godot/modules/mono/glue/GodotSharp/GodotSharp/GodotSharp.csproj

98 lines
4.9 KiB
XML
Raw Normal View History

C#: Switch games to MSBuild Sdks and .NET Standard Godot.NET.Sdk ------------- Godot uses its own custom MSBuild Sdk for game projects. This new Sdk adds its own functionality on top of 'Microsoft.NET.Sdk'. The new Sdk is resolved from the NuGet package. All the default boilerplate was moved from game projects to the Sdk. The default csproj for game project can now be as simple as: ``` <Project Sdk="Godot.NET.Sdk/4.0.0-dev2"> <PropertyGroup> <TargetFramework>netstandard2.1</TargetFramework> </PropertyGroup> </Project> ``` Source files are included by automatically so Godot no longer needs to keep the csproj in sync when creating new source files. Define constants ---------------- Godot defines a list of constants for conditional compilation. When exporting games, this list also included engine 'features' and platform 'bits'. There were a few problems with that: - The 'features' constants were only defined when exporting games. Not when building the game for running in the editor player. - If the project was built externally by an IDE, the constants wouldn't be defined at all. The new Sdk assigns default values to these constants when not built from the Godot editor, i.e.: when built from an IDE or from the command line. The default define constants are determined from the system MSBuild is running on. However, it's not possible for MSBuild to determine the set of supported engine features. It's also not possible to determine if a project is being built to run on a 32-bit or 64-bit Godot executable. As such the 'features' and 'bits' constants had to be removed. The benefit of checking those at compile time was questionable, and they can still be checked at runtime. The new list of define constants includes: - GODOT - GODOT_<PLATFORM> Defaults to the platform MSBuild is running on. - GODOT_<PC/MOBILE/WEB> - TOOLS When building with the 'Debug' configuration (editor and editor player). - GODOT_REAL_T_IS_DOUBLE Not defined by default unless $(GodotRealTIsDouble) is overriden to be 'true'. .NET Standard ------------- The target framework of game projects was changed to 'netstandard2.1'.
2020-07-20 15:48:12 +02:00
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<ProjectGuid>{AEBF0036-DA76-4341-B651-A3F2856AB2FA}</ProjectGuid>
<OutputPath>bin/$(Configuration)</OutputPath>
C#: Switch games to MSBuild Sdks and .NET Standard Godot.NET.Sdk ------------- Godot uses its own custom MSBuild Sdk for game projects. This new Sdk adds its own functionality on top of 'Microsoft.NET.Sdk'. The new Sdk is resolved from the NuGet package. All the default boilerplate was moved from game projects to the Sdk. The default csproj for game project can now be as simple as: ``` <Project Sdk="Godot.NET.Sdk/4.0.0-dev2"> <PropertyGroup> <TargetFramework>netstandard2.1</TargetFramework> </PropertyGroup> </Project> ``` Source files are included by automatically so Godot no longer needs to keep the csproj in sync when creating new source files. Define constants ---------------- Godot defines a list of constants for conditional compilation. When exporting games, this list also included engine 'features' and platform 'bits'. There were a few problems with that: - The 'features' constants were only defined when exporting games. Not when building the game for running in the editor player. - If the project was built externally by an IDE, the constants wouldn't be defined at all. The new Sdk assigns default values to these constants when not built from the Godot editor, i.e.: when built from an IDE or from the command line. The default define constants are determined from the system MSBuild is running on. However, it's not possible for MSBuild to determine the set of supported engine features. It's also not possible to determine if a project is being built to run on a 32-bit or 64-bit Godot executable. As such the 'features' and 'bits' constants had to be removed. The benefit of checking those at compile time was questionable, and they can still be checked at runtime. The new list of define constants includes: - GODOT - GODOT_<PLATFORM> Defaults to the platform MSBuild is running on. - GODOT_<PC/MOBILE/WEB> - TOOLS When building with the 'Debug' configuration (editor and editor player). - GODOT_REAL_T_IS_DOUBLE Not defined by default unless $(GodotRealTIsDouble) is overriden to be 'true'. .NET Standard ------------- The target framework of game projects was changed to 'netstandard2.1'.
