_light_count<MAX_HW_LIGHTS) {
directional_lights[directional_light_count++]=li;
}
} break;
case VisualServer::LIGHT_OMNI: {
float radius = li->base->vars[VisualServer::LIGHT_PARAM_RADIUS];
if (radius==0)
radius=0.0001;
li->linear_att=(1/LIGHT_FADE_TRESHOLD)/radius;
li->light_vector = camera_transform_inverse.xform(li->transform.origin);
} break;
case VisualServer::LIGHT_SPOT: {
float radius = li->base->vars[VisualServer::LIGHT_PARAM_RADIUS];
if (radius==0)
radius=0.0001;
li->linear_att=(1/LIGHT_FADE_TRESHOLD)/radius;
li->light_vector = camera_transform_inverse.xform(li->transform.origin);
li->spot_vector = -camera_transform_inverse.basis.xform(li->transform.basis.get_axis(2)).normalized();
//li->sort_key|=LIGHT_SPOT_BIT; // this way, omnis go first, spots go last and less shader versions are generated
/*
if (li->base->projector.is_valid()) {
float far = li->base->vars[ VS::LIGHT_VAR_RADIUS ];
ERR_FAIL_COND( far<=0 );
float near= far/200.0;
if (near<0.05)
near=0.05;
float angle = li->base->vars[ VS::LIGHT_VAR_SPOT_ANGLE ];
//CameraMatrix proj;
//proj.set_perspective( angle*2.0, 1.0, near, far );
//Transform modelview=Transform(camera_transform_inverse * li->transform).inverse();
//li->projector_mtx= proj * modelview;
}*/
} break;
}
light_instances[light_instance_count++]=li;
}
void RasterizerGLES1::_add_geometry( const Geometry* p_geometry, const InstanceData *p_instance, const Geometry *p_geometry_cmp, const GeometryOwner *p_owner) {
Material *m=NULL;
RID m_src=p_instance->material_override.is_valid() ? p_instance->material_override : p_geometry->material;
if (m_src)
m=material_owner.get( m_src );
if (!m) {
m=material_owner.get( default_material );
}
ERR_FAIL_COND(!m);
if (m->last_pass!=frame) {
m->last_pass=frame;
}
LightInstance *lights[RenderList::MAX_LIGHTS];
int light_count=0;
RenderList *render_list=&opaque_render_list;
if (m->fixed_flags[VS::FIXED_MATERIAL_FLAG_USE_ALPHA] || m->blend_mode!=VS::MATERIAL_BLEND_MODE_MIX) {
render_list = &alpha_render_list;
};
if (!m->flags[VS::MATERIAL_FLAG_UNSHADED]) {
int lis = p_instance->light_instances.size();
for(int i=0;i<lis;i++) {
if (light_count>=RenderList::MAX_LIGHTS)
break;
LightInstance *li=light_instance_owner.get( p_instance->light_instances[i] );
if (!li || li->last_pass!=scene_pass) //lit by light not in visible scene
continue;
lights[light_count++]=li;
}
}
RenderList::Element *e = render_list->add_element();
e->geometry=p_geometry;
// e->geometry_cmp=p_geometry_cmp;
e->material=m;
e->instance=p_instance;
//e->depth=camera_plane.distance_to(p_world->origin);
e->depth=camera_transform.origin.distance_to(p_instance->transform.origin);
e->owner=p_owner;
if (p_instance->skeleton.is_valid())
e->skeleton=skeleton_owner.get(p_instance->skeleton);
else
e->skeleton=NULL;
e->mirror=p_instance->mirror;
if (m->flags[VS::MATERIAL_FLAG_INVERT_FACES])
e->mirror=!e->mirror;
e->light_key=0;
e->light_count=0;
if (!shadow) {
if (m->flags[VS::MATERIAL_FLAG_UNSHADED]) {
e->light_key--; //special key for all the shadeless people
} else if (light_count) {
for(int i=0;i<light_count;i++) {
e->lights[i]=lights[i]->sort_key;
}
e->light_count=light_count;
int poslight_count=light_count;
if (poslight_count>1) {
SortArray<uint16_t> light_sort;
light_sort.sort(&e->lights[0],poslight_count); //generate an equal sort key
}
}
}
}
void RasterizerGLES1::add_mesh( const RID& p_mesh, const InstanceData *p_data) {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND(!mesh);
int ssize = mesh->surfaces.size();
for (int i=0;i<ssize;i++) {
Surface *s = mesh->surfaces[i];
_add_geometry(s,p_data,s,NULL);
}
mesh->last_pass=frame;
}
void RasterizerGLES1::add_multimesh( const RID& p_multimesh, const InstanceData *p_data){
MultiMesh *multimesh = multimesh_owner.get(p_multimesh);
ERR_FAIL_COND(!multimesh);
if (!multimesh->mesh.is_valid())
return;
if (multimesh->elements.empty())
return;
Mesh *mesh = mesh_owner.get(multimesh->mesh);
ERR_FAIL_COND(!mesh);
int surf_count = mesh->surfaces.size();
if (multimesh->last_pass!=scene_pass) {
multimesh->cache_surfaces.resize(surf_count);
for(int i=0;i<surf_count;i++) {
multimesh->cache_surfaces[i].material=mesh->surfaces[i]->material;
multimesh->cache_surfaces[i].has_alpha=mesh->surfaces[i]->has_alpha;
multimesh->cache_surfaces[i].surface=mesh->surfaces[i];
}
multimesh->last_pass=scene_pass;
}
for(int i=0;i<surf_count;i++) {
_add_geometry(&multimesh->cache_surfaces[i],p_data,multimesh->cache_surfaces[i].surface,multimesh);
}
}
void RasterizerGLES1::add_particles( const RID& p_particle_instance, const InstanceData *p_data){
//print_line("adding particles");
ParticlesInstance *particles_instance = particles_instance_owner.get(p_particle_instance);
ERR_FAIL_COND(!particles_instance);
Particles *p=particles_owner.get( particles_instance->particles );
ERR_FAIL_COND(!p);
_add_geometry(p,p_data,p,particles_instance);
}
void RasterizerGLES1::_set_cull(bool p_front,bool p_reverse_cull) {
bool front = p_front;
if (p_reverse_cull)
front=!front;
if (front!=cull_front) {
glCullFace(front?GL_FRONT:GL_BACK);
cull_front=front;
}
}
void RasterizerGLES1::_setup_fixed_material(const Geometry *p_geometry,const Material *p_material) {
if (!shadow) {
///ambient @TODO offer global ambient group option
//GLenum side = use_shaders?GL_FRONT:GL_FRONT_AND_BACK;
GLenum side = GL_FRONT_AND_BACK;
///diffuse
Color diffuse_color=p_material->parameters[VS::FIXED_MATERIAL_PARAM_DIFFUSE];
float diffuse_rgba[4]={
diffuse_color.r,
diffuse_color.g,
diffuse_color.b,
diffuse_color.a
};
//color array overrides this
glColor4f( diffuse_rgba[0],diffuse_rgba[1],diffuse_rgba[2],diffuse_rgba[3]);
last_color=diffuse_color;
glMaterialfv(side,GL_AMBIENT,diffuse_rgba);
glMaterialfv(side,GL_DIFFUSE,diffuse_rgba);
//specular
const Color specular_color=p_material->parameters[VS::FIXED_MATERIAL_PARAM_SPECULAR];
float specular_rgba[4]={
specular_color.r,
specular_color.g,
specular_color.b,
1.0
};
glMaterialfv(side,GL_SPECULAR,specular_rgba);
const Color emission=p_material->parameters[VS::FIXED_MATERIAL_PARAM_EMISSION];
float emission_rgba[4]={
emission.r,
emission.g,
emission.b,
1.0 //p_material->parameters[VS::FIXED_MATERIAL_PARAM_DETAIL_MIX]
};
glMaterialfv(side,GL_EMISSION,emission_rgba);
glMaterialf(side,GL_SHININESS,p_material->parameters[VS::FIXED_MATERIAL_PARAM_SPECULAR_EXP]);
Plane sparams=p_material->parameters[VS::FIXED_MATERIAL_PARAM_SHADE_PARAM];
//depth test?
