terminal/oss/libpopcnt/libpopcnt.h

842 lines
21 KiB
C
Raw Normal View History

Update til::bitmap to use dynamic_bitset<> + libpopcnt (#5092) This commit replaces `std::vector<bool>` with `dynamic_bitset<>` by @pinam45 (https://github.com/pinam45/dynamic_bitset) and with `libpopcnt` for high-performance bit counting by @kimwalisch (https://github.com/kimwalisch/libpopcnt). * [x] In support of performance, incremental rendering, and Terminal "not speed enough" as well as my sanity relative to `std::vector<bool>` * [x] Tests updated and passed. * [x] `LICENSE`, `NOTICE`, and provenance files updated. * [x] I'm a core contributor. I discussed it with @DHowett-MSFT and cleared the licensing checks before pulling this in. ## Details `std::vector<bool>` provided by the Microsoft VC Runtime is incapable of a great many things. Many of the methods you come to expect off of `std::vector<T>` that are dutifully presented through the `bool` variant will spontaneously fail at some future date because it decides you allocated, resized, or manipulated the `vector<bool>` specialization in an unsupported manner. Half of the methods will straight up not work for filling/resizing in bulk. And you will tear your hair out as it will somehow magically forget the assignment of half the bits you gave it part way through an iteration then assert out and die. As such, to preserve my sanity, I searched for an alternative. I came across the self-contained header-only library `dynamic_bitset` by @pinam45 which appears to do as much of `boost::dynamic_bitset` as I wanted, but without including 400kg of boost libraries. It also has a nifty optional dependency on `libpopcnt` by @kimwalisch that will use processor-specific extensions for rapidly counting bits. @DHowett-MSFT and I briefly discussed how nice `popcnt` would have been on `std::vector<bool>` last week... and now we can have it. (To be fair, I don't believe I'm using it yet... but we'll be able to easily dial in `til::bitmap` soon and not worry about a performance hit if we do have to walk bits and count them thanks to `libpopcnt`.) This PR specifically focuses on swapping the dependencies out and ingesting the new libraries. We'll further tune `til::bitmap` in future pulls as necessary. ## Validation * [x] Ran the automated tests for bitmap. * [x] Ran the terminal manually and it looks fine still.
2020-03-25 03:41:10 +01:00
/*
* libpopcnt.h - C/C++ library for counting the number of 1 bits (bit
* population count) in an array as quickly as possible using
* specialized CPU instructions i.e. POPCNT, AVX2, AVX512, NEON.
*
* Copyright (c) 2016 - 2019, Kim Walisch
* Copyright (c) 2016 - 2018, Wojciech Muła
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef LIBPOPCNT_H
#define LIBPOPCNT_H
#include <stdint.h>
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
#ifndef __has_attribute
#define __has_attribute(x) 0
#endif
#ifdef __GNUC__
#define GNUC_PREREQ(x, y) \
(__GNUC__ > x || (__GNUC__ == x && __GNUC_MINOR__ >= y))
#else
#define GNUC_PREREQ(x, y) 0
#endif
#ifdef __clang__
#define CLANG_PREREQ(x, y) \
(__clang_major__ > x || (__clang_major__ == x && __clang_minor__ >= y))
#else
#define CLANG_PREREQ(x, y) 0
#endif
#if (_MSC_VER < 1900) && \
!defined(__cplusplus)
#define inline __inline
#endif
#if (defined(__i386__) || \
defined(__x86_64__) || \
defined(_M_IX86) || \
defined(_M_X64))
#define X86_OR_X64
#endif
#if defined(X86_OR_X64) && \
(defined(__cplusplus) || \
defined(_MSC_VER) || \
(GNUC_PREREQ(4, 2) || \
__has_builtin(__sync_val_compare_and_swap)))
#define HAVE_CPUID
#endif
#if GNUC_PREREQ(4, 2) || \
__has_builtin(__builtin_popcount)
#define HAVE_BUILTIN_POPCOUNT
#endif
#if GNUC_PREREQ(4, 2) || \
CLANG_PREREQ(3, 0)
#define HAVE_ASM_POPCNT
#endif
#if defined(HAVE_CPUID) && \
(defined(HAVE_ASM_POPCNT) || \
defined(_MSC_VER))
#define HAVE_POPCNT
#endif
#if defined(HAVE_CPUID) && \
GNUC_PREREQ(4, 9)
#define HAVE_AVX2
#endif
#if defined(HAVE_CPUID) && \
GNUC_PREREQ(5, 0)
#define HAVE_AVX512
#endif
#if defined(HAVE_CPUID) && \
defined(_MSC_VER) && \
defined(__AVX2__)
#define HAVE_AVX2
#endif
#if defined(HAVE_CPUID) && \
defined(_MSC_VER) && \
defined(__AVX512__)
#define HAVE_AVX512
#endif
#if defined(HAVE_CPUID) && \
CLANG_PREREQ(3, 8) && \
__has_attribute(target) && \
(!defined(_MSC_VER) || defined(__AVX2__)) && \
(!defined(__apple_build_version__) || __apple_build_version__ >= 8000000)
#define HAVE_AVX2
#define HAVE_AVX512
#endif
#ifdef __cplusplus
extern "C" {
#endif
/*
* This uses fewer arithmetic operations than any other known
* implementation on machines with fast multiplication.