2020-07-20 15:48:12 +02:00
<AppendTargetFrameworkToOutputPath>false</AppendTargetFrameworkToOutputPath>
<RootNamespace>Godot</RootNamespace>
<TargetFramework>net5.0</TargetFramework>
<DocumentationFile>$(OutputPath)/$(AssemblyName).xml</DocumentationFile>
C#: Switch games to MSBuild Sdks and .NET Standard Godot.NET.Sdk ------------- Godot uses its own custom MSBuild Sdk for game projects. This new Sdk adds its own functionality on top of 'Microsoft.NET.Sdk'. The new Sdk is resolved from the NuGet package. All the default boilerplate was moved from game projects to the Sdk. The default csproj for game project can now be as simple as: ``` <Project Sdk="Godot.NET.Sdk/4.0.0-dev2"> <PropertyGroup> <TargetFramework>netstandard2.1</TargetFramework> </PropertyGroup> </Project> ``` Source files are included by automatically so Godot no longer needs to keep the csproj in sync when creating new source files. Define constants ---------------- Godot defines a list of constants for conditional compilation. When exporting games, this list also included engine 'features' and platform 'bits'. There were a few problems with that: - The 'features' constants were only defined when exporting games. Not when building the game for running in the editor player. - If the project was built externally by an IDE, the constants wouldn't be defined at all. The new Sdk assigns default values to these constants when not built from the Godot editor, i.e.: when built from an IDE or from the command line. The default define constants are determined from the system MSBuild is running on. However, it's not possible for MSBuild to determine the set of supported engine features. It's also not possible to determine if a project is being built to run on a 32-bit or 64-bit Godot executable. As such the 'features' and 'bits' constants had to be removed. The benefit of checking those at compile time was questionable, and they can still be checked at runtime. The new list of define constants includes: - GODOT - GODOT_<PLATFORM> Defaults to the platform MSBuild is running on. - GODOT_<PC/MOBILE/WEB> - TOOLS When building with the 'Debug' configuration (editor and editor player). - GODOT_REAL_T_IS_DOUBLE Not defined by default unless $(GodotRealTIsDouble) is overriden to be 'true'. .NET Standard ------------- The target framework of game projects was changed to 'netstandard2.1'.
2020-07-20 15:48:12 +02:00
<EnableDefaultItems>false</EnableDefaultItems>
C#: Move marshaling logic and generated glue to C# We will be progressively moving most code to C#. The plan is to only use Mono's embedding APIs to set things at launch. This will make it much easier to later support CoreCLR too which doesn't have rich embedding APIs. Additionally the code in C# is more maintainable and makes it easier to implement new features, e.g.: runtime codegen which we could use to avoid using reflection for marshaling everytime a field, property or method is accessed. SOME NOTES ON INTEROP We make the same assumptions as GDNative about the size of the Godot structures we use. We take it a bit further by also assuming the layout of fields in some cases, which is riskier but let's us squeeze out some performance by avoiding unnecessary managed to native calls. Code that deals with native structs is less safe than before as there's no RAII and copy constructors in C#. It's like using the GDNative C API directly. One has to take special care to free values they own. Perhaps we could use roslyn analyzers to check this, but I don't know any that uses attributes to determine what's owned or borrowed. As to why we maily use pointers for native structs instead of ref/out: - AFAIK (and confirmed with a benchmark) ref/out are pinned during P/Invoke calls and that has a cost. - Native struct fields can't be ref/out in the first place. - A `using` local can't be passed as ref/out, only `in`. Calling a method or property on an `in` value makes a silent copy, so we want to avoid `in`. REGARDING THE BUILD SYSTEM There's no longer a `mono_glue=yes/no` SCons options. We no longer need to build with `mono_glue=no`, generate the glue and then build again with `mono_glue=yes`. We build only once and generate the glue (which is in C# now). However, SCons no longer builds the C# projects for us. Instead one must run `build_assemblies.py`, e.g.: ```sh %godot_src_root%/modules/mono/build_scripts/build_assemblies.py \ --godot-output-dir=%godot_src_root%/bin \ --godot-target=release_debug` ``` We could turn this into a custom build target, but I don't know how to do that with SCons (it's possible with Meson). OTHER NOTES Most of the moved code doesn't follow the C# naming convention and still has the word Mono in the names despite no longer dealing with Mono's embedding APIs. This is just temporary while transitioning, to make it easier to understand what was moved where.
