armory/blender/arm/make_world.py
2021-10-05 18:41:45 +02:00

395 lines
16 KiB
Python
Executable file

import os
import bpy
import arm.assets as assets
import arm.log as log
from arm.material import make_shader
from arm.material.parser_state import ParserState, ParserContext
from arm.material.shader import ShaderContext, Shader
import arm.material.cycles as cycles
import arm.node_utils as node_utils
import arm.utils
import arm.write_probes as write_probes
if arm.is_reload(__name__):
arm.assets = arm.reload_module(arm.assets)
arm.log = arm.reload_module(arm.log)
arm.material = arm.reload_module(arm.material)
arm.material.parser_state = arm.reload_module(arm.material.parser_state)
from arm.material.parser_state import ParserState, ParserContext
arm.material.shader = arm.reload_module(arm.material.shader)
from arm.material.shader import ShaderContext, Shader
cycles = arm.reload_module(cycles)
node_utils = arm.reload_module(node_utils)
arm.utils = arm.reload_module(arm.utils)
write_probes = arm.reload_module(write_probes)
else:
arm.enable_reload(__name__)
callback = None
shader_datas = []
def build():
"""Builds world shaders for all exported worlds."""
global shader_datas
wrd = bpy.data.worlds['Arm']
rpdat = arm.utils.get_rp()
mobile_mat = rpdat.arm_material_model == 'Mobile' or rpdat.arm_material_model == 'Solid'
envpath = os.path.join(arm.utils.get_fp_build(), 'compiled', 'Assets', 'envmaps')
wrd.world_defs = ''
worlds = []
shader_datas = []
with write_probes.setup_envmap_render():
for scene in bpy.data.scenes:
world = scene.world
# Only export worlds from enabled scenes and only once per world
if scene.arm_export and world is not None and world not in worlds:
worlds.append(world)
world.arm_envtex_name = ''
create_world_shaders(world)
if rpdat.arm_irradiance:
# Plain background color
if '_EnvCol' in world.world_defs:
world_name = arm.utils.safestr(world.name)
# Irradiance json file name
world.arm_envtex_name = world_name
world.arm_envtex_irr_name = world_name
write_probes.write_color_irradiance(world_name, world.arm_envtex_color)
# Render world to envmap for (ir)radiance, if no
# other probes are exported
elif world.arm_envtex_name == '':
write_probes.render_envmap(envpath, world)
filename = f'env_{arm.utils.safesrc(world.name)}'
image_file = f'{filename}.jpg'
image_filepath = os.path.join(envpath, image_file)
world.arm_envtex_name = image_file
world.arm_envtex_irr_name = os.path.basename(image_filepath).rsplit('.', 1)[0]
write_radiance = rpdat.arm_radiance and not mobile_mat
mip_count = write_probes.write_probes(image_filepath, True, world.arm_envtex_num_mips, write_radiance)
world.arm_envtex_num_mips = mip_count
if write_radiance:
# Set world def, everything else is handled by write_probes()
wrd.world_defs += '_Rad'
def create_world_shaders(world: bpy.types.World):
"""Creates fragment and vertex shaders for the given world."""