}
if (p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE].is_valid()) {
Texture *texture = texture_owner.get( p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE] );
ERR_FAIL_COND(!texture);
glEnable(GL_TEXTURE_2D);
glActiveTexture(GL_TEXTURE0);
glBindTexture( GL_TEXTURE_2D,texture->tex_id );
} else {
glDisable(GL_TEXTURE_2D);
}
}
void RasterizerGLES1::_setup_material(const Geometry *p_geometry,const Material *p_material) {
if (p_material->flags[VS::MATERIAL_FLAG_DOUBLE_SIDED])
glDisable(GL_CULL_FACE);
else {
glEnable(GL_CULL_FACE);
}
/* if (p_material->flags[VS::MATERIAL_FLAG_WIREFRAME])
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
else
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);*/
if (p_material->line_width > 0)
glLineWidth(p_material->line_width);
if (!shadow) {
if (blend_mode!=p_material->blend_mode) {
switch(p_material->blend_mode) {
case VS::MATERIAL_BLEND_MODE_MIX: {
//glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
} break;
case VS::MATERIAL_BLEND_MODE_ADD: {
//glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA,GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_SUB: {
//glBlendEquation(GL_FUNC_SUBTRACT);
glBlendFunc(GL_SRC_ALPHA,GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_MUL: {
//glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
} break;
}
blend_mode=p_material->blend_mode;
}
if (lighting!=!p_material->flags[VS::MATERIAL_FLAG_UNSHADED]) {
if (p_material->flags[VS::MATERIAL_FLAG_UNSHADED]) {
glDisable(GL_LIGHTING);
} else {
glEnable(GL_LIGHTING);
}
lighting=!p_material->flags[VS::MATERIAL_FLAG_UNSHADED];
}
}
bool current_depth_write=!p_material->hints[VS::MATERIAL_HINT_NO_DEPTH_DRAW];
bool current_depth_test=!p_material->flags[VS::MATERIAL_FLAG_ONTOP];
_setup_fixed_material(p_geometry,p_material);
if (current_depth_write!=depth_write) {
depth_write=current_depth_write;
glDepthMask(depth_write);
}
if (current_depth_test!=depth_test) {
depth_test=current_depth_test;
if (depth_test)
glEnable(GL_DEPTH_TEST);
else
glDisable(GL_DEPTH_TEST);
}
}
/*
static const MaterialShaderGLES1::Conditionals _gl_light_version[4][3]={
{MaterialShaderGLES1::LIGHT_0_DIRECTIONAL,MaterialShaderGLES1::LIGHT_0_OMNI,MaterialShaderGLES1::LIGHT_0_SPOT},
{MaterialShaderGLES1::LIGHT_1_DIRECTIONAL,MaterialShaderGLES1::LIGHT_1_OMNI,MaterialShaderGLES1::LIGHT_1_SPOT},
{MaterialShaderGLES1::LIGHT_2_DIRECTIONAL,MaterialShaderGLES1::LIGHT_2_OMNI,MaterialShaderGLES1::LIGHT_2_SPOT},
{MaterialShaderGLES1::LIGHT_3_DIRECTIONAL,MaterialShaderGLES1::LIGHT_3_OMNI,MaterialShaderGLES1::LIGHT_3_SPOT}
};
static const MaterialShaderGLES1::Conditionals _gl_light_shadow[4]={
MaterialShaderGLES1::LIGHT_0_SHADOW,
MaterialShaderGLES1::LIGHT_1_SHADOW,
MaterialShaderGLES1::LIGHT_2_SHADOW,
MaterialShaderGLES1::LIGHT_3_SHADOW
};
*/
void RasterizerGLES1::_setup_light(LightInstance* p_instance, int p_idx) {
Light* ld = p_instance->base;
// material_shader.set_conditional(MaterialShaderGLES1::LIGHT_0_DIRECTIONAL, true);
//material_shader.set_uniform_default(MaterialShaderGLES1::LIGHT_0_DIFFUSE, ld->colors[VS::LIGHT_COLOR_DIFFUSE]);
//material_shader.set_uniform_default(MaterialShaderGLES1::LIGHT_0_SPECULAR, ld->colors[VS::LIGHT_COLOR_SPECULAR]);
//material_shader.set_uniform_default(MaterialShaderGLES1::LIGHT_0_AMBIENT, ld->colors[VS::LIGHT_COLOR_AMBIENT]);
GLenum glid = GL_LIGHT0+p_idx;
Color diff_color = ld->colors[VS::LIGHT_COLOR_DIFFUSE];
float emult = ld->vars[VS::LIGHT_PARAM_ENERGY];
if (ld->type!=VS::LIGHT_DIRECTIONAL)
emult*=4.0;
GLfloat diffuse_sdark[4]={
diff_color.r*emult,
diff_color.g*emult,
diff_color.b*emult,
1.0
};
glLightfv(glid , GL_DIFFUSE, diffuse_sdark);
Color amb_color = ld->colors[VS::LIGHT_COLOR_AMBIENT];
GLfloat amb_stexsize[4]={
amb_color.r,
amb_color.g,
amb_color.b,
1.0
};
glLightfv(glid , GL_AMBIENT, amb_stexsize );
Color spec_color = ld->colors[VS::LIGHT_COLOR_SPECULAR];
GLfloat spec_op[4]={
spec_color.r,
spec_color.g,
spec_color.b,
1.0
};
glLightfv(glid , GL_SPECULAR, spec_op );
switch(ld->type) {
case VS::LIGHT_DIRECTIONAL: {
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
glLightf(glid,GL_CONSTANT_ATTENUATION, 1);
glLightf(glid,GL_LINEAR_ATTENUATION, 0);
glLightf(glid,GL_QUADRATIC_ATTENUATION,0); // energy
float lightdir[4]={
p_instance->light_vector.x,
p_instance->light_vector.y,
p_instance->light_vector.z,
0.0
};
glLightfv(glid,GL_POSITION,lightdir); //at modelview
glLightf(glid,GL_SPOT_CUTOFF,180.0);
glLightf(glid,GL_SPOT_EXPONENT, 0);
float sdir[4]={
0,
0,
-1,
0
};
glLightfv(glid,GL_SPOT_DIRECTION,sdir); //at modelview
// material_shader.set_uniform_default(MaterialShaderGLES1::LIGHT_0_DIRECTION, p_instance->light_vector);
glPopMatrix();
} break;
case VS::LIGHT_OMNI: {
glLightf(glid,GL_SPOT_CUTOFF,180.0);
glLightf(glid,GL_SPOT_EXPONENT, 0);
glLightf(glid,GL_CONSTANT_ATTENUATION, 0);
glLightf(glid,GL_LINEAR_ATTENUATION, p_instance->linear_att);
glLightf(glid,GL_QUADRATIC_ATTENUATION, 0); // wut?
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
float lightpos[4]={
p_instance->light_vector.x,
p_instance->light_vector.y,
p_instance->light_vector.z,
1.0
};
glLightfv(glid,GL_POSITION,lightpos); //at modelview
glPopMatrix();
} break;
case VS::LIGHT_SPOT: {
glLightf(glid,GL_SPOT_CUTOFF, ld->vars[VS::LIGHT_PARAM_SPOT_ANGLE]);
glLightf(glid,GL_SPOT_EXPONENT, ld->vars[VS::LIGHT_PARAM_SPOT_ATTENUATION]);
glLightf(glid,GL_CONSTANT_ATTENUATION, 0);
glLightf(glid,GL_LINEAR_ATTENUATION, p_instance->linear_att);
glLightf(glid,GL_QUADRATIC_ATTENUATION, 0); // wut?
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
float lightpos[4]={
p_instance->light_vector.x,
p_instance->light_vector.y,
p_instance->light_vector.z,
1.0
};
glLightfv(glid,GL_POSITION,lightpos); //at modelview
float lightdir[4]={
p_instance->spot_vector.x,
p_instance->spot_vector.y,
p_instance->spot_vector.z,
1.0
};
glLightfv(glid,GL_SPOT_DIRECTION,lightdir); //at modelview
glPopMatrix();
} break;
default: break;
}
};
void RasterizerGLES1::_setup_lights(const uint16_t * p_lights,int p_light_count) {
if (shadow)
return;
for (int i=directional_light_count; i<MAX_HW_LIGHTS; i++) {
if (i<(directional_light_count+p_light_count)) {
glEnable(GL_LIGHT0 + i);
_setup_light(light_instances[p_lights[i]], i);
} else {
glDisable(GL_LIGHT0 + i);
}
}
}
static const GLenum gl_client_states[] = {
GL_VERTEX_ARRAY,
GL_NORMAL_ARRAY,
0, // ARRAY_TANGENT
0,//GL_COLOR_ARRAY,
GL_TEXTURE_COORD_ARRAY, // ARRAY_TEX_UV
0,//GL_TEXTURE_COORD_ARRAY, // ARRAY_TEX_UV2
0, // ARRAY_BONES
0, // ARRAY_WEIGHTS
};
static const int gl_texcoord_index[VS::ARRAY_MAX-1] = {
-1,
-1,
-1, // ARRAY_TANGENT
-1,
0, // ARRAY_TEX_UV
-1,//1, // ARRAY_TEX_UV2
-1, // ARRAY_BONES
-1, // ARRAY_WEIGHTS
};
Error RasterizerGLES1::_setup_geometry(const Geometry *p_geometry, const Material* p_material, const Skeleton *p_skeleton,const float *p_morphs) {
switch(p_geometry->type) {
case Geometry::GEOMETRY_MULTISURFACE:
case Geometry::GEOMETRY_SURFACE: {
const Surface *surf=NULL;
if (p_geometry->type==Geometry::GEOMETRY_SURFACE)
surf=static_cast<const Surface*>(p_geometry);
else if (p_geometry->type==Geometry::GEOMETRY_MULTISURFACE)
surf=static_cast<const MultiMeshSurface*>(p_geometry)->surface;
if (surf->format != surf->configured_format) {
if (OS::get_singleton()->is_stdout_verbose()) {
print_line("has format: "+itos(surf->format));
print_line("configured format: "+itos(surf->configured_format));
}
ERR_EXPLAIN("Missing arrays (not set) in surface");
}
ERR_FAIL_COND_V( surf->format != surf->configured_format, ERR_UNCONFIGURED );
uint8_t *base=0;
int stride=surf->stride;
bool use_VBO = (surf->array_local==0);
_setup_geometry_vinfo=surf->array_len;
bool skeleton_valid = p_skeleton && (surf->format&VS::ARRAY_FORMAT_BONES) && (surf->format&VS::ARRAY_FORMAT_WEIGHTS) && !p_skeleton->bones.empty() && p_skeleton->bones.size() > surf->max_bone;
if (!use_VBO) {
base = surf->array_local;
glBindBuffer(GL_ARRAY_BUFFER, 0);
bool can_copy_to_local=surf->local_stride * surf->array_len <= skinned_buffer_size;
if (!can_copy_to_local)
skeleton_valid=false;
/* compute morphs */
if (p_morphs && surf->morph_target_count && can_copy_to_local) {
base = skinned_buffer;
stride=surf->local_stride;
//copy all first
float coef=1.0;
for(int i=0;i<surf->morph_target_count;i++) {
if (surf->mesh->morph_target_mode==VS::MORPH_MODE_NORMALIZED)
coef-=p_morphs[i];
ERR_FAIL_COND_V( surf->morph_format != surf->morph_targets_local[i].configured_format, ERR_INVALID_DATA );
}
for(int i=0;i<VS::ARRAY_MAX-1;i++) {
const Surface::ArrayData& ad=surf->array[i];
if (ad.size==0)
continue;
int ofs = ad.ofs;
int src_stride=surf->stride;
int dst_stride=surf->local_stride;
int count = surf->array_len;
switch(i) {
case VS::ARRAY_VERTEX:
case VS::ARRAY_NORMAL:
case VS::ARRAY_TANGENT:
{
for(int k=0;k<count;k++) {
