pulumi/sdk/nodejs/cmd/run/index.ts

266 lines
11 KiB
TypeScript
Raw Normal View History

// Copyright 2016-2018, Pulumi Corporation. All rights reserved.
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
// This is the entrypoint for running a Node.js program with minimal scaffolding.
import * as fs from "fs";
import * as minimist from "minimist";
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
import * as path from "path";
import * as util from "util";
import * as pulumi from "../../";
Improve output formatting This change improves our output formatting by generally adding fewer prefixes. As shown in pulumi/pulumi#359, we were being excessively verbose in many places, including prefixing every console.out with "langhost[nodejs].stdout: ", displaying full stack traces for simple errors like missing configuration, etc. Overall, this change includes the following: * Don't prefix stdout and stderr output from the program, other than the standard "info:" prefix. I experimented with various schemes here, but they all felt gratuitous. Simply emitting the output seems fine, especially as it's closer to what would happen if you just ran the program under node. * Do NOT make writes to stderr fail the plan/deploy. Previously we assumed that any console.errors, for instance, meant that the overall program should fail. This simply isn't how stderr is treated generally and meant you couldn't use certain logging techniques and libraries, among other things. * Do make sure that stderr writes in the program end up going to stderr in the Pulumi CLI output, however, so that redirection works as it should. This required a new Infoerr log level. * Make a small fix to the planning logic so we don't attempt to print the summary if an error occurs. * Finally, add a new error type, RunError, that when thrown and uncaught does not result in a full stack trace being printed. Anyone can use this, however, we currently use it for config errors so that we can terminate with a pretty error message, rather than the monstrosity shown in pulumi/pulumi#359.
2017-09-23 14:20:11 +02:00
import { RunError } from "../../errors";
import * as log from "../../log";
import * as runtime from "../../runtime";
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
function usage(): void {
console.error(`usage: RUN <flags> [program] <[arg]...>`);
console.error(``);
console.error(` where [flags] may include`);
console.error(` --project=p set the project name to p`);
console.error(` --stack=s set the stack name to s`);
console.error(` --config.k=v... set runtime config key k to value v`);
console.error(` --parallel=p run up to p resource operations in parallel (default is serial)`);
console.error(` --dry-run true to simulate resource changes, but without making them`);
console.error(` --pwd=pwd change the working directory before running the program`);
console.error(` --monitor=addr [required] the RPC address for a resource monitor to connect to`);
console.error(` --engine=addr the RPC address for a resource engine to connect to`);
console.error(` --tracing=url a Zipkin-compatible endpoint to send tracing data to`);
console.error(``);
console.error(` and [program] is a JavaScript program to run in Node.js, and [arg]... optional args to it.`);
}
function printErrorUsageAndExit(message: string): never {
console.error(message);
usage();
return process.exit(-1);
}
/**
* Attempts to provide a detailed error message for module load failure if the
* module that failed to load is the top-level module.
* @param program The name of the program given to `run`, i.e. the top level module
* @param error The error that occured. Must be a module load error.
*/
function reportModuleLoadFailure(program: string, error: Error): never {
// error is guaranteed to be a Node module load error. Node emits a very
// specific string in its error message for module load errors, which includes
// the module it was trying to load.
const errorRegex = /Cannot find module '(.*)'/;
// If there's no match, who knows what this exception is; it's not something
// we can provide an intelligent diagnostic for.
const moduleNameMatches = errorRegex.exec(error.message);
if (moduleNameMatches === null) {
throw error;
}
// Is the module that failed to load exactly the one that this script considered to
// be the top-level module for this program?
//
// We are only interested in producing good diagnostics for top-level module loads,
// since anything else are probably user code issues.
const moduleName = moduleNameMatches[1];
if (moduleName !== program) {
throw error;
}
console.error(`We failed to locate the entry point for your program: ${program}`);
// From here on out, we're going to try to inspect the program we're being asked to run
// a little to see what sort of details we can glean from it, in the hopes of producing
// a better error message.
//
// The first step of this is trying to slurp up a package.json for this program, if
// one exists.
const stat = fs.lstatSync(program);
let projectRoot: string;
if (stat.isDirectory()) {
projectRoot = program;
} else {
projectRoot = path.dirname(program);
}
let packageObject: Record<string, any>;
try {
const packageJson = path.join(projectRoot, "package.json");
packageObject = require(packageJson);
} catch {
// This is all best-effort so if we can't load the package.json file, that's
// fine.
return process.exit(1);
}
console.error("Here's what we think went wrong:");
// The objective here is to emit the best diagnostic we can, starting from the
// most specific to the least specific.
