pulumi/pkg/codegen/hcl2/rewrite_convert.go

289 lines
9.7 KiB
Go
Raw Normal View History

package hcl2
import (
"strings"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/pulumi/pulumi/pkg/v3/codegen"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model"
"github.com/pulumi/pulumi/pkg/v3/codegen/schema"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
)
func sameSchemaTypes(xt, yt model.Type) bool {
xs, _ := GetSchemaForType(xt)
ys, _ := GetSchemaForType(yt)
if xs == ys {
return true
}
xu, ok := xs.(*schema.UnionType)
if !ok {
return false
}
yu, ok := ys.(*schema.UnionType)
if !ok {
return false
}
types := codegen.Set{}
for _, t := range xu.ElementTypes {
types.Add(t)
}
for _, t := range yu.ElementTypes {
if !types.Has(t) {
return false
}
}
return true
}
// rewriteConversions implements the core of RewriteConversions. It returns the rewritten expression and true if the
// type of the expression may have changed.
func rewriteConversions(x model.Expression, to model.Type) (model.Expression, bool) {
// If rewriting an operand changed its type and the type of the expression depends on the type of that operand, the
// expression must be typechecked in order to update its type.
var typecheck bool
switch x := x.(type) {
case *model.AnonymousFunctionExpression:
x.Body, _ = rewriteConversions(x.Body, to)
case *model.BinaryOpExpression:
x.LeftOperand, _ = rewriteConversions(x.LeftOperand, model.InputType(x.LeftOperandType()))
x.RightOperand, _ = rewriteConversions(x.RightOperand, model.InputType(x.RightOperandType()))
case *model.ConditionalExpression:
var trueChanged, falseChanged bool
x.Condition, _ = rewriteConversions(x.Condition, model.InputType(model.BoolType))
x.TrueResult, trueChanged = rewriteConversions(x.TrueResult, to)
x.FalseResult, falseChanged = rewriteConversions(x.FalseResult, to)
typecheck = trueChanged || falseChanged
case *model.ForExpression:
traverserType := model.NumberType
if x.Key != nil {
traverserType = model.StringType
x.Key, _ = rewriteConversions(x.Key, model.InputType(model.StringType))
}
if x.Condition != nil {
x.Condition, _ = rewriteConversions(x.Condition, model.InputType(model.BoolType))
}
valueType, diags := to.Traverse(model.MakeTraverser(traverserType))
contract.Ignore(diags)
x.Value, typecheck = rewriteConversions(x.Value, valueType.(model.Type))
case *model.FunctionCallExpression:
args := x.Args
for _, param := range x.Signature.Parameters {
if len(args) == 0 {
break
}
args[0], _ = rewriteConversions(args[0], model.InputType(param.Type))
args = args[1:]
}
if x.Signature.VarargsParameter != nil {
for i := range args {
args[i], _ = rewriteConversions(args[i], model.InputType(x.Signature.VarargsParameter.Type))
}
}
case *model.IndexExpression:
x.Key, _ = rewriteConversions(x.Key, x.KeyType())
case *model.ObjectConsExpression:
if v := resolveDiscriminatedUnions(x, to); v != nil {
to = v
typecheck = true
}
for i := range x.Items {
item := &x.Items[i]
var traverser hcl.Traverser
if lit, ok := item.Key.(*model.LiteralValueExpression); ok {
traverser = hcl.TraverseIndex{Key: lit.Value}
} else {
traverser = model.MakeTraverser(model.StringType)
}
valueType, diags := to.Traverse(traverser)
contract.Ignore(diags)
var valueChanged bool
item.Key, _ = rewriteConversions(item.Key, model.InputType(model.StringType))
item.Value, valueChanged = rewriteConversions(item.Value, valueType.(model.Type))
typecheck = typecheck || valueChanged
}
case *model.TupleConsExpression:
for i := range x.Expressions {
valueType, diags := to.Traverse(hcl.TraverseIndex{Key: cty.NumberIntVal(int64(i))})
contract.Ignore(diags)
var exprChanged bool
x.Expressions[i], exprChanged = rewriteConversions(x.Expressions[i], valueType.(model.Type))
typecheck = typecheck || exprChanged
}
case *model.UnaryOpExpression:
x.Operand, _ = rewriteConversions(x.Operand, model.InputType(x.OperandType()))
}
var typeChanged bool
if typecheck {
diags := x.Typecheck(false)
contract.Assert(len(diags) == 0)
typeChanged = true
}
// If we can convert a primitive value in place, do so.
if value, ok := convertPrimitiveValues(x, to); ok {
x, typeChanged = value, true
}
// If the expression's type is directly assignable to the destination type, no conversion is necessary.
if to.AssignableFrom(x.Type()) && sameSchemaTypes(to, x.Type()) {
return x, typeChanged
}
// Otherwise, wrap the expression in a call to __convert.
return NewConvertCall(x, to), true
}
// resolveDiscriminatedUnions reduces discriminated unions of object types to the type that matches
// the shape of the given object cons expression. A given object expression would only match a single
// case of the union.