2021-05-03 15:21:06 +02:00
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
<LangVersion>9</LangVersion>
<!-- Disabled temporarily as it pollutes the warnings, but we need to document public APIs. -->
<NoWarn>CS1591</NoWarn>
</PropertyGroup>
C#: Switch games to MSBuild Sdks and .NET Standard Godot.NET.Sdk ------------- Godot uses its own custom MSBuild Sdk for game projects. This new Sdk adds its own functionality on top of 'Microsoft.NET.Sdk'. The new Sdk is resolved from the NuGet package. All the default boilerplate was moved from game projects to the Sdk. The default csproj for game project can now be as simple as: ``` <Project Sdk="Godot.NET.Sdk/4.0.0-dev2"> <PropertyGroup> <TargetFramework>netstandard2.1</TargetFramework> </PropertyGroup> </Project> ``` Source files are included by automatically so Godot no longer needs to keep the csproj in sync when creating new source files. Define constants ---------------- Godot defines a list of constants for conditional compilation. When exporting games, this list also included engine 'features' and platform 'bits'. There were a few problems with that: - The 'features' constants were only defined when exporting games. Not when building the game for running in the editor player. - If the project was built externally by an IDE, the constants wouldn't be defined at all. The new Sdk assigns default values to these constants when not built from the Godot editor, i.e.: when built from an IDE or from the command line. The default define constants are determined from the system MSBuild is running on. However, it's not possible for MSBuild to determine the set of supported engine features. It's also not possible to determine if a project is being built to run on a 32-bit or 64-bit Godot executable. As such the 'features' and 'bits' constants had to be removed. The benefit of checking those at compile time was questionable, and they can still be checked at runtime. The new list of define constants includes: - GODOT - GODOT_<PLATFORM> Defaults to the platform MSBuild is running on. - GODOT_<PC/MOBILE/WEB> - TOOLS When building with the 'Debug' configuration (editor and editor player). - GODOT_REAL_T_IS_DOUBLE Not defined by default unless $(GodotRealTIsDouble) is overriden to be 'true'. .NET Standard ------------- The target framework of game projects was changed to 'netstandard2.1'.
2020-07-20 15:48:12 +02:00
<PropertyGroup>
<DefineConstants>$(DefineConstants);GODOT</DefineConstants>
</PropertyGroup>
C#: Move marshaling logic and generated glue to C# We will be progressively moving most code to C#. The plan is to only use Mono's embedding APIs to set things at launch. This will make it much easier to later support CoreCLR too which doesn't have rich embedding APIs. Additionally the code in C# is more maintainable and makes it easier to implement new features, e.g.: runtime codegen which we could use to avoid using reflection for marshaling everytime a field, property or method is accessed. SOME NOTES ON INTEROP We make the same assumptions as GDNative about the size of the Godot structures we use. We take it a bit further by also assuming the layout of fields in some cases, which is riskier but let's us squeeze out some performance by avoiding unnecessary managed to native calls. Code that deals with native structs is less safe than before as there's no RAII and copy constructors in C#. It's like using the GDNative C API directly. One has to take special care to free values they own. Perhaps we could use roslyn analyzers to check this, but I don't know any that uses attributes to determine what's owned or borrowed. As to why we maily use pointers for native structs instead of ref/out: - AFAIK (and confirmed with a benchmark) ref/out are pinned during P/Invoke calls and that has a cost. - Native struct fields can't be ref/out in the first place. - A `using` local can't be passed as ref/out, only `in`. Calling a method or property on an `in` value makes a silent copy, so we want to avoid `in`. REGARDING THE BUILD SYSTEM There's no longer a `mono_glue=yes/no` SCons options. We no longer need to build with `mono_glue=no`, generate the glue and then build again with `mono_glue=yes`. We build only once and generate the glue (which is in C# now). However, SCons no longer builds the C# projects for us. Instead one must run `build_assemblies.py`, e.g.: ```sh %godot_src_root%/modules/mono/build_scripts/build_assemblies.py \ --godot-output-dir=%godot_src_root%/bin \ --godot-target=release_debug` ``` We could turn this into a custom build target, but I don't know how to do that with SCons (it's possible with Meson). OTHER NOTES Most of the moved code doesn't follow the C# naming convention and still has the word Mono in the names despite no longer dealing with Mono's embedding APIs. This is just temporary while transitioning, to make it easier to understand what was moved where.