global shader_datas
world_name = arm.utils.safestr(world.name)
pass_name = 'World_' + world_name
shader_props = {
'name': world_name,
'depth_write': False,
'compare_mode': 'less',
'cull_mode': 'clockwise',
'color_attachments': ['_HDR'],
'vertex_elements': [{'name': 'pos', 'data': 'float3'}, {'name': 'nor', 'data': 'float3'}]
}
shader_data = {'name': world_name + '_data', 'contexts': [shader_props]}
# ShaderContext expects a material, but using a world also works
shader_context = ShaderContext(world, shader_data, shader_props)
vert = shader_context.make_vert(custom_name="World_" + world_name)
frag = shader_context.make_frag(custom_name="World_" + world_name)
# Update name, make_vert() and make_frag() above need another name
# to work
shader_context.data['name'] = pass_name
vert.add_out('vec3 normal')
vert.add_uniform('mat4 SMVP', link="_skydomeMatrix")
frag.add_include('compiled.inc')
frag.add_in('vec3 normal')
frag.add_out('vec4 fragColor')
frag.write_attrib('vec3 n = normalize(normal);')
vert.write('''normal = nor;
vec4 position = SMVP * vec4(pos, 1.0);
gl_Position = vec4(position);''')
build_node_tree(world, frag, vert, shader_context)
# TODO: Rework shader export so that it doesn't depend on materials
# to prevent workaround code like this
rel_path = os.path.join(arm.utils.build_dir(), 'compiled', 'Shaders')
full_path = os.path.join(arm.utils.get_fp(), rel_path)
if not os.path.exists(full_path):
os.makedirs(full_path)
# Output: World_[world_name].[frag/vert].glsl
make_shader.write_shader(rel_path, shader_context.vert, 'vert', world_name, 'World')
make_shader.write_shader(rel_path, shader_context.frag, 'frag', world_name, 'World')
# Write shader data file
shader_data_file = pass_name + '_data.arm'
arm.utils.write_arm(os.path.join(full_path, shader_data_file), {'contexts': [shader_context.data]})
shader_data_path = os.path.join(arm.utils.get_fp_build(), 'compiled', 'Shaders', shader_data_file)
assets.add_shader_data(shader_data_path)
assets.add_shader_pass(pass_name)
assets.shader_passes_assets[pass_name] = shader_context.data
shader_datas.append({'contexts': [shader_context.data], 'name': pass_name})
def build_node_tree(world: bpy.types.World, frag: Shader, vert: Shader, con: ShaderContext):
"""Generates the shader code for the given world."""
world_name = arm.utils.safestr(world.name)
world.world_defs = ''
rpdat = arm.utils.get_rp()
wrd = bpy.data.worlds['Arm']
if callback is not None:
callback()
# film_transparent, do not render
if bpy.context.scene is not None and bpy.context.scene.render.film_transparent:
world.world_defs += '_EnvCol'
frag.add_uniform('vec3 backgroundCol', link='_backgroundCol')
frag.write('fragColor.rgb = backgroundCol;')
return
parser_state = ParserState(ParserContext.WORLD, world)
parser_state.con = con
parser_state.curshader = frag
parser_state.frag = frag
parser_state.vert = vert
cycles.state = parser_state
# Traverse world node tree
is_parsed = False
if world.node_tree is not None:
output_node = node_utils.get_node_by_type(world.node_tree, 'OUTPUT_WORLD')
if output_node is not None:
is_parsed = parse_world_output(world, output_node, frag)
# No world nodes/no output node, use background color
if not is_parsed:
solid_mat = rpdat.arm_material_model == 'Solid'
if rpdat.arm_irradiance and not solid_mat:
world.world_defs += '_Irr'
col = world.color
world.arm_envtex_color = [col[0], col[1], col[2], 1.0]
world.arm_envtex_strength = 1.0
world.world_defs += '_EnvCol'
# Clouds enabled
if rpdat.arm_clouds and world.arm_use_clouds:
world.world_defs += '_EnvClouds'
# Also set this flag globally so that the required textures are
# included
wrd.world_defs += '_EnvClouds'
frag_write_clouds(world, frag)
if '_EnvSky' in world.world_defs or '_EnvTex' in world.world_defs or '_EnvImg' in world.world_defs or '_EnvClouds' in world.world_defs:
frag.add_uniform('float envmapStrength', link='_envmapStrength')
# Clear background color
if '_EnvCol' in world.world_defs:
frag.write('fragColor.rgb = backgroundCol;')
elif '_EnvTex' in world.world_defs and '_EnvLDR' in world.world_defs:
frag.write('fragColor.rgb = pow(fragColor.rgb, vec3(2.2));')
if '_EnvClouds' in world.world_defs:
frag.write('if (pos.z > 0.0) fragColor.rgb = mix(fragColor.rgb, traceClouds(fragColor.rgb, pos), clamp(pos.z * 5.0, 0, 1));')
if '_EnvLDR' in world.world_defs:
frag.write('fragColor.rgb = pow(fragColor.rgb, vec3(1.0 / 2.2));')
# Mark as non-opaque
frag.write('fragColor.a = 0.0;')
finalize(frag, vert)
def finalize(frag: Shader, vert: Shader):
"""Checks the given fragment shader for completeness and adds
variable initializations if required.
TODO: Merge with make_finalize?