const float *src = (const float*)&surf->array_local[ofs+k*src_stride];
float *dst = (float*)&base[ofs+k*dst_stride];
dst[0]= src[0]*coef;
dst[1]= src[1]*coef;
dst[2]= src[2]*coef;
} break;
} break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2: {
for(int k=0;k<count;k++) {
const float *src = (const float*)&surf->array_local[ofs+k*src_stride];
float *dst = (float*)&base[ofs+k*dst_stride];
dst[0]= src[0]*coef;
dst[1]= src[1]*coef;
} break;
} break;
}
}
for(int j=0;j<surf->morph_target_count;j++) {
for(int i=0;i<VS::ARRAY_MAX-1;i++) {
const Surface::ArrayData& ad=surf->array[i];
if (ad.size==0)
continue;
int ofs = ad.ofs;
int dst_stride=surf->local_stride;
int count = surf->array_len;
const uint8_t *morph=surf->morph_targets_local[j].array;
float w = p_morphs[j];
switch(i) {
case VS::ARRAY_VERTEX:
case VS::ARRAY_NORMAL:
case VS::ARRAY_TANGENT:
{
for(int k=0;k<count;k++) {
const float *src_morph = (const float*)&morph[ofs+k*dst_stride];
float *dst = (float*)&base[ofs+k*dst_stride];
dst[0]+= src_morph[0]*w;
dst[1]+= src_morph[1]*w;
dst[2]+= src_morph[2]*w;
} break;
} break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2: {
for(int k=0;k<count;k++) {
const float *src_morph = (const float*)&morph[ofs+k*dst_stride];
float *dst = (float*)&base[ofs+k*dst_stride];
dst[0]+= src_morph[0]*w;
dst[1]+= src_morph[1]*w;
} break;
} break;
}
}
}
} else if (skeleton_valid) {
base = skinned_buffer;
//copy stuff and get it ready for the skeleton
int len = surf->array_len;
int src_stride = surf->stride;
int dst_stride = surf->stride - ( surf->array[VS::ARRAY_BONES].size + surf->array[VS::ARRAY_WEIGHTS].size );
for(int i=0;i<len;i++) {
const uint8_t *src = &surf->array_local[i*src_stride];
uint8_t *dst = &base[i*dst_stride];
memcpy(dst,src,dst_stride);
}
stride=dst_stride;
}
if (skeleton_valid) {
//transform stuff
const uint8_t *src_weights=&surf->array_local[surf->array[VS::ARRAY_WEIGHTS].ofs];
const uint8_t *src_bones=&surf->array_local[surf->array[VS::ARRAY_BONES].ofs];
int src_stride = surf->stride;
int count = surf->array_len;
const Transform *skeleton = &p_skeleton->bones[0];
for(int i=0;i<VS::ARRAY_MAX-1;i++) {
const Surface::ArrayData& ad=surf->array[i];
if (ad.size==0)
continue;
int ofs = ad.ofs;
switch(i) {
case VS::ARRAY_VERTEX: {
for(int k=0;k<count;k++) {
float *ptr= (float*)&base[ofs+k*stride];
const GLfloat* weights = reinterpret_cast<const GLfloat*>(&src_weights[k*src_stride]);
const GLfloat *bones = reinterpret_cast<const GLfloat*>(&src_bones[k*src_stride]);
Vector3 src( ptr[0], ptr[1], ptr[2] );
Vector3 dst;
for(int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
float w = weights[j];
if (w==0)
break;
//print_line("accum "+itos(i)+" += "+rtos(Math::ftoi(bones[j]))+" * "+skeleton[ Math::ftoi(bones[j]) ]+" * "+rtos(w));
dst+=skeleton[ Math::fast_ftoi(bones[j]) ].xform(src) * w;
}
ptr[0]=dst.x;
ptr[1]=dst.y;
ptr[2]=dst.z;
} break;
} break;
case VS::ARRAY_NORMAL:
case VS::ARRAY_TANGENT: {
for(int k=0;k<count;k++) {
float *ptr= (float*)&base[ofs+k*stride];
const GLfloat* weights = reinterpret_cast<const GLfloat*>(&src_weights[k*src_stride]);
const GLfloat *bones = reinterpret_cast<const GLfloat*>(&src_bones[k*src_stride]);
Vector3 src( ptr[0], ptr[1], ptr[2] );
Vector3 dst;
for(int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
float w = weights[j];
if (w==0)
break;
//print_line("accum "+itos(i)+" += "+rtos(Math::ftoi(bones[j]))+" * "+skeleton[ Math::ftoi(bones[j]) ]+" * "+rtos(w));
dst+=skeleton[ Math::fast_ftoi(bones[j]) ].basis.xform(src) * w;
}
ptr[0]=dst.x;
ptr[1]=dst.y;
ptr[2]=dst.z;
} break;
} break;
}
}
}
} else {
glBindBuffer(GL_ARRAY_BUFFER, surf->vertex_id);
};
for (int i=0;i<(VS::ARRAY_MAX-1);i++) {
const Surface::ArrayData& ad=surf->array[i];
// if (!gl_texcoord_shader[i])
// continue;
if (ad.size==0 || i==VS::ARRAY_BONES || i==VS::ARRAY_WEIGHTS || gl_client_states[i]==0 ) {
if (gl_texcoord_index[i] != -1) {
glClientActiveTexture(GL_TEXTURE0+gl_texcoord_index[i]);
}
if (gl_client_states[i] != 0)
glDisableClientState(gl_client_states[i]);
if (i == VS::ARRAY_COLOR) {
glColor4f(last_color.r,last_color.g,last_color.b,last_color.a);
};
continue; // this one is disabled.
}
if (gl_texcoord_index[i] != -1) {
glClientActiveTexture(GL_TEXTURE0+gl_texcoord_index[i]);
}
glEnableClientState(gl_client_states[i]);
switch (i) {
case VS::ARRAY_VERTEX: {
glVertexPointer(3,ad.datatype,stride,&base[ad.ofs]);
} break; /* fallthrough to normal */
case VS::ARRAY_NORMAL: {
glNormalPointer(ad.datatype,stride,&base[ad.ofs]);
} break;
case VS::ARRAY_COLOR: {
glColorPointer(4,ad.datatype,stride,&base[ad.ofs]);
} break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2: {
glTexCoordPointer(2,ad.datatype,stride,&base[ad.ofs]);
} break;
case VS::ARRAY_TANGENT: {
//glVertexAttribPointer(i, 4, use_VBO?GL_BYTE:GL_FLOAT, use_VBO?GL_TRUE:GL_FALSE, stride, &base[ad.ofs]);
} break;
case VS::ARRAY_BONES:
case VS::ARRAY_WEIGHTS: {
//do none
//glVertexAttribPointer(i, 4, GL_FLOAT, GL_FALSE, surf->stride, &base[ad.ofs]);
} break;
case VS::ARRAY_INDEX:
ERR_PRINT("Bug");
break;
};
}
} break;
default: break;
};
return OK;
};
static const GLenum gl_primitive[]={
GL_POINTS,
GL_LINES,
GL_LINE_STRIP,
GL_LINE_LOOP,
GL_TRIANGLES,
GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN
};
static const GLenum gl_poly_primitive[4]={
GL_POINTS,
GL_LINES,
GL_TRIANGLES,
//GL_QUADS
};
void RasterizerGLES1::_render(const Geometry *p_geometry,const Material *p_material, const Skeleton* p_skeleton, const GeometryOwner *p_owner) {
_rinfo.object_count++;
switch(p_geometry->type) {
case Geometry::GEOMETRY_SURFACE: {
Surface *s = (Surface*)p_geometry;
_rinfo.vertex_count+=s->array_len;
if (s->packed && s->array_local==0) {
float sc = (1.0/32767.0)*s->vertex_scale;
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glScalef(sc,sc,sc);
if (s->format&VS::ARRAY_FORMAT_TEX_UV) {
float uvs=(1.0/32767.0)*s->uv_scale;
//glActiveTexture(GL_TEXTURE0);
glClientActiveTexture(GL_TEXTURE0);
glMatrixMode(GL_TEXTURE);
glPushMatrix();
glScalef(uvs,uvs,uvs);
}
}
if (s->index_array_len>0) {
if (s->index_array_local) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);
glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len>(1<<16))?GL_UNSIGNED_SHORT:GL_UNSIGNED_SHORT, s->index_array_local);
} else {
// print_line("indices: "+itos(s->index_array_local) );
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,s->index_id);
glDrawElements(gl_primitive[s->primitive],s->index_array_len, (s->array_len>(1<<16))?GL_UNSIGNED_SHORT:GL_UNSIGNED_SHORT,0);
}
} else {
glDrawArrays(gl_primitive[s->primitive],0,s->array_len);
};
if (s->packed && s->array_local==0) {
if (s->format&VS::ARRAY_FORMAT_TEX_UV) {
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
}
glPopMatrix();
};
} break;
case Geometry::GEOMETRY_MULTISURFACE: {
Surface *s = static_cast<const MultiMeshSurface*>(p_geometry)->surface;
const MultiMesh *mm = static_cast<const MultiMesh*>(p_owner);
int element_count=mm->elements.size();
if (element_count==0)
return;
const MultiMesh::Element *elements=&mm->elements[0];
_rinfo.vertex_count+=s->array_len*element_count;
if (s->index_array_len>0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,s->index_id);
for(int i=0;i<element_count;i++) {
//glUniformMatrix4fv(material_shader.get_uniform_location(MaterialShaderGLES1::INSTANCE_TRANSFORM), 1, false, elements[i].matrix);
glDrawElements(gl_primitive[s->primitive],s->index_array_len, (s->array_len>(1<<16))?GL_UNSIGNED_SHORT:GL_UNSIGNED_SHORT,0);
}
} else {
for(int i=0;i<element_count;i++) {
// glUniformMatrix4fv(material_shader.get_uniform_location(MaterialShaderGLES1::INSTANCE_TRANSFORM), 1, false, elements[i].matrix);
glDrawArrays(gl_primitive[s->primitive],0,s->array_len);
}
};
} break;
case Geometry::GEOMETRY_PARTICLES: {
//print_line("particulinas");
const Particles *particles = static_cast<const Particles*>( p_geometry );
ERR_FAIL_COND(!p_owner);
ParticlesInstance *particles_instance = (ParticlesInstance*)p_owner;
ParticleSystemProcessSW &pp = particles_instance->particles_process;
float td = time_delta; //MIN(time_delta,1.0/10.0);
pp.process(&particles->data,particles_instance->transform,td);
ERR_EXPLAIN("A parameter in the particle system is not correct.");
ERR_FAIL_COND(!pp.valid);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind
glBindBuffer(GL_ARRAY_BUFFER,0);
Transform camera;
if (shadow)
camera=shadow->transform;
else
camera=camera_transform;
particle_draw_info.prepare(&particles->data,&pp,particles_instance->transform,camera);
_rinfo.vertex_count+=4*particles->data.amount;
{
static const Vector3 points[4]={
Vector3(-1.0,1.0,0),
Vector3(1.0,1.0,0),
Vector3(1.0,-1.0,0),
Vector3(-1.0,-1.0,0)
};
static const Vector3 uvs[4]={
Vector3(0.0,0.0,0.0),
Vector3(1.0,0.0,0.0),