2021-05-03 15:21:06 +02:00
<ItemGroup>
<PackageReference Include="ReflectionAnalyzers" Version="0.1.22-dev" PrivateAssets="all" IncludeAssets="runtime; build; native; contentfiles; analyzers" />
<!--PackageReference Include="IDisposableAnalyzers" Version="3.4.13" PrivateAssets="all" IncludeAssets="runtime; build; native; contentfiles; analyzers" /-->
</ItemGroup>
<ItemGroup>
<Compile Include="Core\AABB.cs" />
<Compile Include="Core\Array.cs" />
Add C# source generator for a new ScriptPath attribute This source generator adds a newly introduced attribute, `ScriptPath` to all classes that: - Are top-level classes (not inner/nested). - Have the `partial` modifier. - Inherit `Godot.Object`. - The class name matches the file name. A build error is thrown if the generator finds a class that meets these conditions but is not declared `partial`, unless the class is annotated with the `DisableGodotGenerators` attribute. We also generate an `AssemblyHasScripts` assembly attribute which Godot uses to get all the script classes in the assembly, eliminating the need for Godot to search them. We can also avoid searching in assemblies that don't have this attribute. This will be good for performance in the future once we support multiple assemblies with Godot script classes. This is an example of what the generated code looks like: ``` using Godot; namespace Foo { [ScriptPathAttribute("res://Player.cs")] // Multiple partial declarations are allowed [ScriptPathAttribute("res://Foo/Player.cs")] partial class Player {} } [assembly:AssemblyHasScripts(new System.Type[] { typeof(Foo.Player) })] ``` The new attributes replace script metadata which we were generating by determining the namespace of script classes with a very simple parser. This fixes several issues with the old approach related to parser errors and conditional compilation. It also makes the task part of the MSBuild project build, rather than a separate step executed by the Godot editor.
2021-03-06 00:12:42 +01:00
<Compile Include="Core\Attributes\AssemblyHasScriptsAttribute.cs" />
<Compile Include="Core\Attributes\DisableGodotGeneratorsAttribute.cs" />
<Compile Include="Core\Attributes\ExportAttribute.cs" />
<Compile Include="Core\Attributes\GodotMethodAttribute.cs" />
<Compile Include="Core\Attributes\RPCAttributes.cs" />
Add C# source generator for a new ScriptPath attribute This source generator adds a newly introduced attribute, `ScriptPath` to all classes that: - Are top-level classes (not inner/nested). - Have the `partial` modifier. - Inherit `Godot.Object`. - The class name matches the file name. A build error is thrown if the generator finds a class that meets these conditions but is not declared `partial`, unless the class is annotated with the `DisableGodotGenerators` attribute. We also generate an `AssemblyHasScripts` assembly attribute which Godot uses to get all the script classes in the assembly, eliminating the need for Godot to search them. We can also avoid searching in assemblies that don't have this attribute. This will be good for performance in the future once we support multiple assemblies with Godot script classes. This is an example of what the generated code looks like: ``` using Godot; namespace Foo { [ScriptPathAttribute("res://Player.cs")] // Multiple partial declarations are allowed [ScriptPathAttribute("res://Foo/Player.cs")] partial class Player {} } [assembly:AssemblyHasScripts(new System.Type[] { typeof(Foo.Player) })] ``` The new attributes replace script metadata which we were generating by determining the namespace of script classes with a very simple parser. This fixes several issues with the old approach related to parser errors and conditional compilation. It also makes the task part of the MSBuild project build, rather than a separate step executed by the Godot editor.