* It uses 12 arithmetic operations, one of which is a multiply.
* http://en.wikipedia.org/wiki/Hamming_weight#Efficient_implementation
*/
static inline uint64_t popcount64(uint64_t x)
{
uint64_t m1 = 0x5555555555555555ll;
uint64_t m2 = 0x3333333333333333ll;
uint64_t m4 = 0x0F0F0F0F0F0F0F0Fll;
uint64_t h01 = 0x0101010101010101ll;
x -= (x >> 1) & m1;
x = (x & m2) + ((x >> 2) & m2);
x = (x + (x >> 4)) & m4;
return (x * h01) >> 56;
}
#if defined(HAVE_ASM_POPCNT) && \
defined(__x86_64__)
static inline uint64_t popcnt64(uint64_t x)
{
__asm__ ("popcnt %1, %0" : "=r" (x) : "0" (x));
return x;
}
#elif defined(HAVE_ASM_POPCNT) && \
defined(__i386__)
static inline uint32_t popcnt32(uint32_t x)
{
__asm__ ("popcnt %1, %0" : "=r" (x) : "0" (x));
return x;
}
static inline uint64_t popcnt64(uint64_t x)
{
return popcnt32((uint32_t) x) +
popcnt32((uint32_t)(x >> 32));
}
#elif defined(_MSC_VER) && \
defined(_M_X64)
#include <nmmintrin.h>
static inline uint64_t popcnt64(uint64_t x)
{
return _mm_popcnt_u64(x);
}
#elif defined(_MSC_VER) && \
defined(_M_IX86)
#include <nmmintrin.h>
static inline uint64_t popcnt64(uint64_t x)
{
return _mm_popcnt_u32((uint32_t) x) +
_mm_popcnt_u32((uint32_t)(x >> 32));
}
/* non x86 CPUs */
#elif defined(HAVE_BUILTIN_POPCOUNT)
static inline uint64_t popcnt64(uint64_t x)
{
return __builtin_popcountll(x);
}
/* no hardware POPCNT,
* use pure integer algorithm */
#else
static inline uint64_t popcnt64(uint64_t x)
{
return popcount64(x);
}
#endif
static inline uint64_t popcnt64_unrolled(const uint64_t* data, uint64_t size)
{
uint64_t i = 0;
uint64_t limit = size - size % 4;
uint64_t cnt = 0;
for (; i < limit; i += 4)
{
cnt += popcnt64(data[i+0]);
cnt += popcnt64(data[i+1]);
cnt += popcnt64(data[i+2]);
cnt += popcnt64(data[i+3]);
}
for (; i < size; i++)
cnt += popcnt64(data[i]);
return cnt;
}
#if defined(HAVE_CPUID)
#if defined(_MSC_VER)
#include <intrin.h>
#include <immintrin.h>
#endif
/* %ecx bit flags */
#define bit_POPCNT (1 << 23)
/* %ebx bit flags */
#define bit_AVX2 (1 << 5)
#define bit_AVX512 (1 << 30)
/* xgetbv bit flags */
#define XSTATE_SSE (1 << 1)
#define XSTATE_YMM (1 << 2)
#define XSTATE_ZMM (7 << 5)
static inline void run_cpuid(int eax, int ecx, int* abcd)
{
#if defined(_MSC_VER)
__cpuidex(abcd, eax, ecx);
#else
int ebx = 0;
int edx = 0;
#if defined(__i386__) && \
defined(__PIC__)
/* in case of PIC under 32-bit EBX cannot be clobbered */