Vector3(1.0,1.0,0.0),
Vector3(0,1.0,0.0)
};
static const Vector3 normals[4]={
Vector3(0,0,1),
Vector3(0,0,1),
Vector3(0,0,1),
Vector3(0,0,1)
};
static const Plane tangents[4]={
Plane(Vector3(1,0,0),0),
Plane(Vector3(1,0,0),0),
Plane(Vector3(1,0,0),0),
Plane(Vector3(1,0,0),0)
};
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
_gl_load_transform(camera_transform_inverse);
for(int i=0;i<particles->data.amount;i++) {
ParticleSystemDrawInfoSW::ParticleDrawInfo &pinfo=*particle_draw_info.draw_info_order[i];
if (!pinfo.data->active)
continue;
glPushMatrix();
_gl_mult_transform(pinfo.transform);
glColor4f(pinfo.color.r*last_color.r,pinfo.color.g*last_color.g,pinfo.color.b*last_color.b,pinfo.color.a*last_color.a);
_draw_primitive(4,points,normals,NULL,uvs,tangents);
glPopMatrix();
}
glPopMatrix();
}
} break;
default: break;
};
};
void RasterizerGLES1::_setup_shader_params(const Material *p_material) {
#if 0
int idx=0;
int tex_idx=0;
for(Map<StringName,Variant>::Element *E=p_material->shader_cache->params.front();E;E=E->next(),idx++) {
Variant v; //
v = E->get();
const Map<StringName,Variant>::Element *F=p_material->shader_params.find(E->key());
if (F)
v=F->get();
switch(v.get_type() ) {
case Variant::OBJECT:
case Variant::_RID: {
RID tex=v;
if (!tex.is_valid())
break;
Texture *texture = texture_owner.get(tex);
if (!texture)
break;
glUniform1i( material_shader.get_custom_uniform_location(idx), tex_idx);
glActiveTexture(tex_idx);
glBindTexture(texture->target,texture->tex_id);
} break;
case Variant::COLOR: {
Color c=v;
material_shader.set_custom_uniform(idx,Vector3(c.r,c.g,c.b));
} break;
default: {
material_shader.set_custom_uniform(idx,v);
} break;
}
}
#endif
}
void RasterizerGLES1::_render_list_forward(RenderList *p_render_list,bool p_reverse_cull) {
const Material *prev_material=NULL;
uint64_t prev_light_key=0;
const Skeleton *prev_skeleton=NULL;
const Geometry *prev_geometry=NULL;
Geometry::Type prev_geometry_type=Geometry::GEOMETRY_INVALID;
for (int i=0;i<p_render_list->element_count;i++) {
RenderList::Element *e = p_render_list->elements[i];
const Material *material = e->material;
uint64_t light_key = e->light_key;
const Skeleton *skeleton = e->skeleton;
const Geometry *geometry = e->geometry;
if (material!=prev_material || geometry->type!=prev_geometry_type) {
_setup_material(e->geometry,material);
_rinfo.mat_change_count++;
//_setup_material_overrides(e->material,NULL,material_overrides);
//_setup_material_skeleton(material,skeleton);
} else {
if (prev_skeleton!=skeleton) {
//_setup_material_skeleton(material,skeleton);
};
}
if (geometry!=prev_geometry || geometry->type!=prev_geometry_type || prev_skeleton!=skeleton) {
_setup_geometry(geometry, material,e->skeleton,e->instance->morph_values.ptr());
};
if (i==0 || light_key!=prev_light_key)
_setup_lights(e->lights,e->light_count);
_set_cull(e->mirror,p_reverse_cull);
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glPushMatrix();
if (e->instance->billboard || e->instance->depth_scale) {
Transform xf=e->instance->transform;
if (e->instance->depth_scale) {
if (camera_projection.matrix[3][3]) {
//orthogonal matrix, try to do about the same
//with viewport size
//real_t w = Math::abs( 1.0/(2.0*(p_projection.matrix[0][0])) );
real_t h = Math::abs( 1.0/(2.0*camera_projection.matrix[1][1]) );
float sc = (h*2.0); //consistent with Y-fov
xf.basis.scale( Vector3(sc,sc,sc));
} else {
//just scale by depth
real_t sc = -camera_plane.distance_to(xf.origin);
xf.basis.scale( Vector3(sc,sc,sc));
}
}
if (e->instance->billboard) {
Vector3 scale = xf.basis.get_scale();
xf.set_look_at(xf.origin,xf.origin+camera_transform.get_basis().get_axis(2),camera_transform.get_basis().get_axis(1));
xf.basis.scale(scale);
}
_gl_mult_transform(xf); // for fixed pipeline
} else {
_gl_mult_transform(e->instance->transform); // for fixed pipeline
}
//bool changed_shader = material_shader.bind();
//if ( changed_shader && material->shader_cache && !material->shader_cache->params.empty())
// _setup_shader_params(material);
_render(geometry, material, skeleton,e->owner);
prev_material=material;
prev_skeleton=skeleton;
prev_geometry=geometry;
prev_light_key=e->light_key;
prev_geometry_type=geometry->type;
}
};
void RasterizerGLES1::end_scene() {
glEnable(GL_BLEND);
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
depth_write=true;
depth_test=true;
if (scene_fx && scene_fx->skybox_active) {
//skybox
} else if (scene_fx && scene_fx->bgcolor_active) {
glClearColor(scene_fx->bgcolor.r,scene_fx->bgcolor.g,scene_fx->bgcolor.b,1.0);
} else {
glClearColor(0.3,0.3,0.3,1.0);
}
#ifdef GLES_OVER_GL
//glClearDepth(1.0);
#else
//glClearDepthf(1.0);
#endif
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
if (scene_fx && scene_fx->fog_active) {
/*
glEnable(GL_FOG);
glFogf(GL_FOG_MODE,GL_LINEAR);
glFogf(GL_FOG_DENSITY,scene_fx->fog_attenuation);
glFogf(GL_FOG_START,scene_fx->fog_near);
glFogf(GL_FOG_END,scene_fx->fog_far);
glFogfv(GL_FOG_COLOR,scene_fx->fog_color_far.components);
glLightfv(GL_LIGHT5,GL_DIFFUSE,scene_fx->fog_color_near.components);
material_shader.set_conditional( MaterialShaderGLES1::USE_FOG,true);
*/
}
for(int i=0;i<directional_light_count;i++) {
glEnable(GL_LIGHT0+i);
_setup_light(directional_lights[i],i);
}
opaque_render_list.sort_mat_light();
//material_shader.set_uniform_camera(MaterialShaderGLES1::PROJECTION_MATRIX, camera_projection);
/*
printf("setting projection to ");
for (int i=0; i<16; i++) {
printf("%f, ", ((float*)camera_projection.matrix)[i]);
};
printf("\n");
print_line(String("setting camera to ")+camera_transform_inverse);
*/
// material_shader.set_uniform_default(MaterialShaderGLES1::CAMERA_INVERSE, camera_transform_inverse);
//projection
//glEnable(GL_RESCALE_NORMAL);
glEnable(GL_NORMALIZE);
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(&camera_projection.matrix[0][0]);
//modelview (fixedpipie)
glMatrixMode(GL_MODELVIEW);
_gl_load_transform(camera_transform_inverse);
glPushMatrix();
glDisable(GL_BLEND);
blend_mode=VS::MATERIAL_BLEND_MODE_MIX;
lighting=true;
glEnable(GL_LIGHTING);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
_render_list_forward(&opaque_render_list);
alpha_render_list.sort_z();
glEnable(GL_BLEND);
_render_list_forward(&alpha_render_list);
glPopMatrix();
// material_shader.set_conditional( MaterialShaderGLES1::USE_FOG,false);
_debug_shadows();
}
void RasterizerGLES1::end_shadow_map() {
#if 0
ERR_FAIL_COND(!shadow);
ERR_FAIL_INDEX(shadow_pass,shadow->shadow_buffers.size());
glDisable(GL_BLEND);
glDisable(GL_SCISSOR_TEST);
glEnable(GL_DEPTH_TEST);
glDepthMask(true);
ShadowBuffer *sb = shadow->shadow_buffers[shadow_pass];
ERR_FAIL_COND(!sb);
glBindFramebuffer(GL_FRAMEBUFFER, sb->fbo);
glViewport(0, 0, sb->size, sb->size);
glColorMask(0, 0, 0, 0);
glEnable(GL_POLYGON_OFFSET_FILL);
//glPolygonOffset(4,8);
glPolygonOffset( 4.0f, 4096.0f);
glPolygonOffset( 8.0f, 16.0f);
glClearDepth(1.0f);
glClear(GL_DEPTH_BUFFER_BIT);
CameraMatrix cm;
float z_near,z_far;
Transform light_transform;
float dp_direction=0.0;
bool flip_facing=false;
switch(shadow->base->type) {
case VS::LIGHT_DIRECTIONAL: {
cm = shadow->custom_projection;
light_transform=shadow->custom_transform;
z_near=cm.get_z_near();
z_far=cm.get_z_far();
} break;
case VS::LIGHT_OMNI: {
material_shader.set_conditional(MaterialShaderGLES1::USE_DUAL_PARABOLOID,true);
dp_direction = shadow_pass?1.0:0.0;
flip_facing = (shadow_pass == 1);
light_transform=shadow->transform;
z_near=0;
z_far=shadow->base->vars[ VS::LIGHT_VAR_RADIUS ];
} break;
case VS::LIGHT_SPOT: {
float far = shadow->base->vars[ VS::LIGHT_VAR_RADIUS ];
ERR_FAIL_COND( far<=0 );
float near= far/200.0;
if (near<0.05)
near=0.05;
float angle = shadow->base->vars[ VS::LIGHT_VAR_SPOT_ANGLE ];
cm.set_perspective( angle*2.0, 1.0, near, far );
shadow->projection=cm; // cache
light_transform=shadow->transform;
z_near=cm.get_z_near();
z_far=cm.get_z_far();
} break;
}
Transform light_transform_inverse = light_transform.inverse();
opaque_render_list.sort_mat();
glLightf(GL_LIGHT5,GL_LINEAR_ATTENUATION,z_near);
glLightf(GL_LIGHT5,GL_QUADRATIC_ATTENUATION,z_far);
glLightf(GL_LIGHT5,GL_CONSTANT_ATTENUATION,dp_direction);
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(&cm.matrix[0][0]);
glMatrixMode(GL_MODELVIEW);
_gl_load_transform(light_transform_inverse);
glPushMatrix();
for(int i=0;i<4;i++) {
for(int j=0;j<3;j++) {
material_shader.set_conditional(_gl_light_version[i][j],false); //start false by default
}
material_shader.set_conditional(_gl_light_shadow[i],false);
}
_render_list_forward(&opaque_render_list,flip_facing);
material_shader.set_conditional(MaterialShaderGLES1::USE_DUAL_PARABOLOID,false);
glViewport( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height );
if (framebuffer.active)
glBindFramebufferEXT(GL_FRAMEBUFFER,framebuffer.fbo);