2021-03-06 00:12:42 +01:00
<Compile Include="Core\Attributes\ScriptPathAttribute.cs" />
<Compile Include="Core\Attributes\SignalAttribute.cs" />
<Compile Include="Core\Attributes\ToolAttribute.cs" />
<Compile Include="Core\Basis.cs" />
C#: Restructure code prior move to .NET Core The main focus here was to remove the majority of code that relied on Mono's embedding APIs, specially the reflection APIs. The embedding APIs we still use are the bare minimum we need for things to work. A lot of code was moved to C#. We no longer deal with any managed objects (`MonoObject*`, and such) in native code, and all marshaling is done in C#. The reason for restructuring the code and move away from embedding APIs is that once we move to .NET Core, we will be limited by the much more minimal .NET hosting. PERFORMANCE REGRESSIONS ----------------------- Some parts of the code were written with little to no concern about performance. This includes code that calls into script methods and accesses script fields, properties and events. The reason for this is that all of that will be moved to source generators, so any work prior to that would be a waste of time. DISABLED FEATURES ----------------- Some code was removed as it no longer makes sense (or won't make sense in the future). Other parts were commented out with `#if 0`s and TODO warnings because it doesn't make much sense to work on them yet as those parts will change heavily when we switch to .NET Core but also when we start introducing source generators. As such, the following features were disabled temporarily: - Assembly-reloading (will be done with ALCs in .NET Core). - Properties/fields exports and script method listing (will be handled by source generators in the future). - Exception logging in the editor and stack info for errors. - Exporting games. - Building of C# projects. We no longer copy the Godot API assemblies to the project directory, so MSBuild won't be able to find them. The idea is to turn them into NuGet packages in the future, which could also be obtained from local NuGet sources during development.
2021-09-12 20:21:15 +02:00
<Compile Include="Core\Bridge\CSharpInstanceBridge.cs" />
<Compile Include="Core\Bridge\GCHandleBridge.cs" />
<Compile Include="Core\Bridge\ManagedCallbacks.cs" />
C#: Restructure code prior move to .NET Core The main focus here was to remove the majority of code that relied on Mono's embedding APIs, specially the reflection APIs. The embedding APIs we still use are the bare minimum we need for things to work. A lot of code was moved to C#. We no longer deal with any managed objects (`MonoObject*`, and such) in native code, and all marshaling is done in C#. The reason for restructuring the code and move away from embedding APIs is that once we move to .NET Core, we will be limited by the much more minimal .NET hosting. PERFORMANCE REGRESSIONS ----------------------- Some parts of the code were written with little to no concern about performance. This includes code that calls into script methods and accesses script fields, properties and events. The reason for this is that all of that will be moved to source generators, so any work prior to that would be a waste of time. DISABLED FEATURES ----------------- Some code was removed as it no longer makes sense (or won't make sense in the future). Other parts were commented out with `#if 0`s and TODO warnings because it doesn't make much sense to work on them yet as those parts will change heavily when we switch to .NET Core but also when we start introducing source generators. As such, the following features were disabled temporarily: - Assembly-reloading (will be done with ALCs in .NET Core). - Properties/fields exports and script method listing (will be handled by source generators in the future). - Exception logging in the editor and stack info for errors. - Exporting games. - Building of C# projects. We no longer copy the Godot API assemblies to the project directory, so MSBuild won't be able to find them. The idea is to turn them into NuGet packages in the future, which could also be obtained from local NuGet sources during development.
2021-09-12 20:21:15 +02:00
<Compile Include="Core\Bridge\ScriptManagerBridge.cs" />
<Compile Include="Core\Callable.cs" />
<Compile Include="Core\Color.cs" />
<Compile Include="Core\Colors.cs" />
<Compile Include="Core\DebuggingUtils.cs" />
<Compile Include="Core\DelegateUtils.cs" />
<Compile Include="Core\Dictionary.cs" />
<Compile Include="Core\Dispatcher.cs" />
<Compile Include="Core\Extensions\NodeExtensions.cs" />
<Compile Include="Core\Extensions\ObjectExtensions.cs" />
<Compile Include="Core\Extensions\PackedSceneExtensions.cs" />
<Compile Include="Core\Extensions\ResourceLoaderExtensions.cs" />
<Compile Include="Core\Extensions\SceneTreeExtensions.cs" />
<Compile Include="Core\GD.cs" />
<Compile Include="Core\GodotSynchronizationContext.cs" />
<Compile Include="Core\GodotTaskScheduler.cs" />
<Compile Include="Core\GodotTraceListener.cs" />
<Compile Include="Core\GodotUnhandledExceptionEvent.cs" />
<Compile Include="Core\Interfaces\IAwaitable.cs" />
<Compile Include="Core\Interfaces\IAwaiter.cs" />
<Compile Include="Core\Interfaces\ISerializationListener.cs" />
<Compile Include="Core\Mathf.cs" />