__asm__ ("movl %%ebx, %%edi;"
"cpuid;"
"xchgl %%ebx, %%edi;"
: "=D" (ebx),
"+a" (eax),
"+c" (ecx),
"=d" (edx));
#else
__asm__ ("cpuid;"
: "+b" (ebx),
"+a" (eax),
"+c" (ecx),
"=d" (edx));
#endif
abcd[0] = eax;
abcd[1] = ebx;
abcd[2] = ecx;
abcd[3] = edx;
#endif
}
#if defined(HAVE_AVX2) || \
defined(HAVE_AVX512)
static inline int get_xcr0()
{
int xcr0;
#if defined(_MSC_VER)
xcr0 = (int) _xgetbv(0);
#else
__asm__ ("xgetbv" : "=a" (xcr0) : "c" (0) : "%edx" );
#endif
return xcr0;
}
#endif
static inline int get_cpuid()
{
int flags = 0;
int abcd[4];
run_cpuid(1, 0, abcd);
if ((abcd[2] & bit_POPCNT) == bit_POPCNT)
flags |= bit_POPCNT;
#if defined(HAVE_AVX2) || \
defined(HAVE_AVX512)
int osxsave_mask = (1 << 27);
/* ensure OS supports extended processor state management */
if ((abcd[2] & osxsave_mask) != osxsave_mask)
return 0;
int ymm_mask = XSTATE_SSE | XSTATE_YMM;
int zmm_mask = XSTATE_SSE | XSTATE_YMM | XSTATE_ZMM;
int xcr0 = get_xcr0();
if ((xcr0 & ymm_mask) == ymm_mask)
{
run_cpuid(7, 0, abcd);
if ((abcd[1] & bit_AVX2) == bit_AVX2)
flags |= bit_AVX2;
if ((xcr0 & zmm_mask) == zmm_mask)
{
if ((abcd[1] & bit_AVX512) == bit_AVX512)
flags |= bit_AVX512;
}
}
#endif
return flags;
}
#endif /* cpuid */
#if defined(HAVE_AVX2)
#include <immintrin.h>
#if !defined(_MSC_VER)
__attribute__ ((target ("avx2")))
#endif
static inline void CSA256(__m256i* h, __m256i* l, __m256i a, __m256i b, __m256i c)
{
__m256i u = _mm256_xor_si256(a, b);
*h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c));
*l = _mm256_xor_si256(u, c);
}
#if !defined(_MSC_VER)
__attribute__ ((target ("avx2")))
#endif
static inline __m256i popcnt256(__m256i v)
{
__m256i lookup1 = _mm256_setr_epi8(
4, 5, 5, 6, 5, 6, 6, 7,
5, 6, 6, 7, 6, 7, 7, 8,
4, 5, 5, 6, 5, 6, 6, 7,
5, 6, 6, 7, 6, 7, 7, 8
);
__m256i lookup2 = _mm256_setr_epi8(
4, 3, 3, 2, 3, 2, 2, 1,
3, 2, 2, 1, 2, 1, 1, 0,
4, 3, 3, 2, 3, 2, 2, 1,
3, 2, 2, 1, 2, 1, 1, 0
);
__m256i low_mask = _mm256_set1_epi8(0x0f);
__m256i lo = _mm256_and_si256(v, low_mask);
__m256i hi = _mm256_and_si256(_mm256_srli_epi16(v, 4), low_mask);
__m256i popcnt1 = _mm256_shuffle_epi8(lookup1, lo);
__m256i popcnt2 = _mm256_shuffle_epi8(lookup2, hi);
return _mm256_sad_epu8(popcnt1, popcnt2);
}
/*
* AVX2 Harley-Seal popcount (4th iteration).
* The algorithm is based on the paper "Faster Population Counts
* using AVX2 Instructions" by Daniel Lemire, Nathan Kurz and
* Wojciech Mula (23 Nov 2016).