const deps = packageObject["dependencies"] || {};
const devDeps = packageObject["devDependencies"] || {};
const scripts = packageObject["scripts"] || {};
const mainProperty = packageObject["main"] || "index.js";
// Is there a build script associated with this program? It's a little confusing that the
// Pulumi CLI doesn't run build scripts before running the program so call that out
// explicitly.
if ("build" in scripts) {
const command = scripts["build"];
console.error(` * Your program looks like it has a build script associated with it ('${command}').\n`);
console.error("Pulumi does not run build scripts before running your program. " +
`Please run '${command}', 'yarn build', or 'npm build' and try again.`);
return process.exit(1);
}
// Not all typescript programs have build scripts. If we think it's a typescript program,
// tell the user to run tsc.
if ("typescript" in deps || "typescript" in devDeps) {
console.error(" * Your program looks like a TypeScript program. Have you run 'tsc'?");
return process.exit(1);
}
// Not all projects are typescript. If there's a main property, check that the file exists.
if (mainProperty !== undefined && typeof mainProperty === "string") {
const mainFile = path.join(projectRoot, mainProperty);
if (!fs.existsSync(mainFile)) {
console.error(` * Your program's 'main' file (${mainFile}) does not exist.`);
return process.exit(1);
}
}
console.error(" * Yowzas, our sincere apologies, we haven't seen this before!");
console.error(` Here is the raw exception message we received: ${error.message}`);
return process.exit(1);
}
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
export function main(args: string[]): void {
// See usage above for the intended usage of this program, including flags and required args.
const config: {[key: string]: string} = {};
const argv: minimist.ParsedArgs = minimist(args, {
boolean: [ "dry-run" ],
string: [ "project", "stack", "parallel", "pwd", "monitor", "engine", "tracing" ],
unknown: (arg: string) => {
if (arg.indexOf("-") === 0) {
return printErrorUsageAndExit(`error: Unrecognized flag ${arg}`);
}
return true;
},
stopEarly: true,
});
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
// Load configuration passed from the language plugin
runtime.ensureConfig();
// If there is a --project=p, and/or a --stack=s, use them in the options.
const project: string | undefined = argv["project"];
const stack: string | undefined = argv["stack"];
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
// If there is a --pwd directive, switch directories.
const pwd: string | undefined = argv["pwd"];
if (pwd) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
process.chdir(pwd);
}
// If resource parallelism was requested, turn it on.
let parallel: number | undefined;
if (argv["parallel"]) {
parallel = parseInt(argv["parallel"], 10);
if (isNaN(parallel)) {
return printErrorUsageAndExit(
`error: --parallel flag must specify a number: ${argv["parallel"]} is not a number`);
}
}
// If ther is a --dry-run directive, flip the switch. This controls whether we are planning vs. really doing it.
const dryRun: boolean = !!(argv["dry-run"]);
// If there is a monitor argument, connect to it.
const monitorAddr = argv["monitor"];
if (!monitorAddr) {
return printErrorUsageAndExit(`error: --monitor=addr must be provided.`);
}
// If there is an engine argument, connect to it too.
const engineAddr: string | undefined = argv["engine"];
// Now configure the runtime and get it ready to run the program.
runtime.setOptions({
project: project,
stack: stack,
dryRun: dryRun,
parallel: parallel,
monitorAddr: monitorAddr,
engineAddr: engineAddr,
});
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
// Pluck out the program and arguments.
if (argv._.length === 0) {
return printErrorUsageAndExit("error: Missing program to execute");
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
let program: string = argv._[0];
if (program.indexOf("/") !== 0) {
// If this isn't an absolute path, make it relative to the working directory.
program = path.join(process.cwd(), program);
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
// Now fake out the process-wide argv, to make the program think it was run normally.
const programArgs: string[] = argv._.slice(1);
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
process.argv = [ process.argv[0], process.argv[1], ...programArgs ];
// Set up the process uncaught exception, unhandled rejection, and program exit handlers.
let uncaught: Error | undefined;
const uncaughtHandler = (err: Error) => {
// First, log the error.
Improve output formatting This change improves our output formatting by generally adding fewer prefixes. As shown in pulumi/pulumi#359, we were being excessively verbose in many places, including prefixing every console.out with "langhost[nodejs].stdout: ", displaying full stack traces for simple errors like missing configuration, etc. Overall, this change includes the following: * Don't prefix stdout and stderr output from the program, other than the standard "info:" prefix. I experimented with various schemes here, but they all felt gratuitous. Simply emitting the output seems fine, especially as it's closer to what would happen if you just ran the program under node. * Do NOT make writes to stderr fail the plan/deploy. Previously we assumed that any console.errors, for instance, meant that the overall program should fail. This simply isn't how stderr is treated generally and meant you couldn't use certain logging techniques and libraries, among other things. * Do make sure that stderr writes in the program end up going to stderr in the Pulumi CLI output, however, so that redirection works as it should. This required a new Infoerr log level. * Make a small fix to the planning logic so we don't attempt to print the summary if an error occurs. * Finally, add a new error type, RunError, that when thrown and uncaught does not result in a full stack trace being printed. Anyone can use this, however, we currently use it for config errors so that we can terminate with a pretty error message, rather than the monstrosity shown in pulumi/pulumi#359.