func resolveDiscriminatedUnions(obj *model.ObjectConsExpression, modelType model.Type) model.Type {
modelUnion, ok := modelType.(*model.UnionType)
if !ok {
return nil
}
schType, ok := GetSchemaForType(modelUnion)
if !ok {
return nil
}
schType = codegen.UnwrapType(schType)
union, ok := schType.(*schema.UnionType)
if !ok || union.Discriminator == "" {
return nil
}
objTypes := GetDiscriminatedUnionObjectMapping(modelUnion)
for _, item := range obj.Items {
name, ok := item.Key.(*model.LiteralValueExpression)
if !ok || name.Value.AsString() != union.Discriminator {
continue
}
lit, ok := item.Value.(*model.TemplateExpression)
if !ok {
continue
}
discriminatorValue := lit.Parts[0].(*model.LiteralValueExpression).Value.AsString()
if ref, ok := union.Mapping[discriminatorValue]; ok {
discriminatorValue = strings.TrimPrefix(ref, "#/types/")
}
if t, ok := objTypes[discriminatorValue]; ok {
return t
}
}
return nil
}
// RewriteConversions wraps automatic conversions indicated by the HCL2 spec and conversions to schema-annotated types
// in calls to the __convert intrinsic.
//
// Note that the result is a bit out of line with the HCL2 spec, as static conversions may happen earlier than they
// would at runtime. For example, consider the case of a tuple of strings that is being converted to a list of numbers:
//
// [a, b, c]
//
// Calling RewriteConversions on this expression with a destination type of list(number) would result in this IR:
//
// [__convert(a), __convert(b), __convert(c)]
//
// If any of these conversions fail, the evaluation of the tuple itself fails. The HCL2 evaluation semantics, however,
// would convert the tuple _after_ it has been evaluated. The IR that matches these semantics is
//
// __convert([a, b, c])
//
// This transform uses the former representation so that it can appropriately insert calls to `__convert` in the face
// of schema-annotated types. There is a reasonable argument to be made that RewriteConversions should not be
// responsible for propagating schema annotations, and that this pass should be split in two: one pass would insert
// conversions that match HCL2 evaluation semantics, and another would insert calls to some separate intrinsic in order
// to propagate schema information.
func RewriteConversions(x model.Expression, to model.Type) model.Expression {
x, _ = rewriteConversions(x, to)
return x
}
// convertPrimitiveValues returns a new expression if the given expression can be converted to another primitive type
// (bool, int, number, string) that matches the target type.
func convertPrimitiveValues(from model.Expression, to model.Type) (model.Expression, bool) {
var expression model.Expression
switch {
case to.AssignableFrom(from.Type()) || to.AssignableFrom(model.DynamicType):
return nil, false
case to.AssignableFrom(model.BoolType):
if stringLiteral, ok := extractStringValue(from); ok {
if value, err := convert.Convert(cty.StringVal(stringLiteral), cty.Bool); err == nil {
expression = &model.LiteralValueExpression{Value: value}
}
}
case to.AssignableFrom(model.IntType), to.AssignableFrom(model.NumberType):
if stringLiteral, ok := extractStringValue(from); ok {
if value, err := convert.Convert(cty.StringVal(stringLiteral), cty.Number); err == nil {
expression = &model.LiteralValueExpression{Value: value}
}
}
case to.AssignableFrom(model.StringType):
if stringValue, ok := convertLiteralToString(from); ok {
expression = &model.TemplateExpression{
Parts: []model.Expression{&model.LiteralValueExpression{
Value: cty.StringVal(stringValue),
}},
}
}
}
if expression == nil {
return nil, false
}
diags := expression.Typecheck(false)
contract.Assert(len(diags) == 0)
expression.SetLeadingTrivia(from.GetLeadingTrivia())
expression.SetTrailingTrivia(from.GetTrailingTrivia())
return expression, true
}
// extractStringValue returns a string if the given expression is a template expression containing a single string
// literal value.
func extractStringValue(arg model.Expression) (string, bool) {
template, ok := arg.(*model.TemplateExpression)
if !ok || len(template.Parts) != 1 {
return "", false
}
lit, ok := template.Parts[0].(*model.LiteralValueExpression)
if !ok || model.StringType.ConversionFrom(lit.Type()) == model.NoConversion {
return "", false
}
return lit.Value.AsString(), true
}
// convertLiteralToString converts a literal of type Bool, Int, or Number to its string representation. It also handles
// the unary negate operation in front of a literal number.
func convertLiteralToString(from model.Expression) (string, bool) {
switch expr := from.(type) {
case *model.UnaryOpExpression:
if expr.Operation == hclsyntax.OpNegate {
if operandValue, ok := convertLiteralToString(expr.Operand); ok {
return "-" + operandValue, true
}
}
case *model.LiteralValueExpression:
if stringValue, err := convert.Convert(expr.Value, cty.String); err == nil {
return stringValue.AsString(), true
}
}
return "", false
}