* @see https://arxiv.org/abs/1611.07612
*/
#if !defined(_MSC_VER)
__attribute__ ((target ("avx2")))
#endif
static inline uint64_t popcnt_avx2(const __m256i* data, uint64_t size)
{
__m256i cnt = _mm256_setzero_si256();
__m256i ones = _mm256_setzero_si256();
__m256i twos = _mm256_setzero_si256();
__m256i fours = _mm256_setzero_si256();
__m256i eights = _mm256_setzero_si256();
__m256i sixteens = _mm256_setzero_si256();
__m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
uint64_t i = 0;
uint64_t limit = size - size % 16;
uint64_t* cnt64;
for(; i < limit; i += 16)
{
CSA256(&twosA, &ones, ones, data[i+0], data[i+1]);
CSA256(&twosB, &ones, ones, data[i+2], data[i+3]);
CSA256(&foursA, &twos, twos, twosA, twosB);
CSA256(&twosA, &ones, ones, data[i+4], data[i+5]);
CSA256(&twosB, &ones, ones, data[i+6], data[i+7]);
CSA256(&foursB, &twos, twos, twosA, twosB);
CSA256(&eightsA, &fours, fours, foursA, foursB);
CSA256(&twosA, &ones, ones, data[i+8], data[i+9]);
CSA256(&twosB, &ones, ones, data[i+10], data[i+11]);
CSA256(&foursA, &twos, twos, twosA, twosB);
CSA256(&twosA, &ones, ones, data[i+12], data[i+13]);
CSA256(&twosB, &ones, ones, data[i+14], data[i+15]);
CSA256(&foursB, &twos, twos, twosA, twosB);
CSA256(&eightsB, &fours, fours, foursA, foursB);
CSA256(&sixteens, &eights, eights, eightsA, eightsB);
cnt = _mm256_add_epi64(cnt, popcnt256(sixteens));
}
cnt = _mm256_slli_epi64(cnt, 4);
cnt = _mm256_add_epi64(cnt, _mm256_slli_epi64(popcnt256(eights), 3));
cnt = _mm256_add_epi64(cnt, _mm256_slli_epi64(popcnt256(fours), 2));
cnt = _mm256_add_epi64(cnt, _mm256_slli_epi64(popcnt256(twos), 1));
cnt = _mm256_add_epi64(cnt, popcnt256(ones));
for(; i < size; i++)
cnt = _mm256_add_epi64(cnt, popcnt256(data[i]));
cnt64 = (uint64_t*) &cnt;
return cnt64[0] +
cnt64[1] +
cnt64[2] +
cnt64[3];
}
/* Align memory to 32 bytes boundary */
static inline void align_avx2(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcnt64(**p);
*size -= 1;
}
for (; (uintptr_t) *p % 32; (*p) += 8)
{
*cnt += popcnt64(
*(const uint64_t*) *p);
*size -= 8;
}
}
#endif
#if defined(HAVE_AVX512)
#include <immintrin.h>
#if !defined(_MSC_VER)
__attribute__ ((target ("avx512bw")))
#endif
static inline __m512i popcnt512(__m512i v)
{
__m512i m1 = _mm512_set1_epi8(0x55);
__m512i m2 = _mm512_set1_epi8(0x33);
__m512i m4 = _mm512_set1_epi8(0x0F);
__m512i t1 = _mm512_sub_epi8(v, (_mm512_srli_epi16(v, 1) & m1));
__m512i t2 = _mm512_add_epi8(t1 & m2, (_mm512_srli_epi16(t1, 2) & m2));
__m512i t3 = _mm512_add_epi8(t2, _mm512_srli_epi16(t2, 4)) & m4;
return _mm512_sad_epu8(t3, _mm512_setzero_si512());
}
#if !defined(_MSC_VER)
__attribute__ ((target ("avx512bw")))
#endif
static inline void CSA512(__m512i* h, __m512i* l, __m512i a, __m512i b, __m512i c)
{
*l = _mm512_ternarylogic_epi32(c, b, a, 0x96);
*h = _mm512_ternarylogic_epi32(c, b, a, 0xe8);
}
/*
* AVX512 Harley-Seal popcount (4th iteration).
* The algorithm is based on the paper "Faster Population Counts
* using AVX2 Instructions" by Daniel Lemire, Nathan Kurz and
* Wojciech Mula (23 Nov 2016).