<Compile Include="Core\MathfEx.cs" />
<Compile Include="Core\NativeInterop\ExceptionUtils.cs" />
C#: Move marshaling logic and generated glue to C# We will be progressively moving most code to C#. The plan is to only use Mono's embedding APIs to set things at launch. This will make it much easier to later support CoreCLR too which doesn't have rich embedding APIs. Additionally the code in C# is more maintainable and makes it easier to implement new features, e.g.: runtime codegen which we could use to avoid using reflection for marshaling everytime a field, property or method is accessed. SOME NOTES ON INTEROP We make the same assumptions as GDNative about the size of the Godot structures we use. We take it a bit further by also assuming the layout of fields in some cases, which is riskier but let's us squeeze out some performance by avoiding unnecessary managed to native calls. Code that deals with native structs is less safe than before as there's no RAII and copy constructors in C#. It's like using the GDNative C API directly. One has to take special care to free values they own. Perhaps we could use roslyn analyzers to check this, but I don't know any that uses attributes to determine what's owned or borrowed. As to why we maily use pointers for native structs instead of ref/out: - AFAIK (and confirmed with a benchmark) ref/out are pinned during P/Invoke calls and that has a cost. - Native struct fields can't be ref/out in the first place. - A `using` local can't be passed as ref/out, only `in`. Calling a method or property on an `in` value makes a silent copy, so we want to avoid `in`. REGARDING THE BUILD SYSTEM There's no longer a `mono_glue=yes/no` SCons options. We no longer need to build with `mono_glue=no`, generate the glue and then build again with `mono_glue=yes`. We build only once and generate the glue (which is in C# now). However, SCons no longer builds the C# projects for us. Instead one must run `build_assemblies.py`, e.g.: ```sh %godot_src_root%/modules/mono/build_scripts/build_assemblies.py \ --godot-output-dir=%godot_src_root%/bin \ --godot-target=release_debug` ``` We could turn this into a custom build target, but I don't know how to do that with SCons (it's possible with Meson). OTHER NOTES Most of the moved code doesn't follow the C# naming convention and still has the word Mono in the names despite no longer dealing with Mono's embedding APIs. This is just temporary while transitioning, to make it easier to understand what was moved where.
2021-05-03 15:21:06 +02:00
<Compile Include="Core\NativeInterop\InteropUtils.cs" />
<Compile Include="Core\NativeInterop\NativeFuncs.extended.cs" />
<Compile Include="Core\NativeInterop\VariantSpanHelpers.cs" />
<Compile Include="Core\NativeInterop\VariantUtils.cs" />
<Compile Include="Core\NodePath.cs" />
<Compile Include="Core\Object.base.cs" />
C#: Move marshaling logic and generated glue to C# We will be progressively moving most code to C#. The plan is to only use Mono's embedding APIs to set things at launch. This will make it much easier to later support CoreCLR too which doesn't have rich embedding APIs. Additionally the code in C# is more maintainable and makes it easier to implement new features, e.g.: runtime codegen which we could use to avoid using reflection for marshaling everytime a field, property or method is accessed. SOME NOTES ON INTEROP We make the same assumptions as GDNative about the size of the Godot structures we use. We take it a bit further by also assuming the layout of fields in some cases, which is riskier but let's us squeeze out some performance by avoiding unnecessary managed to native calls. Code that deals with native structs is less safe than before as there's no RAII and copy constructors in C#. It's like using the GDNative C API directly. One has to take special care to free values they own. Perhaps we could use roslyn analyzers to check this, but I don't know any that uses attributes to determine what's owned or borrowed. As to why we maily use pointers for native structs instead of ref/out: - AFAIK (and confirmed with a benchmark) ref/out are pinned during P/Invoke calls and that has a cost. - Native struct fields can't be ref/out in the first place. - A `using` local can't be passed as ref/out, only `in`. Calling a method or property on an `in` value makes a silent copy, so we want to avoid `in`. REGARDING THE BUILD SYSTEM There's no longer a `mono_glue=yes/no` SCons options. We no longer need to build with `mono_glue=no`, generate the glue and then build again with `mono_glue=yes`. We build only once and generate the glue (which is in C# now). However, SCons no longer builds the C# projects for us. Instead one must run `build_assemblies.py`, e.g.: ```sh %godot_src_root%/modules/mono/build_scripts/build_assemblies.py \ --godot-output-dir=%godot_src_root%/bin \ --godot-target=release_debug` ``` We could turn this into a custom build target, but I don't know how to do that with SCons (it's possible with Meson). OTHER NOTES Most of the moved code doesn't follow the C# naming convention and still has the word Mono in the names despite no longer dealing with Mono's embedding APIs. This is just temporary while transitioning, to make it easier to understand what was moved where.