else
glBindFramebufferEXT(GL_FRAMEBUFFER,0);
glDisable(GL_POLYGON_OFFSET_FILL);
glColorMask(1, 1, 1, 1);
shadow=NULL;
#endif
}
void RasterizerGLES1::_debug_draw_shadow(ShadowBuffer *p_buffer, const Rect2& p_rect) {
/*
Transform modelview;
modelview.translate(-(viewport.width / 2.0f), -(viewport.height / 2.0f), 0.0f);
modelview.scale( Vector3( 2.0f / viewport.width, -2.0f / viewport.height, 1.0f ) );
modelview.translate(p_rect.pos.x, p_rect.pos.y, 0);
material_shader.set_uniform_default(MaterialShaderGLES1::MODELVIEW_TRANSFORM, *e->transform);
glBindTexture(GL_TEXTURE_2D,p_buffer->depth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
Vector3 coords[4]= {
Vector3(p_rect.pos.x, p_rect.pos.y, 0 ),
Vector3(p_rect.pos.x+p_rect.size.width,
p_rect.pos.y, 0 ),
Vector3(p_rect.pos.x+p_rect.size.width,
p_rect.pos.y+p_rect.size.height, 0 ),
Vector3(p_rect.pos.x,
p_rect.pos.y+p_rect.size.height, 0 )
};
Vector3 texcoords[4]={
Vector3( 0.0f,0.0f, 0),
Vector3( 1.0f,0.0f, 0),
Vector3( 1.0f, 1.0f, 0),
Vector3( 0.0f, 1.0f, 0),
};
_draw_primitive(4,coords,0,0,texcoords);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE);
*/
}
void RasterizerGLES1::_debug_draw_shadows_type(Vector<ShadowBuffer>& p_shadows,Point2& ofs) {
// Size2 debug_size(128,128);
Size2 debug_size(512,512);
for (int i=0;i<p_shadows.size();i++) {
ShadowBuffer *sb=&p_shadows[i];
if (!sb->owner)
continue;
if (sb->owner->base->type==VS::LIGHT_DIRECTIONAL) {
if (sb->owner->shadow_pass!=scene_pass-1)
continue;
} else {
if (sb->owner->shadow_pass!=frame)
continue;
}
_debug_draw_shadow(sb, Rect2( ofs, debug_size ));
ofs.x+=debug_size.x;
if ( (ofs.x+debug_size.x) > viewport.width ) {
ofs.x=0;
ofs.y+=debug_size.y;
}
}
}
void RasterizerGLES1::_debug_shadows() {
return;
#if 0
canvas_begin();
glUseProgram(0);
glDisable(GL_BLEND);
Size2 ofs;
/*
for(int i=0;i<16;i++) {
glActiveTexture(GL_TEXTURE0+i);
//glDisable(GL_TEXTURE_2D);
}
glActiveTexture(GL_TEXTURE0);
//glEnable(GL_TEXTURE_2D);
*/
_debug_draw_shadows_type(near_shadow_buffers,ofs);
_debug_draw_shadows_type(far_shadow_buffers,ofs);
#endif
}
void RasterizerGLES1::end_frame() {
/*
if (framebuffer.active) {
canvas_begin(); //resets stuff and goes back to fixedpipe
glBindFramebuffer(GL_FRAMEBUFFER,0);
//copy to main bufferz
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,framebuffer.color);
glBegin(GL_QUADS);
glTexCoord2f(0,0);
glVertex2f(-1,-1);
glTexCoord2f(0,1);
glVertex2f(-1,+1);
glTexCoord2f(1,1);
glVertex2f(+1,+1);
glTexCoord2f(1,0);
glVertex2f(+1,-1);
glEnd();
}
*/
//print_line("VTX: "+itos(_rinfo.vertex_count)+" OBJ: "+itos(_rinfo.object_count)+" MAT: "+itos(_rinfo.mat_change_count)+" SHD: "+itos(_rinfo.shader_change_count));
OS::get_singleton()->swap_buffers();
}
/* CANVAS API */
void RasterizerGLES1::reset_state() {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind
glBindBuffer(GL_ARRAY_BUFFER,0);
glActiveTexture(GL_TEXTURE0);
glClientActiveTexture(GL_TEXTURE0);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glColor4f(1,1,1,1);
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
// glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
canvas_blend=VS::MATERIAL_BLEND_MODE_MIX;
glLineWidth(1.0);
glDisable(GL_LIGHTING);
}
_FORCE_INLINE_ static void _set_glcoloro(const Color& p_color,const float p_opac) {
glColor4f(p_color.r, p_color.g, p_color.b, p_color.a*p_opac);
}
void RasterizerGLES1::canvas_begin() {
reset_state();
canvas_opacity=1.0;
glEnable(GL_BLEND);
}
void RasterizerGLES1::canvas_set_opacity(float p_opacity) {
canvas_opacity = p_opacity;
}
void RasterizerGLES1::canvas_set_blend_mode(VS::MaterialBlendMode p_mode) {
switch(p_mode) {
case VS::MATERIAL_BLEND_MODE_MIX: {
//glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
} break;
case VS::MATERIAL_BLEND_MODE_ADD: {
//glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA,GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_SUB: {
//glBlendEquation(GL_FUNC_SUBTRACT);
glBlendFunc(GL_SRC_ALPHA,GL_ONE);
} break;
case VS::MATERIAL_BLEND_MODE_MUL: {
//glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
} break;
}
}
void RasterizerGLES1::canvas_begin_rect(const Matrix32& p_transform) {
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glScalef(2.0 / viewport.width, -2.0 / viewport.height, 0);
glTranslatef((-(viewport.width / 2.0)), (-(viewport.height / 2.0)), 0);
_gl_mult_transform(p_transform);
glPushMatrix();
}
void RasterizerGLES1::canvas_set_clip(bool p_clip, const Rect2& p_rect) {
if (p_clip) {
glEnable(GL_SCISSOR_TEST);
// glScissor(viewport.x+p_rect.pos.x,viewport.y+ (viewport.height-(p_rect.pos.y+p_rect.size.height)),
//p_rect.size.width,p_rect.size.height);
//glScissor(p_rect.pos.x,(viewport.height-(p_rect.pos.y+p_rect.size.height)),p_rect.size.width,p_rect.size.height);
glScissor(viewport.x+p_rect.pos.x,viewport.y+ (window_size.y-(p_rect.pos.y+p_rect.size.height)),
p_rect.size.width,p_rect.size.height);
} else {
glDisable(GL_SCISSOR_TEST);
}
}
void RasterizerGLES1::canvas_end_rect() {
glPopMatrix();
}
void RasterizerGLES1::canvas_draw_line(const Point2& p_from, const Point2& p_to,const Color& p_color,float p_width) {
glDisable(GL_TEXTURE_2D);
_set_glcoloro( p_color,canvas_opacity );
Vector3 verts[2]={
Vector3(p_from.x,p_from.y,0),
Vector3(p_to.x,p_to.y,0)
};
Color colors[2]={
p_color,
p_color
};
colors[0].a*=canvas_opacity;
colors[1].a*=canvas_opacity;
glLineWidth(p_width);
_draw_primitive(2,verts,0,colors,0);
}
static void _draw_textured_quad(const Rect2& p_rect, const Rect2& p_src_region, const Size2& p_tex_size,bool p_flip_h=false,bool p_flip_v=false ) {
Vector3 texcoords[4]= {
Vector3( p_src_region.pos.x/p_tex_size.width,
p_src_region.pos.y/p_tex_size.height, 0),
Vector3((p_src_region.pos.x+p_src_region.size.width)/p_tex_size.width,
p_src_region.pos.y/p_tex_size.height, 0),
Vector3( (p_src_region.pos.x+p_src_region.size.width)/p_tex_size.width,
(p_src_region.pos.y+p_src_region.size.height)/p_tex_size.height, 0),
Vector3( p_src_region.pos.x/p_tex_size.width,
(p_src_region.pos.y+p_src_region.size.height)/p_tex_size.height, 0)
};
if (p_flip_h) {
SWAP( texcoords[0], texcoords[1] );
SWAP( texcoords[2], texcoords[3] );
}
if (p_flip_v) {
SWAP( texcoords[1], texcoords[2] );
SWAP( texcoords[0], texcoords[3] );
}
Vector3 coords[4]= {
Vector3( p_rect.pos.x, p_rect.pos.y, 0 ),
Vector3( p_rect.pos.x+p_rect.size.width, p_rect.pos.y, 0 ),
Vector3( p_rect.pos.x+p_rect.size.width, p_rect.pos.y+p_rect.size.height, 0 ),
Vector3( p_rect.pos.x,p_rect.pos.y+p_rect.size.height, 0 )
};
_draw_primitive(4,coords,0,0,texcoords);
}
static void _draw_quad(const Rect2& p_rect) {
Vector3 coords[4]= {
Vector3( p_rect.pos.x,p_rect.pos.y, 0 ),
Vector3( p_rect.pos.x+p_rect.size.width,p_rect.pos.y, 0 ),
Vector3( p_rect.pos.x+p_rect.size.width,p_rect.pos.y+p_rect.size.height, 0 ),
Vector3( p_rect.pos.x,p_rect.pos.y+p_rect.size.height, 0 )
};
_draw_primitive(4,coords,0,0,0);
}
void RasterizerGLES1::canvas_draw_rect(const Rect2& p_rect, int p_flags, const Rect2& p_source,RID p_texture,const Color& p_modulate) {
_set_glcoloro( p_modulate,canvas_opacity );
if ( p_texture.is_valid() ) {
glEnable(GL_TEXTURE_2D);
Texture *texture = texture_owner.get( p_texture );
ERR_FAIL_COND(!texture);
glActiveTexture(GL_TEXTURE0);
glBindTexture( GL_TEXTURE_2D,texture->tex_id );
if (!(p_flags&CANVAS_RECT_REGION)) {
Rect2 region = Rect2(0,0,texture->width,texture->height);
_draw_textured_quad(p_rect,region,region.size,p_flags&CANVAS_RECT_FLIP_H,p_flags&CANVAS_RECT_FLIP_V);
} else {
_draw_textured_quad(p_rect, p_source, Size2(texture->width,texture->height),p_flags&CANVAS_RECT_FLIP_H,p_flags&CANVAS_RECT_FLIP_V );
}
} else {
glDisable(GL_TEXTURE_2D);
_draw_quad( p_rect );
}
}
void RasterizerGLES1::canvas_draw_style_box(const Rect2& p_rect, RID p_texture,const float *p_margin, bool p_draw_center,const Color& p_modulate) {
_set_glcoloro( p_modulate,canvas_opacity );
Texture *texture = texture_owner.get( p_texture );
ERR_FAIL_COND(!texture);
glEnable(GL_TEXTURE_2D);
glActiveTexture(GL_TEXTURE0);
glBindTexture( GL_TEXTURE_2D,texture->tex_id );
/* CORNERS */
_draw_textured_quad( // top left
Rect2( p_rect.pos, Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_TOP])),
Rect2( Point2(), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_TOP])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // top right
Rect2( Point2( p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_TOP])),
Rect2( Point2(texture->width-p_margin[MARGIN_RIGHT],0), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_TOP])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // bottom left
Rect2( Point2(p_rect.pos.x,p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_BOTTOM])),
Rect2( Point2(0,texture->height-p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_BOTTOM])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // bottom right
