Merge pull request #1812 from matrix-org/erikj/state_auth_splitout_split

Split out static state methods from StateHandler
This commit is contained in:
Erik Johnston 2017-01-17 11:55:18 +00:00 committed by GitHub
commit e8ecbb6f20

View file

@ -16,6 +16,7 @@
from twisted.internet import defer
from synapse import event_auth
from synapse.util.logutils import log_function
from synapse.util.caches.expiringcache import ExpiringCache
from synapse.util.metrics import Measure
@ -339,9 +340,10 @@ class StateHandler(object):
[state_map[e_id] for key, e_id in st.items() if e_id in state_map]
for st in state_groups_ids.values()
]
new_state, _ = self._resolve_events(
state_sets, event_type, state_key
)
with Measure(self.clock, "state._resolve_events"):
new_state, _ = resolve_events(
state_sets, event_type, state_key
)
new_state = {
key: e.event_id for key, e in new_state.items()
}
@ -392,152 +394,152 @@ class StateHandler(object):
logger.info(
"Resolving state for %s with %d groups", event.room_id, len(state_sets)
)
if event.is_state():
return self._resolve_events(
state_sets, event.type, event.state_key
)
else:
return self._resolve_events(state_sets)
def _resolve_events(self, state_sets, event_type=None, state_key=""):
"""
Returns
(dict[(str, str), synapse.events.FrozenEvent], list[str]): a tuple
(new_state, prev_states). new_state is a map from (type, state_key)
to event. prev_states is a list of event_ids.
"""
with Measure(self.clock, "state._resolve_events"):
state = {}
for st in state_sets:
for e in st:
state.setdefault(
(e.type, e.state_key),
{}
)[e.event_id] = e
unconflicted_state = {
k: v.values()[0] for k, v in state.items()
if len(v.values()) == 1
}
conflicted_state = {
k: v.values()
for k, v in state.items()
if len(v.values()) > 1
}
if event_type:
prev_states_events = conflicted_state.get(
(event_type, state_key), []
if event.is_state():
return resolve_events(
state_sets, event.type, event.state_key
)
prev_states = [s.event_id for s in prev_states_events]
else:
prev_states = []
return resolve_events(state_sets)
auth_events = {
k: e for k, e in unconflicted_state.items()
if k[0] in AuthEventTypes
}
try:
resolved_state = self._resolve_state_events(
conflicted_state, auth_events
)
except:
logger.exception("Failed to resolve state")
raise
def _ordered_events(events):
def key_func(e):
return -int(e.depth), hashlib.sha1(e.event_id).hexdigest()
new_state = unconflicted_state
new_state.update(resolved_state)
return sorted(events, key=key_func)
return new_state, prev_states
@log_function
def _resolve_state_events(self, conflicted_state, auth_events):
""" This is where we actually decide which of the conflicted state to
use.
def resolve_events(state_sets, event_type=None, state_key=""):
"""
Returns
(dict[(str, str), synapse.events.FrozenEvent], list[str]): a tuple
(new_state, prev_states). new_state is a map from (type, state_key)
to event. prev_states is a list of event_ids.
"""
state = {}
for st in state_sets:
for e in st:
state.setdefault(
(e.type, e.state_key),
{}
)[e.event_id] = e
We resolve conflicts in the following order:
1. power levels
2. join rules
3. memberships
4. other events.
"""
resolved_state = {}
power_key = (EventTypes.PowerLevels, "")
if power_key in conflicted_state:
events = conflicted_state[power_key]
logger.debug("Resolving conflicted power levels %r", events)
resolved_state[power_key] = self._resolve_auth_events(
events, auth_events)
unconflicted_state = {
k: v.values()[0] for k, v in state.items()
if len(v.values()) == 1
}
auth_events.update(resolved_state)
conflicted_state = {
k: v.values()
for k, v in state.items()
if len(v.values()) > 1
}
for key, events in conflicted_state.items():
if key[0] == EventTypes.JoinRules:
logger.debug("Resolving conflicted join rules %r", events)
resolved_state[key] = self._resolve_auth_events(
events,
auth_events
)
if event_type:
prev_states_events = conflicted_state.get(
(event_type, state_key), []
)
prev_states = [s.event_id for s in prev_states_events]
else:
prev_states = []