* @see https://arxiv.org/abs/1611.07612
*/
#if !defined(_MSC_VER)
__attribute__ ((target ("avx512bw")))
#endif
static inline uint64_t popcnt_avx512(const __m512i* data, const uint64_t size)
{
__m512i cnt = _mm512_setzero_si512();
__m512i ones = _mm512_setzero_si512();
__m512i twos = _mm512_setzero_si512();
__m512i fours = _mm512_setzero_si512();
__m512i eights = _mm512_setzero_si512();
__m512i sixteens = _mm512_setzero_si512();
__m512i twosA, twosB, foursA, foursB, eightsA, eightsB;
uint64_t i = 0;
uint64_t limit = size - size % 16;
uint64_t* cnt64;
for(; i < limit; i += 16)
{
CSA512(&twosA, &ones, ones, data[i+0], data[i+1]);
CSA512(&twosB, &ones, ones, data[i+2], data[i+3]);
CSA512(&foursA, &twos, twos, twosA, twosB);
CSA512(&twosA, &ones, ones, data[i+4], data[i+5]);
CSA512(&twosB, &ones, ones, data[i+6], data[i+7]);
CSA512(&foursB, &twos, twos, twosA, twosB);
CSA512(&eightsA, &fours, fours, foursA, foursB);
CSA512(&twosA, &ones, ones, data[i+8], data[i+9]);
CSA512(&twosB, &ones, ones, data[i+10], data[i+11]);
CSA512(&foursA, &twos, twos, twosA, twosB);
CSA512(&twosA, &ones, ones, data[i+12], data[i+13]);
CSA512(&twosB, &ones, ones, data[i+14], data[i+15]);
CSA512(&foursB, &twos, twos, twosA, twosB);
CSA512(&eightsB, &fours, fours, foursA, foursB);
CSA512(&sixteens, &eights, eights, eightsA, eightsB);
cnt = _mm512_add_epi64(cnt, popcnt512(sixteens));
}
cnt = _mm512_slli_epi64(cnt, 4);
cnt = _mm512_add_epi64(cnt, _mm512_slli_epi64(popcnt512(eights), 3));
cnt = _mm512_add_epi64(cnt, _mm512_slli_epi64(popcnt512(fours), 2));
cnt = _mm512_add_epi64(cnt, _mm512_slli_epi64(popcnt512(twos), 1));
cnt = _mm512_add_epi64(cnt, popcnt512(ones));
for(; i < size; i++)
cnt = _mm512_add_epi64(cnt, popcnt512(data[i]));
cnt64 = (uint64_t*) &cnt;
return cnt64[0] +
cnt64[1] +
cnt64[2] +
cnt64[3] +
cnt64[4] +
cnt64[5] +
cnt64[6] +
cnt64[7];
}
/* Align memory to 64 bytes boundary */
static inline void align_avx512(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcnt64(**p);
*size -= 1;
}
for (; (uintptr_t) *p % 64; (*p) += 8)
{
*cnt += popcnt64(
*(const uint64_t*) *p);
*size -= 8;
}
}
#endif
/* x86 CPUs */
#if defined(X86_OR_X64)
/* Align memory to 8 bytes boundary */
static inline void align_8(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; *size > 0 && (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcount64(**p);
*size -= 1;
}
}
static inline uint64_t popcount64_unrolled(const uint64_t* data, uint64_t size)
{
uint64_t i = 0;
uint64_t limit = size - size % 4;
uint64_t cnt = 0;
for (; i < limit; i += 4)
{
cnt += popcount64(data[i+0]);
cnt += popcount64(data[i+1]);
cnt += popcount64(data[i+2]);
cnt += popcount64(data[i+3]);
}
for (; i < size; i++)
cnt += popcount64(data[i]);
return cnt;
}
/*
* Count the number of 1 bits in the data array
* @data: An array
* @size: Size of data in bytes
*/
static inline uint64_t popcnt(const void* data, uint64_t size)
{
const uint8_t* ptr = (const uint8_t*) data;
uint64_t cnt = 0;
uint64_t i;
#if defined(HAVE_CPUID)
#if defined(__cplusplus)
/* C++11 thread-safe singleton */
static const int cpuid = get_cpuid();
#else
static int cpuid_ = -1;
int cpuid = cpuid_;
if (cpuid == -1)
{
cpuid = get_cpuid();
#if defined(_MSC_VER)
_InterlockedCompareExchange(&cpuid_, cpuid, -1);
#else
__sync_val_compare_and_swap(&cpuid_, -1, cpuid);
#endif
}
#endif
#endif
#if defined(HAVE_AVX512)
/* AVX512 requires arrays >= 1024 bytes */
if ((cpuid & bit_AVX512) &&
size >= 1024)
{
align_avx512(&ptr, &size, &cnt);
cnt += popcnt_avx512((const __m512i*) ptr, size / 64);