Rect2( Point2( p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_BOTTOM])),
Rect2( Point2(texture->width-p_margin[MARGIN_RIGHT],texture->height-p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_BOTTOM])),
Size2( texture->width, texture->height ) );
Rect2 rect_center( p_rect.pos+Point2( p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2( p_rect.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], p_rect.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM] ));
Rect2 src_center( Point2( p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2( texture->width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], texture->height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM] ));
_draw_textured_quad( // top
Rect2( Point2(rect_center.pos.x,p_rect.pos.y),Size2(rect_center.size.width,p_margin[MARGIN_TOP])),
Rect2( Point2(p_margin[MARGIN_LEFT],0), Size2(src_center.size.width,p_margin[MARGIN_TOP])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // bottom
Rect2( Point2(rect_center.pos.x,rect_center.pos.y+rect_center.size.height),Size2(rect_center.size.width,p_margin[MARGIN_BOTTOM])),
Rect2( Point2(p_margin[MARGIN_LEFT],src_center.pos.y+src_center.size.height), Size2(src_center.size.width,p_margin[MARGIN_BOTTOM])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // left
Rect2( Point2(p_rect.pos.x,rect_center.pos.y),Size2(p_margin[MARGIN_LEFT],rect_center.size.height)),
Rect2( Point2(0,p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_LEFT],src_center.size.height)),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // right
Rect2( Point2(rect_center.pos.x+rect_center.size.width,rect_center.pos.y),Size2(p_margin[MARGIN_RIGHT],rect_center.size.height)),
Rect2( Point2(src_center.pos.x+src_center.size.width,p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_RIGHT],src_center.size.height)),
Size2( texture->width, texture->height ) );
if (p_draw_center) {
_draw_textured_quad(
rect_center,
src_center,
Size2( texture->width, texture->height ));
}
}
void RasterizerGLES1::canvas_draw_primitive(const Vector<Point2>& p_points, const Vector<Color>& p_colors,const Vector<Point2>& p_uvs, RID p_texture,float p_width) {
ERR_FAIL_COND(p_points.size()<1);
Vector3 verts[4];
Vector3 uvs[4];
_set_glcoloro( Color(1,1,1),canvas_opacity );
for(int i=0;i<p_points.size();i++) {
verts[i]=Vector3(p_points[i].x,p_points[i].y,0);
}
for(int i=0;i<p_uvs.size();i++) {
uvs[i]=Vector3(p_uvs[i].x,p_uvs[i].y,0);
}
if (p_texture.is_valid()) {
glEnable(GL_TEXTURE_2D);
Texture *texture = texture_owner.get( p_texture );
if (texture) {
glActiveTexture(GL_TEXTURE0);
glBindTexture( GL_TEXTURE_2D,texture->tex_id );
}
}
glLineWidth(p_width);
_draw_primitive(p_points.size(),&verts[0],NULL,p_colors.size()?&p_colors[0]:NULL,p_uvs.size()?uvs:NULL);
}
static const int _max_draw_poly_indices = 8*1024;
static uint16_t _draw_poly_indices[_max_draw_poly_indices];
static float _verts3[_max_draw_poly_indices];
void RasterizerGLES1::canvas_draw_polygon(int p_vertex_count, const int* p_indices, const Vector2* p_vertices, const Vector2* p_uvs, const Color* p_colors,const RID& p_texture,bool p_singlecolor) {
bool do_colors=false;
//reset_state();
if (p_singlecolor) {
Color m = *p_colors;
m.a*=canvas_opacity;
glColor4f(m.r, m.g, m.b, m.a);
} else if (!p_colors) {
glColor4f(1, 1, 1, canvas_opacity);
} else
do_colors=true;
glColor4f(1, 1, 1, 1);
Texture* texture = NULL;
if (p_texture.is_valid()) {
glEnable(GL_TEXTURE_2D);
texture = texture_owner.get( p_texture );
if (texture) {
glActiveTexture(GL_TEXTURE0);
glBindTexture( GL_TEXTURE_2D,texture->tex_id );
}
}
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, (GLvoid*)p_vertices);
if (do_colors) {
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(4,GL_FLOAT, 0, p_colors);
} else {
glDisableClientState(GL_COLOR_ARRAY);
}
if (texture && p_uvs) {
glClientActiveTexture(GL_TEXTURE0);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, 0, p_uvs);
} else {
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
if (p_indices) {
for (int i=0; i<p_vertex_count; i++) {
_draw_poly_indices[i] = p_indices[i];
};
glDrawElements(GL_TRIANGLES, p_vertex_count, GL_UNSIGNED_SHORT, _draw_poly_indices );
} else {
glDrawArrays(GL_TRIANGLES,0,p_vertex_count);
}
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
void RasterizerGLES1::canvas_set_transform(const Matrix32& p_transform) {
//restore
glPopMatrix();
glPushMatrix();
//set
_gl_mult_transform(p_transform);
}
/* FX */
RID RasterizerGLES1::fx_create() {
FX *fx = memnew( FX );
ERR_FAIL_COND_V(!fx,RID());
return fx_owner.make_rid(fx);
}
void RasterizerGLES1::fx_get_effects(RID p_fx,List<String> *p_effects) const {
FX *fx = fx_owner.get(p_fx);
ERR_FAIL_COND(!fx);
p_effects->clear();
p_effects->push_back("bgcolor");
p_effects->push_back("skybox");
p_effects->push_back("antialias");
//p_effects->push_back("hdr");
p_effects->push_back("glow"); // glow has a bloom parameter, too
p_effects->push_back("ssao");
p_effects->push_back("fog");
p_effects->push_back("dof_blur");
p_effects->push_back("toon");
p_effects->push_back("edge");
}
void RasterizerGLES1::fx_set_active(RID p_fx,const String& p_effect, bool p_active) {
FX *fx = fx_owner.get(p_fx);
ERR_FAIL_COND(!fx);
if (p_effect=="bgcolor")
fx->bgcolor_active=p_active;
else if (p_effect=="skybox")
fx->skybox_active=p_active;
else if (p_effect=="antialias")
fx->antialias_active=p_active;
else if (p_effect=="glow")
fx->glow_active=p_active;
else if (p_effect=="ssao")
fx->ssao_active=p_active;
else if (p_effect=="fog")
fx->fog_active=p_active;
// else if (p_effect=="dof_blur")
// fx->dof_blur_active=p_active;
else if (p_effect=="toon")
fx->toon_active=p_active;
else if (p_effect=="edge")
fx->edge_active=p_active;
}
bool RasterizerGLES1::fx_is_active(RID p_fx,const String& p_effect) const {
FX *fx = fx_owner.get(p_fx);
ERR_FAIL_COND_V(!fx,false);
if (p_effect=="bgcolor")
return fx->bgcolor_active;
else if (p_effect=="skybox")
return fx->skybox_active;
else if (p_effect=="antialias")
return fx->antialias_active;
else if (p_effect=="glow")
return fx->glow_active;
else if (p_effect=="ssao")
return fx->ssao_active;
else if (p_effect=="fog")
return fx->fog_active;
//else if (p_effect=="dof_blur")
// return fx->dof_blur_active;
else if (p_effect=="toon")
return fx->toon_active;
else if (p_effect=="edge")
return fx->edge_active;
return false;
}
void RasterizerGLES1::fx_get_effect_params(RID p_fx,const String& p_effect,List<PropertyInfo> *p_params) const {
FX *fx = fx_owner.get(p_fx);
ERR_FAIL_COND(!fx);
if (p_effect=="bgcolor") {
p_params->push_back( PropertyInfo( Variant::COLOR, "color" ) );
} else if (p_effect=="skybox") {
p_params->push_back( PropertyInfo( Variant::_RID, "cubemap" ) );
} else if (p_effect=="antialias") {
p_params->push_back( PropertyInfo( Variant::REAL, "tolerance", PROPERTY_HINT_RANGE,"1,128,1" ) );
} else if (p_effect=="glow") {
p_params->push_back( PropertyInfo( Variant::INT, "passes", PROPERTY_HINT_RANGE,"1,4,1" ) );
p_params->push_back( PropertyInfo( Variant::REAL, "attenuation", PROPERTY_HINT_RANGE,"0.01,8.0,0.01" ) );
p_params->push_back( PropertyInfo( Variant::REAL, "bloom", PROPERTY_HINT_RANGE,"-1.0,1.0,0.01" ) );
} else if (p_effect=="ssao") {
p_params->push_back( PropertyInfo( Variant::REAL, "radius", PROPERTY_HINT_RANGE,"0.0,16.0,0.01" ) );
p_params->push_back( PropertyInfo( Variant::REAL, "max_distance", PROPERTY_HINT_RANGE,"0.0,256.0,0.01" ) );
p_params->push_back( PropertyInfo( Variant::REAL, "range_max", PROPERTY_HINT_RANGE,"0.0,1.0,0.01" ) );
p_params->push_back( PropertyInfo( Variant::REAL, "range_min", PROPERTY_HINT_RANGE,"0.0,1.0,0.01" ) );
p_params->push_back( PropertyInfo( Variant::REAL, "attenuation", PROPERTY_HINT_RANGE,"0.0,8.0,0.01" ) );
} else if (p_effect=="fog") {
p_params->push_back( PropertyInfo( Variant::REAL, "begin", PROPERTY_HINT_RANGE,"0.0,8192,0.01" ) );
p_params->push_back( PropertyInfo( Variant::REAL, "end", PROPERTY_HINT_RANGE,"0.0,8192,0.01" ) );
p_params->push_back( PropertyInfo( Variant::REAL, "attenuation", PROPERTY_HINT_RANGE,"0.0,8.0,0.01" ) );
p_params->push_back( PropertyInfo( Variant::COLOR, "color_begin" ) );
p_params->push_back( PropertyInfo( Variant::COLOR, "color_end" ) );
p_params->push_back( PropertyInfo( Variant::BOOL, "fog_bg" ) );
// } else if (p_effect=="dof_blur") {
// return fx->dof_blur_active;
} else if (p_effect=="toon") {
p_params->push_back( PropertyInfo( Variant::REAL, "treshold", PROPERTY_HINT_RANGE,"0.0,1.0,0.01" ) );
p_params->push_back( PropertyInfo( Variant::REAL, "soft", PROPERTY_HINT_RANGE,"0.001,1.0,0.001" ) );
} else if (p_effect=="edge") {
}
}
Variant RasterizerGLES1::fx_get_effect_param(RID p_fx,const String& p_effect,const String& p_param) const {