2021-05-03 15:21:06 +02:00
<Compile Include="Core\Object.exceptions.cs" />
<Compile Include="Core\Plane.cs" />
2021-01-20 08:02:02 +01:00
<Compile Include="Core\Quaternion.cs" />
<Compile Include="Core\Rect2.cs" />
<Compile Include="Core\Rect2i.cs" />
<Compile Include="Core\RID.cs" />
C#: Move marshaling logic and generated glue to C# We will be progressively moving most code to C#. The plan is to only use Mono's embedding APIs to set things at launch. This will make it much easier to later support CoreCLR too which doesn't have rich embedding APIs. Additionally the code in C# is more maintainable and makes it easier to implement new features, e.g.: runtime codegen which we could use to avoid using reflection for marshaling everytime a field, property or method is accessed. SOME NOTES ON INTEROP We make the same assumptions as GDNative about the size of the Godot structures we use. We take it a bit further by also assuming the layout of fields in some cases, which is riskier but let's us squeeze out some performance by avoiding unnecessary managed to native calls. Code that deals with native structs is less safe than before as there's no RAII and copy constructors in C#. It's like using the GDNative C API directly. One has to take special care to free values they own. Perhaps we could use roslyn analyzers to check this, but I don't know any that uses attributes to determine what's owned or borrowed. As to why we maily use pointers for native structs instead of ref/out: - AFAIK (and confirmed with a benchmark) ref/out are pinned during P/Invoke calls and that has a cost. - Native struct fields can't be ref/out in the first place. - A `using` local can't be passed as ref/out, only `in`. Calling a method or property on an `in` value makes a silent copy, so we want to avoid `in`. REGARDING THE BUILD SYSTEM There's no longer a `mono_glue=yes/no` SCons options. We no longer need to build with `mono_glue=no`, generate the glue and then build again with `mono_glue=yes`. We build only once and generate the glue (which is in C# now). However, SCons no longer builds the C# projects for us. Instead one must run `build_assemblies.py`, e.g.: ```sh %godot_src_root%/modules/mono/build_scripts/build_assemblies.py \ --godot-output-dir=%godot_src_root%/bin \ --godot-target=release_debug` ``` We could turn this into a custom build target, but I don't know how to do that with SCons (it's possible with Meson). OTHER NOTES Most of the moved code doesn't follow the C# naming convention and still has the word Mono in the names despite no longer dealing with Mono's embedding APIs. This is just temporary while transitioning, to make it easier to understand what was moved where.
2021-05-03 15:21:06 +02:00
<Compile Include="Core\NativeInterop\NativeFuncs.cs" />
<Compile Include="Core\NativeInterop\InteropStructs.cs" />
<Compile Include="Core\NativeInterop\Marshaling.cs" />
<Compile Include="Core\SignalInfo.cs" />
<Compile Include="Core\SignalAwaiter.cs" />
<Compile Include="Core\StringExtensions.cs" />
<Compile Include="Core\StringName.cs" />
<Compile Include="Core\Transform2D.cs" />
<Compile Include="Core\Transform3D.cs" />
<Compile Include="Core\UnhandledExceptionArgs.cs" />
<Compile Include="Core\Vector2.cs" />
<Compile Include="Core\Vector2i.cs" />
<Compile Include="Core\Vector3.cs" />
<Compile Include="Core\Vector3i.cs" />
<Compile Include="Properties\AssemblyInfo.cs" />
</ItemGroup>
<!--
We import a props file with auto-generated includes. This works well with Rider.
However, Visual Studio and MonoDevelop won't list them in the solution explorer.
We can't use wildcards as there may be undesired old files still hanging around.
Fortunately code completion, go to definition and such still work.
-->
<Import Project="Generated\GeneratedIncludes.props" />
</Project>