auth_events.update(resolved_state)
auth_events = {
k: e for k, e in unconflicted_state.items()
if k[0] in AuthEventTypes
}
for key, events in conflicted_state.items():
if key[0] == EventTypes.Member:
logger.debug("Resolving conflicted member lists %r", events)
resolved_state[key] = self._resolve_auth_events(
events,
auth_events
)
try:
resolved_state = _resolve_state_events(
conflicted_state, auth_events
)
except:
logger.exception("Failed to resolve state")
raise
auth_events.update(resolved_state)
new_state = unconflicted_state
new_state.update(resolved_state)
for key, events in conflicted_state.items():
if key not in resolved_state:
logger.debug("Resolving conflicted state %r:%r", key, events)
resolved_state[key] = self._resolve_normal_events(
events, auth_events
)
return new_state, prev_states
return resolved_state
def _resolve_auth_events(self, events, auth_events):
reverse = [i for i in reversed(self._ordered_events(events))]
def _resolve_state_events(conflicted_state, auth_events):
""" This is where we actually decide which of the conflicted state to
use.
auth_events = dict(auth_events)
We resolve conflicts in the following order:
1. power levels
2. join rules
3. memberships
4. other events.
"""
resolved_state = {}
power_key = (EventTypes.PowerLevels, "")
if power_key in conflicted_state:
events = conflicted_state[power_key]
logger.debug("Resolving conflicted power levels %r", events)
resolved_state[power_key] = _resolve_auth_events(
events, auth_events)
prev_event = reverse[0]
for event in reverse[1:]:
auth_events[(prev_event.type, prev_event.state_key)] = prev_event
try:
# FIXME: hs.get_auth() is bad style, but we need to do it to
# get around circular deps.
# The signatures have already been checked at this point
self.hs.get_auth().check(event, auth_events, do_sig_check=False)
prev_event = event
except AuthError:
return prev_event
auth_events.update(resolved_state)
return event
for key, events in conflicted_state.items():
if key[0] == EventTypes.JoinRules:
logger.debug("Resolving conflicted join rules %r", events)
resolved_state[key] = _resolve_auth_events(
events,
auth_events
)
def _resolve_normal_events(self, events, auth_events):
for event in self._ordered_events(events):
try:
# FIXME: hs.get_auth() is bad style, but we need to do it to
# get around circular deps.
# The signatures have already been checked at this point
self.hs.get_auth().check(event, auth_events, do_sig_check=False)
return event
except AuthError:
pass
auth_events.update(resolved_state)
# Use the last event (the one with the least depth) if they all fail
# the auth check.
return event
for key, events in conflicted_state.items():
if key[0] == EventTypes.Member:
logger.debug("Resolving conflicted member lists %r", events)
resolved_state[key] = _resolve_auth_events(
events,
auth_events
)
def _ordered_events(self, events):
def key_func(e):
return -int(e.depth), hashlib.sha1(e.event_id).hexdigest()
auth_events.update(resolved_state)
return sorted(events, key=key_func)
for key, events in conflicted_state.items():
if key not in resolved_state:
logger.debug("Resolving conflicted state %r:%r", key, events)
resolved_state[key] = _resolve_normal_events(
events, auth_events
)
return resolved_state
def _resolve_auth_events(events, auth_events):
reverse = [i for i in reversed(_ordered_events(events))]
auth_events = dict(auth_events)
prev_event = reverse[0]
for event in reverse[1:]:
auth_events[(prev_event.type, prev_event.state_key)] = prev_event
try:
# The signatures have already been checked at this point
event_auth.check(event, auth_events, do_sig_check=False)
prev_event = event
except AuthError:
return prev_event
return event
def _resolve_normal_events(events, auth_events):
for event in _ordered_events(events):
try:
# The signatures have already been checked at this point
event_auth.check(event, auth_events, do_sig_check=False)
return event
except AuthError:
pass
# Use the last event (the one with the least depth) if they all fail
# the auth check.
return event