"""
if frag.contains('pos') and not frag.contains('vec3 pos'):
frag.write_attrib('vec3 pos = -n;')
if frag.contains('vVec') and not frag.contains('vec3 vVec'):
# For worlds, the camera seems to be always at origin in
# Blender, so we can just use the normals as the incoming vector
frag.write_attrib('vec3 vVec = n;')
for var in ('bposition', 'mposition', 'wposition'):
if (frag.contains(var) and not frag.contains(f'vec3 {var}')) or vert.contains(var):
frag.add_in(f'vec3 {var}')
vert.add_out(f'vec3 {var}')
vert.write(f'{var} = pos;')
if frag.contains('wtangent') and not frag.contains('vec3 wtangent'):
frag.write_attrib('vec3 wtangent = vec3(0.0);')
if frag.contains('texCoord') and not frag.contains('vec2 texCoord'):
frag.add_in('vec2 texCoord')
vert.add_out('vec2 texCoord')
# World has no UV map
vert.write('texCoord = vec2(1.0, 1.0);')
def parse_world_output(world: bpy.types.World, node_output: bpy.types.Node, frag: Shader) -> bool:
"""Parse the world's output node. Return `False` when the node has
no connected surface input."""
surface_node = node_utils.find_node_by_link(world.node_tree, node_output, node_output.inputs[0])
if surface_node is None:
return False
parse_surface(world, surface_node, frag)
return True
def parse_surface(world: bpy.types.World, node_surface: bpy.types.Node, frag: Shader):
wrd = bpy.data.worlds['Arm']
rpdat = arm.utils.get_rp()
solid_mat = rpdat.arm_material_model == 'Solid'
if node_surface.type in ('BACKGROUND', 'EMISSION'):
# Append irradiance define
if rpdat.arm_irradiance and not solid_mat:
wrd.world_defs += '_Irr'
# Extract environment strength
# Todo: follow/parse strength input
world.arm_envtex_strength = node_surface.inputs[1].default_value
# Color
out = cycles.parse_vector_input(node_surface.inputs[0])
frag.write(f'fragColor.rgb = {out};')
if not node_surface.inputs[0].is_linked:
solid_mat = rpdat.arm_material_model == 'Solid'
if rpdat.arm_irradiance and not solid_mat:
world.world_defs += '_Irr'
world.arm_envtex_color = node_surface.inputs[0].default_value
world.arm_envtex_strength = 1.0
else:
log.warn(f'World node type {node_surface.type} must not be connected to the world output node!')
# Invalidate the parser state for subsequent executions
cycles.state = None
def frag_write_clouds(world: bpy.types.World, frag: Shader):
"""References:
GPU PRO 7 - Real-time Volumetric Cloudscapes
https://www.guerrilla-games.com/read/the-real-time-volumetric-cloudscapes-of-horizon-zero-dawn
https://github.com/sebh/TileableVolumeNoise
"""
frag.add_uniform('sampler3D scloudsBase', link='$clouds_base.raw')
frag.add_uniform('sampler3D scloudsDetail', link='$clouds_detail.raw')
frag.add_uniform('sampler2D scloudsMap', link='$clouds_map.png')
frag.add_uniform('float time', link='_time')
frag.add_const('float', 'cloudsLower', str(round(world.arm_clouds_lower * 100) / 100))
frag.add_const('float', 'cloudsUpper', str(round(world.arm_clouds_upper * 100) / 100))
frag.add_const('vec2', 'cloudsWind', 'vec2(' + str(round(world.arm_clouds_wind[0] * 100) / 100) + ',' + str(round(world.arm_clouds_wind[1] * 100) / 100) + ')')
frag.add_const('float', 'cloudsPrecipitation', str(round(world.arm_clouds_precipitation * 100) / 100))
frag.add_const('float', 'cloudsSecondary', str(round(world.arm_clouds_secondary * 100) / 100))