FX *fx = fx_owner.get(p_fx);
ERR_FAIL_COND_V(!fx,Variant());
if (p_effect=="bgcolor") {
if (p_param=="color")
return fx->bgcolor;
} else if (p_effect=="skybox") {
if (p_param=="cubemap")
return fx->skybox_cubemap;
} else if (p_effect=="antialias") {
if (p_param=="tolerance")
return fx->antialias_tolerance;
} else if (p_effect=="glow") {
if (p_param=="passes")
return fx->glow_passes;
if (p_param=="attenuation")
return fx->glow_attenuation;
if (p_param=="bloom")
return fx->glow_bloom;
} else if (p_effect=="ssao") {
if (p_param=="attenuation")
return fx->ssao_attenuation;
if (p_param=="max_distance")
return fx->ssao_max_distance;
if (p_param=="range_max")
return fx->ssao_range_max;
if (p_param=="range_min")
return fx->ssao_range_min;
if (p_param=="radius")
return fx->ssao_radius;
} else if (p_effect=="fog") {
if (p_param=="begin")
return fx->fog_near;
if (p_param=="end")
return fx->fog_far;
if (p_param=="attenuation")
return fx->fog_attenuation;
if (p_param=="color_begin")
return fx->fog_color_near;
if (p_param=="color_end")
return fx->fog_color_far;
if (p_param=="fog_bg")
return fx->fog_bg;
// } else if (p_effect=="dof_blur") {
// return fx->dof_blur_active;
} else if (p_effect=="toon") {
if (p_param=="treshold")
return fx->toon_treshold;
if (p_param=="soft")
return fx->toon_soft;
} else if (p_effect=="edge") {
}
return Variant();
}
void RasterizerGLES1::fx_set_effect_param(RID p_fx,const String& p_effect, const String& p_param, const Variant& p_value) {
FX *fx = fx_owner.get(p_fx);
ERR_FAIL_COND(!fx);
if (p_effect=="bgcolor") {
if (p_param=="color")
fx->bgcolor=p_value;
} else if (p_effect=="skybox") {
if (p_param=="cubemap")
fx->skybox_cubemap=p_value;
} else if (p_effect=="antialias") {
if (p_param=="tolerance")
fx->antialias_tolerance=p_value;
} else if (p_effect=="glow") {
if (p_param=="passes")
fx->glow_passes=p_value;
if (p_param=="attenuation")
fx->glow_attenuation=p_value;
if (p_param=="bloom")
fx->glow_bloom=p_value;
} else if (p_effect=="ssao") {
if (p_param=="attenuation")
fx->ssao_attenuation=p_value;
if (p_param=="radius")
fx->ssao_radius=p_value;
if (p_param=="max_distance")
fx->ssao_max_distance=p_value;
if (p_param=="range_max")
fx->ssao_range_max=p_value;
if (p_param=="range_min")
fx->ssao_range_min=p_value;
} else if (p_effect=="fog") {
if (p_param=="begin")
fx->fog_near=p_value;
if (p_param=="end")
fx->fog_far=p_value;
if (p_param=="attenuation")
fx->fog_attenuation=p_value;
if (p_param=="color_begin")
fx->fog_color_near=p_value;
if (p_param=="color_end")
fx->fog_color_far=p_value;
if (p_param=="fog_bg")
fx->fog_bg=p_value;
// } else if (p_effect=="dof_blur") {
// fx->dof_blur_active=p_value;
} else if (p_effect=="toon") {
if (p_param=="treshold")
fx->toon_treshold=p_value;
if (p_param=="soft")
fx->toon_soft=p_value;
} else if (p_effect=="edge") {
}
}
/* ENVIRONMENT */
RID RasterizerGLES1::environment_create() {
Environment * env = memnew( Environment );
return environment_owner.make_rid(env);
}
void RasterizerGLES1::environment_set_background(RID p_env,VS::EnvironmentBG p_bg) {
ERR_FAIL_INDEX(p_bg,VS::ENV_BG_MAX);
Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND(!env);
env->bg_mode=p_bg;
}
VS::EnvironmentBG RasterizerGLES1::environment_get_background(RID p_env) const{
const Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND_V(!env,VS::ENV_BG_MAX);
return env->bg_mode;
}
void RasterizerGLES1::environment_set_background_param(RID p_env,VS::EnvironmentBGParam p_param, const Variant& p_value){
ERR_FAIL_INDEX(p_param,VS::ENV_BG_PARAM_MAX);
Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND(!env);
env->bg_param[p_param]=p_value;
}
Variant RasterizerGLES1::environment_get_background_param(RID p_env,VS::EnvironmentBGParam p_param) const{
ERR_FAIL_INDEX_V(p_param,VS::ENV_BG_PARAM_MAX,Variant());
const Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND_V(!env,Variant());
return env->bg_param[p_param];
}
void RasterizerGLES1::environment_set_enable_fx(RID p_env,VS::EnvironmentFx p_effect,bool p_enabled){
ERR_FAIL_INDEX(p_effect,VS::ENV_FX_MAX);
Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND(!env);
env->fx_enabled[p_effect]=p_enabled;
}
bool RasterizerGLES1::environment_is_fx_enabled(RID p_env,VS::EnvironmentFx p_effect) const{
ERR_FAIL_INDEX_V(p_effect,VS::ENV_FX_MAX,false);
const Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND_V(!env,false);
return env->fx_enabled[p_effect];
}
void RasterizerGLES1::environment_fx_set_param(RID p_env,VS::EnvironmentFxParam p_param,const Variant& p_value){
ERR_FAIL_INDEX(p_param,VS::ENV_FX_PARAM_MAX);
Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND(!env);
env->fx_param[p_param]=p_value;
}
Variant RasterizerGLES1::environment_fx_get_param(RID p_env,VS::EnvironmentFxParam p_param) const{
ERR_FAIL_INDEX_V(p_param,VS::ENV_FX_PARAM_MAX,Variant());
const Environment * env = environment_owner.get(p_env);
ERR_FAIL_COND_V(!env,Variant());
return env->fx_param[p_param];
}
/*MISC*/
bool RasterizerGLES1::is_texture(const RID& p_rid) const {
return texture_owner.owns(p_rid);
}
bool RasterizerGLES1::is_material(const RID& p_rid) const {
return material_owner.owns(p_rid);
}
bool RasterizerGLES1::is_mesh(const RID& p_rid) const {
return mesh_owner.owns(p_rid);
}
bool RasterizerGLES1::is_multimesh(const RID& p_rid) const {
return multimesh_owner.owns(p_rid);
}
bool RasterizerGLES1::is_particles(const RID &p_beam) const {
return particles_owner.owns(p_beam);
}
bool RasterizerGLES1::is_light(const RID& p_rid) const {
return light_owner.owns(p_rid);
}
bool RasterizerGLES1::is_light_instance(const RID& p_rid) const {
return light_instance_owner.owns(p_rid);
}
bool RasterizerGLES1::is_particles_instance(const RID& p_rid) const {
return particles_instance_owner.owns(p_rid);
}
bool RasterizerGLES1::is_skeleton(const RID& p_rid) const {
return skeleton_owner.owns(p_rid);
}
bool RasterizerGLES1::is_environment(const RID& p_rid) const {
return environment_owner.owns(p_rid);
}
bool RasterizerGLES1::is_fx(const RID& p_rid) const {
return fx_owner.owns(p_rid);
}
bool RasterizerGLES1::is_shader(const RID& p_rid) const {
return false;
}
void RasterizerGLES1::free(const RID& p_rid) {
if (texture_owner.owns(p_rid)) {
// delete the texture
Texture *texture = texture_owner.get(p_rid);
glDeleteTextures( 1,&texture->tex_id );
_rinfo.texture_mem-=texture->total_data_size;
texture_owner.free(p_rid);
memdelete(texture);
} else if (shader_owner.owns(p_rid)) {
// delete the texture
Shader *shader = shader_owner.get(p_rid);
shader_owner.free(p_rid);
memdelete(shader);
} else if (material_owner.owns(p_rid)) {
Material *material = material_owner.get( p_rid );
ERR_FAIL_COND(!material);
material_owner.free(p_rid);
memdelete(material);
} else if (mesh_owner.owns(p_rid)) {
Mesh *mesh = mesh_owner.get(p_rid);
ERR_FAIL_COND(!mesh);
for (int i=0;i<mesh->surfaces.size();i++) {
Surface *surface = mesh->surfaces[i];
if (surface->array_local != 0) {
memfree(surface->array_local);
};
if (surface->index_array_local != 0) {
memfree(surface->index_array_local);
};
if (mesh->morph_target_count>0) {
for(int i=0;i<mesh->morph_target_count;i++) {
memfree(surface->morph_targets_local[i].array);
}
memfree(surface->morph_targets_local);
surface->morph_targets_local=NULL;
}
if (surface->vertex_id)
glDeleteBuffers(1,&surface->vertex_id);
if (surface->index_id)
glDeleteBuffers(1,&surface->index_id);
memdelete( surface );
};
mesh->surfaces.clear();
mesh_owner.free(p_rid);
memdelete(mesh);
} else if (multimesh_owner.owns(p_rid)) {
MultiMesh *multimesh = multimesh_owner.get(p_rid);
ERR_FAIL_COND(!multimesh);
multimesh_owner.free(p_rid);
memdelete(multimesh);
} else if (particles_owner.owns(p_rid)) {
Particles *particles = particles_owner.get(p_rid);
ERR_FAIL_COND(!particles);
particles_owner.free(p_rid);
memdelete(particles);
} else if (particles_instance_owner.owns(p_rid)) {
ParticlesInstance *particles_isntance = particles_instance_owner.get(p_rid);
ERR_FAIL_COND(!particles_isntance);
particles_instance_owner.free(p_rid);
memdelete(particles_isntance);
} else if (skeleton_owner.owns(p_rid)) {
Skeleton *skeleton = skeleton_owner.get( p_rid );
ERR_FAIL_COND(!skeleton)
skeleton_owner.free(p_rid);
memdelete(skeleton);
} else if (light_owner.owns(p_rid)) {
Light *light = light_owner.get( p_rid );
ERR_FAIL_COND(!light)
light_owner.free(p_rid);
memdelete(light);
} else if (light_instance_owner.owns(p_rid)) {
LightInstance *light_instance = light_instance_owner.get( p_rid );
ERR_FAIL_COND(!light_instance);
light_instance->clear_shadow_buffers();
light_instance_owner.free(p_rid);
memdelete( light_instance );
} else if (fx_owner.owns(p_rid)) {
FX *fx = fx_owner.get( p_rid );
ERR_FAIL_COND(!fx);
fx_owner.free(p_rid);
memdelete( fx );
} else if (environment_owner.owns(p_rid)) {