2017-09-23 14:20:11 +02:00
if (err instanceof RunError) {
// For errors that are subtypes of RunError, we will print the message without hitting the unhandled error
// logic, which will dump all sorts of verbose spew like the origin source and stack trace.
log.error(err.message);
Improve output formatting This change improves our output formatting by generally adding fewer prefixes. As shown in pulumi/pulumi#359, we were being excessively verbose in many places, including prefixing every console.out with "langhost[nodejs].stdout: ", displaying full stack traces for simple errors like missing configuration, etc. Overall, this change includes the following: * Don't prefix stdout and stderr output from the program, other than the standard "info:" prefix. I experimented with various schemes here, but they all felt gratuitous. Simply emitting the output seems fine, especially as it's closer to what would happen if you just ran the program under node. * Do NOT make writes to stderr fail the plan/deploy. Previously we assumed that any console.errors, for instance, meant that the overall program should fail. This simply isn't how stderr is treated generally and meant you couldn't use certain logging techniques and libraries, among other things. * Do make sure that stderr writes in the program end up going to stderr in the Pulumi CLI output, however, so that redirection works as it should. This required a new Infoerr log level. * Make a small fix to the planning logic so we don't attempt to print the summary if an error occurs. * Finally, add a new error type, RunError, that when thrown and uncaught does not result in a full stack trace being printed. Anyone can use this, however, we currently use it for config errors so that we can terminate with a pretty error message, rather than the monstrosity shown in pulumi/pulumi#359.
2017-09-23 14:20:11 +02:00
}
else {
log.error(`Running program '${program}' failed with an unhandled exception:`);
log.error(util.format(err));
Improve output formatting This change improves our output formatting by generally adding fewer prefixes. As shown in pulumi/pulumi#359, we were being excessively verbose in many places, including prefixing every console.out with "langhost[nodejs].stdout: ", displaying full stack traces for simple errors like missing configuration, etc. Overall, this change includes the following: * Don't prefix stdout and stderr output from the program, other than the standard "info:" prefix. I experimented with various schemes here, but they all felt gratuitous. Simply emitting the output seems fine, especially as it's closer to what would happen if you just ran the program under node. * Do NOT make writes to stderr fail the plan/deploy. Previously we assumed that any console.errors, for instance, meant that the overall program should fail. This simply isn't how stderr is treated generally and meant you couldn't use certain logging techniques and libraries, among other things. * Do make sure that stderr writes in the program end up going to stderr in the Pulumi CLI output, however, so that redirection works as it should. This required a new Infoerr log level. * Make a small fix to the planning logic so we don't attempt to print the summary if an error occurs. * Finally, add a new error type, RunError, that when thrown and uncaught does not result in a full stack trace being printed. Anyone can use this, however, we currently use it for config errors so that we can terminate with a pretty error message, rather than the monstrosity shown in pulumi/pulumi#359.
2017-09-23 14:20:11 +02:00
}
// Remember that we failed with an error. Don't quit just yet so we have a chance to drain the message loop.
uncaught = err;
};
process.on("uncaughtException", uncaughtHandler);
process.on("unhandledRejection", uncaughtHandler);
process.on("exit", (code: number) => {
runtime.disconnectSync();
// If we don't already have an exit code, and we had an unhandled error, exit with a non-success.
if (code === 0 && uncaught) {
process.exit(1);
}
});
// Construct a `Stack` resource to represent the outputs of the program.
runtime.runInPulumiStack(() => {
// We run the program inside this context so that it adopts all resources.
//
// IDEA: This will miss any resources created on other turns of the event loop. I think that's a fundamental
// problem with the current Component design though - not sure what else we could do here.
//
// Now go ahead and execute the code. The process will remain alive until the message loop empties.
log.debug(`Running program '${program}' in pwd '${process.cwd()}' w/ args: ${programArgs}`);
try {
return require(program);
} catch (e) {
// User JavaScript can throw anything, so if it's not an Error it's definitely
// not something we want to catch up here.
if (!(e instanceof Error)) {
throw e;
}
// Give a better error message, if we can.
const errorCode = (<any>e).code;
if (errorCode === "MODULE_NOT_FOUND") {
reportModuleLoadFailure(program, e);
}
throw e;
}
});
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
main(process.argv.slice(2));