frag.add_const('float', 'cloudsSteps', str(round(world.arm_clouds_steps * 100) / 100))
frag.add_function('''float remap(float old_val, float old_min, float old_max, float new_min, float new_max) {
\treturn new_min + (((old_val - old_min) / (old_max - old_min)) * (new_max - new_min));
}''')
frag.add_function('''float getDensityHeightGradientForPoint(float height, float cloud_type) {
\tconst vec4 stratusGrad = vec4(0.02f, 0.05f, 0.09f, 0.11f);
\tconst vec4 stratocumulusGrad = vec4(0.02f, 0.2f, 0.48f, 0.625f);
\tconst vec4 cumulusGrad = vec4(0.01f, 0.0625f, 0.78f, 1.0f);
\tfloat stratus = 1.0f - clamp(cloud_type * 2.0f, 0, 1);
\tfloat stratocumulus = 1.0f - abs(cloud_type - 0.5f) * 2.0f;
\tfloat cumulus = clamp(cloud_type - 0.5f, 0, 1) * 2.0f;
\tvec4 cloudGradient = stratusGrad * stratus + stratocumulusGrad * stratocumulus + cumulusGrad * cumulus;
\treturn smoothstep(cloudGradient.x, cloudGradient.y, height) - smoothstep(cloudGradient.z, cloudGradient.w, height);
}''')
frag.add_function('''float sampleCloudDensity(vec3 p) {
\tfloat cloud_base = textureLod(scloudsBase, p, 0).r * 40; // Base noise
\tvec3 weather_data = textureLod(scloudsMap, p.xy, 0).rgb; // Weather map
\tcloud_base *= getDensityHeightGradientForPoint(p.z, weather_data.b); // Cloud type
\tcloud_base = remap(cloud_base, weather_data.r, 1.0, 0.0, 1.0); // Coverage
\tcloud_base *= weather_data.r;
\tfloat cloud_detail = textureLod(scloudsDetail, p, 0).r * 2; // Detail noise
\tfloat cloud_detail_mod = mix(cloud_detail, 1.0 - cloud_detail, clamp(p.z * 10.0, 0, 1));
\tcloud_base = remap(cloud_base, cloud_detail_mod * 0.2, 1.0, 0.0, 1.0);
\treturn cloud_base;
}''')
func_cloud_radiance = 'float cloudRadiance(vec3 p, vec3 dir) {\n'
if '_EnvSky' in world.world_defs:
# Nishita sky
if 'vec3 sunDir' in frag.uniforms:
func_cloud_radiance += '\tvec3 sun_dir = sunDir;\n'
# Hosek
else:
func_cloud_radiance += '\tvec3 sun_dir = hosekSunDirection;\n'
else:
func_cloud_radiance += '\tvec3 sun_dir = vec3(0, 0, -1);\n'
func_cloud_radiance += '''\tconst int steps = 8;
\tfloat step_size = 0.5 / float(steps);
\tfloat d = 0.0;
\tp += sun_dir * step_size;
\tfor(int i = 0; i < steps; ++i) {
\t\td += sampleCloudDensity(p + sun_dir * float(i) * step_size);
\t}
\treturn 1.0 - d;
}'''
frag.add_function(func_cloud_radiance)
func_trace_clouds = '''vec3 traceClouds(vec3 sky, vec3 dir) {
\tconst float step_size = 0.5 / float(cloudsSteps);
\tfloat T = 1.0;
\tfloat C = 0.0;
\tvec2 uv = dir.xy / dir.z * 0.4 * cloudsLower + cloudsWind * time * 0.02;
\tfor (int i = 0; i < cloudsSteps; ++i) {
\t\tfloat h = float(i) / float(cloudsSteps);
\t\tvec3 p = vec3(uv * 0.04, h);
\t\tfloat d = sampleCloudDensity(p);
\t\tif (d > 0) {
\t\t\t// float radiance = cloudRadiance(p, dir);
\t\t\tC += T * exp(h) * d * step_size * 0.6 * cloudsPrecipitation;
\t\t\tT *= exp(-d * step_size);
\t\t\tif (T < 0.01) break;
\t\t}
\t\tuv += (dir.xy / dir.z) * step_size * cloudsUpper;
\t}
'''
if world.arm_darken_clouds:
func_trace_clouds += '\t// Darken clouds when the sun is low\n'
# Nishita sky
if 'vec3 sunDir' in frag.uniforms:
func_trace_clouds += '\tC *= smoothstep(-0.02, 0.25, sunDir.z);\n'
# Hosek
else:
func_trace_clouds += '\tC *= smoothstep(0.04, 0.32, hosekSunDirection.z);\n'
func_trace_clouds += '\treturn vec3(C) + sky * T;\n}'
frag.add_function(func_trace_clouds)