ptr += size - size % 64;
size = size % 64;
}
#endif
#if defined(HAVE_AVX2)
/* AVX2 requires arrays >= 512 bytes */
if ((cpuid & bit_AVX2) &&
size >= 512)
{
align_avx2(&ptr, &size, &cnt);
cnt += popcnt_avx2((const __m256i*) ptr, size / 32);
ptr += size - size % 32;
size = size % 32;
}
#endif
#if defined(HAVE_POPCNT)
if (cpuid & bit_POPCNT)
{
cnt += popcnt64_unrolled((const uint64_t*) ptr, size / 8);
ptr += size - size % 8;
size = size % 8;
for (i = 0; i < size; i++)
cnt += popcnt64(ptr[i]);
return cnt;
}
#endif
/* pure integer popcount algorithm */
if (size >= 8)
{
align_8(&ptr, &size, &cnt);
cnt += popcount64_unrolled((const uint64_t*) ptr, size / 8);
ptr += size - size % 8;
size = size % 8;
}
/* pure integer popcount algorithm */
for (i = 0; i < size; i++)
cnt += popcount64(ptr[i]);
return cnt;
}
#elif defined(__ARM_NEON) || \
defined(__aarch64__)
#include <arm_neon.h>
/* Align memory to 8 bytes boundary */
static inline void align_8(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; *size > 0 && (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcnt64(**p);
*size -= 1;
}
}
static inline uint64x2_t vpadalq(uint64x2_t sum, uint8x16_t t)
{
return vpadalq_u32(sum, vpaddlq_u16(vpaddlq_u8(t)));
}
/*
* Count the number of 1 bits in the data array
* @data: An array
* @size: Size of data in bytes
*/
static inline uint64_t popcnt(const void* data, uint64_t size)
{
uint64_t cnt = 0;
uint64_t chunk_size = 64;
const uint8_t* ptr = (const uint8_t*) data;
if (size >= chunk_size)
{
uint64_t i = 0;
uint64_t iters = size / chunk_size;
uint64x2_t sum = vcombine_u64(vcreate_u64(0), vcreate_u64(0));
uint8x16_t zero = vcombine_u8(vcreate_u8(0), vcreate_u8(0));
do
{
uint8x16_t t0 = zero;
uint8x16_t t1 = zero;
uint8x16_t t2 = zero;
uint8x16_t t3 = zero;
/*
* After every 31 iterations we need to add the
* temporary sums (t0, t1, t2, t3) to the total sum.
* We must ensure that the temporary sums <= 255
* and 31 * 8 bits = 248 which is OK.
*/
uint64_t limit = (i + 31 < iters) ? i + 31 : iters;
/* Each iteration processes 64 bytes */
for (; i < limit; i++)
{
uint8x16x4_t input = vld4q_u8(ptr);
ptr += chunk_size;
t0 = vaddq_u8(t0, vcntq_u8(input.val[0]));
t1 = vaddq_u8(t1, vcntq_u8(input.val[1]));
t2 = vaddq_u8(t2, vcntq_u8(input.val[2]));
t3 = vaddq_u8(t3, vcntq_u8(input.val[3]));
}
sum = vpadalq(sum, t0);
sum = vpadalq(sum, t1);
sum = vpadalq(sum, t2);
sum = vpadalq(sum, t3);
}
while (i < iters);
uint64_t tmp[2];
vst1q_u64(tmp, sum);
cnt += tmp[0];
cnt += tmp[1];
}
size %= chunk_size;
align_8(&ptr, &size, &cnt);
const uint64_t* ptr64 = (const uint64_t*) ptr;
uint64_t iters = size / 8;
for (uint64_t i = 0; i < iters; i++)
cnt += popcnt64(ptr64[i]);
ptr += size - size % 8;
size = size % 8;
for (uint64_t i = 0; i < size; i++)
cnt += popcnt64(ptr[i]);
return cnt;
}
/* all other CPUs */
#else
/* Align memory to 8 bytes boundary */
static inline void align_8(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; *size > 0 && (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcnt64(**p);
*size -= 1;
}
}
/*
* Count the number of 1 bits in the data array
* @data: An array
* @size: Size of data in bytes
*/
static inline uint64_t popcnt(const void* data, uint64_t size)
{
const uint8_t* ptr = (const uint8_t*) data;
uint64_t cnt = 0;
uint64_t i;
align_8(&ptr, &size, &cnt);
cnt += popcnt64_unrolled((const uint64_t*) ptr, size / 8);
ptr += size - size % 8;
size = size % 8;
for (i = 0; i < size; i++)
cnt += popcnt64(ptr[i]);
return cnt;
}
#endif
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* LIBPOPCNT_H */