Environment *env = environment_owner.get( p_rid );
ERR_FAIL_COND(!env);
environment_owner.free(p_rid);
memdelete( env );
};
}
void RasterizerGLES1::custom_shade_model_set_shader(int p_model, RID p_shader) {
};
RID RasterizerGLES1::custom_shade_model_get_shader(int p_model) const {
return RID();
};
void RasterizerGLES1::custom_shade_model_set_name(int p_model, const String& p_name) {
};
String RasterizerGLES1::custom_shade_model_get_name(int p_model) const {
return String();
};
void RasterizerGLES1::custom_shade_model_set_param_info(int p_model, const List<PropertyInfo>& p_info) {
};
void RasterizerGLES1::custom_shade_model_get_param_info(int p_model, List<PropertyInfo>* p_info) const {
};
void RasterizerGLES1::ShadowBuffer::init(int p_size) {
#if 0
size=p_size;
glActiveTexture(GL_TEXTURE0);
glGenTextures(1, &depth);
ERR_FAIL_COND(depth==0);
/* Setup Depth Texture */
glBindTexture(GL_TEXTURE_2D, depth);
glTexImage2D (GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, p_size, p_size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
float border_color[]={1.0f, 1.0f, 1.0f, 1.0f};
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, border_color);
/* Create FBO */
glGenFramebuffers(1, &fbo);
ERR_FAIL_COND( fbo==0 );
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0);
glDrawBuffer(GL_FALSE);
glReadBuffer(GL_FALSE);
/* Check FBO creation */
GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER);
ERR_FAIL_COND( status==GL_FRAMEBUFFER_UNSUPPORTED );
glBindFramebufferEXT(GL_FRAMEBUFFER, 0);
#endif
}
void RasterizerGLES1::_init_shadow_buffers() {
int near_shadow_size=GLOBAL_DEF("rasterizer/near_shadow_size",512);
int far_shadow_size=GLOBAL_DEF("rasterizer/far_shadow_size",64);
near_shadow_buffers.resize( GLOBAL_DEF("rasterizer/near_shadow_count",4) );
far_shadow_buffers.resize( GLOBAL_DEF("rasterizer/far_shadow_count",16) );
shadow_near_far_split_size_ratio = GLOBAL_DEF("rasterizer/shadow_near_far_split_size_ratio",0.3);
for (int i=0;i<near_shadow_buffers.size();i++) {
near_shadow_buffers[i].init(near_shadow_size );
}
for (int i=0;i<far_shadow_buffers.size();i++) {
far_shadow_buffers[i].init(far_shadow_size);
}
}
void RasterizerGLES1::_update_framebuffer() {
return;
#if 0
bool want_16 = GLOBAL_DEF("rasterizer/support_hdr",true);
int blur_buffer_div=GLOBAL_DEF("rasterizer/blur_buffer_div",4);
bool use_fbo = GLOBAL_DEF("rasterizer/use_fbo",true);
if (blur_buffer_div<1)
blur_buffer_div=2;
if (use_fbo==framebuffer.active && framebuffer.width==window_size.width && framebuffer.height==window_size.height && framebuffer.buff16==want_16)
return; //nuthin to change
if (framebuffer.fbo!=0) {
WARN_PRINT("Resizing the screen multiple times while using to FBOs may decrease performance on some hardware.");
//free the framebuffarz
glDeleteRenderbuffers(1,&framebuffer.fbo);
glDeleteTextures(1,&framebuffer.depth);
glDeleteTextures(1,&framebuffer.color);
for(int i=0;i<2;i++) {
glDeleteRenderbuffers(1,&framebuffer.blur[i].fbo);
glDeleteTextures(1,&framebuffer.blur[i].color);
}
framebuffer.fbo=0;
}
framebuffer.active=use_fbo;
framebuffer.width=window_size.width;
framebuffer.height=window_size.height;
framebuffer.buff16=want_16;
if (!use_fbo)
return;
glGenFramebuffers(1, &framebuffer.fbo);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo);
print_line("generating fbo, id: "+itos(framebuffer.fbo));
//depth
glGenTextures(1, &framebuffer.depth);
glBindTexture(GL_TEXTURE_2D, framebuffer.depth);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, framebuffer.width, framebuffer.height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE );
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, framebuffer.depth, 0);
//color
glGenTextures(1, &framebuffer.color);
glBindTexture(GL_TEXTURE_2D, framebuffer.color);
glTexImage2D(GL_TEXTURE_2D, 0, want_16?GL_RGB16F:GL_RGBA8, framebuffer.width, framebuffer.height, 0, GL_RGBA, want_16?GL_HALF_FLOAT:GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, framebuffer.color, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
ERR_FAIL_COND( status != GL_FRAMEBUFFER_COMPLETE );
for(int i=0;i<2;i++) {
glGenFramebuffers(1, &framebuffer.blur[i].fbo);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[i].fbo);
glGenTextures(1, &framebuffer.blur[i].color);
glBindTexture(GL_TEXTURE_2D, framebuffer.blur[i].color);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, framebuffer.width/blur_buffer_div, framebuffer.height/blur_buffer_div, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, framebuffer.blur[i].color, 0);
status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
ERR_FAIL_COND( status != GL_FRAMEBUFFER_COMPLETE );
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
#endif
}
void RasterizerGLES1::init() {
#ifdef GLES_OVER_GL
glewInit();
#endif
scene_pass=1;
if (ContextGL::get_singleton())
ContextGL::get_singleton()->make_current();
Set<String> extensions;
Vector<String> strings = String((const char*)glGetString( GL_EXTENSIONS )).split(" ",false);
for(int i=0;i<strings.size();i++) {
extensions.insert(strings[i]);
// print_line(strings[i]);
}
GLint tmp = 0;
// glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &tmp);
// print_line("GL_MAX_VERTEX_ATTRIBS "+itos(tmp));
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glFrontFace(GL_CW);
//glEnable(GL_TEXTURE_2D);
default_material=create_default_material();
_init_shadow_buffers();
shadow=NULL;
shadow_pass=0;
framebuffer.fbo=0;
framebuffer.width=0;
framebuffer.height=0;
framebuffer.buff16=false;
framebuffer.blur[0].fbo=false;
framebuffer.blur[1].fbo=false;
framebuffer.active=false;
//do a single initial clear
glClearColor(0,0,0,1);
//glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
skinned_buffer_size = GLOBAL_DEF("rasterizer/skinned_buffer_size",DEFAULT_SKINNED_BUFFER_SIZE);
skinned_buffer = memnew_arr( uint8_t, skinned_buffer_size );
glGenTextures(1, &white_tex);
unsigned char whitetexdata[8*8*3];
for(int i=0;i<8*8*3;i++) {
whitetexdata[i]=255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,white_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE,whitetexdata);
npo2_textures_available=false;
pvr_supported=extensions.has("GL_IMG_texture_compression_pvrtc");
etc_supported=true;
s3tc_supported=false;
_rinfo.texture_mem=0;
}
void RasterizerGLES1::finish() {
memdelete(skinned_buffer);
}
int RasterizerGLES1::get_render_info(VS::RenderInfo p_info) {
switch(p_info) {
case VS::INFO_OBJECTS_IN_FRAME: {
return _rinfo.object_count;
} break;
case VS::INFO_VERTICES_IN_FRAME: {
return _rinfo.vertex_count;
} break;
case VS::INFO_MATERIAL_CHANGES_IN_FRAME: {
return _rinfo.mat_change_count;
} break;
case VS::INFO_SHADER_CHANGES_IN_FRAME: {
return _rinfo.shader_change_count;
} break;
case VS::INFO_USAGE_VIDEO_MEM_TOTAL: {
return 0;
} break;
case VS::INFO_VIDEO_MEM_USED: {
return get_render_info(VS::INFO_TEXTURE_MEM_USED)+get_render_info(VS::INFO_VERTEX_MEM_USED);
} break;
case VS::INFO_TEXTURE_MEM_USED: {
_rinfo.texture_mem;
} break;
case VS::INFO_VERTEX_MEM_USED: {
return 0;
} break;
}
return false;
}
bool RasterizerGLES1::needs_to_draw_next_frame() const {
return false;
}
void RasterizerGLES1::reload_vram() {
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glFrontFace(GL_CW);
//do a single initial clear
glClearColor(0,0,0,1);
//glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
/*
glGenTextures(1, &white_tex);
unsigned char whitetexdata[8*8*3];
for(int i=0;i<8*8*3;i++) {
whitetexdata[i]=255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,white_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE,whitetexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,0);
*/
glEnable(GL_TEXTURE_2D);
glActiveTexture(GL_TEXTURE0);
List<RID> textures;
texture_owner.get_owned_list(&textures);
keep_copies=false;
for(List<RID>::Element *E=textures.front();E;E=E->next()) {
RID tid = E->get();
Texture *t=texture_owner.get(tid);
ERR_CONTINUE(!t);
t->tex_id=0;
t->data_size=0;
glGenTextures(1, &t->tex_id);
t->active=false;
texture_allocate(tid,t->width,t->height,t->format,t->flags);
bool had_image=false;
for(int i=0;i<6;i++) {
if (!t->image[i].empty()) {
texture_set_data(tid,t->image[i],VS::CubeMapSide(i));
had_image=true;
}
}
if (!had_image && t->reloader) {
Object *rl = ObjectDB::get_instance(t->reloader);
if (rl)
rl->call(t->reloader_func,tid);
}
}
keep_copies=true;
}
bool RasterizerGLES1::has_feature(VS::Features p_feature) const {
switch( p_feature) {
case VS::FEATURE_SHADERS: return false;
case VS::FEATURE_NEEDS_RELOAD_HOOK: return use_reload_hooks;
default: return false;
}
}
RasterizerGLES1::RasterizerGLES1(bool p_keep_copies,bool p_use_reload_hooks) {
keep_copies=p_keep_copies;
pack_arrays=false;
use_reload_hooks=p_use_reload_hooks;
frame = 0;
};
RasterizerGLES1::~RasterizerGLES1() {
};
#endif