0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-09 11:31:11 +01:00
construct/ircd/ctx.cc

2231 lines
44 KiB
C++
Raw Normal View History

2018-02-04 03:22:01 +01:00
// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2018 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
2016-09-05 17:53:36 +02:00
#include <RB_INC_X86INTRIN_H
#include <cxxabi.h>
#include <ircd/asio.h>
2018-05-06 06:20:25 +02:00
#include "ctx.h"
2016-11-29 16:23:38 +01:00
/// Instance list linkage for the list of all ctx instances.
template<>
decltype(ircd::util::instance_list<ircd::ctx::ctx>::list)
ircd::util::instance_list<ircd::ctx::ctx>::list
{};
/// Public interface linkage for the list of all ctx instances
decltype(ircd::ctx::ctxs)
ircd::ctx::ctxs
{
ctx::ctx::list
};
/// Monotonic ctx id counter state. This counter is incremented for each
/// newly created context.
2016-11-29 16:23:38 +01:00
decltype(ircd::ctx::ctx::id_ctr)
ircd::ctx::ctx::id_ctr
{
0
};
2018-08-21 17:10:37 +02:00
/// Spawn (internal)
void
ircd::ctx::spawn(ctx *const c,
context::function func)
{
const boost::coroutines::attributes attrs
{
c->stack.max,
boost::coroutines::stack_unwind
};
auto bound
{
std::bind(&ctx::operator(), c, ph::_1, std::move(func))
};
boost::asio::spawn(c->strand, std::move(bound), attrs);
}
2018-08-20 03:09:04 +02:00
// linkage for dtor
ircd::ctx::ctx::~ctx()
noexcept
{
}
2017-10-12 02:43:11 +02:00
/// Base frame for a context.
///
/// This function is the first thing executed on the new context's stack
/// and calls the user's function.
2016-11-29 16:23:38 +01:00
void
ircd::ctx::ctx::operator()(boost::asio::yield_context yc,
const std::function<void ()> func)
noexcept try
2016-11-29 16:23:38 +01:00
{
this->yc = &yc;
notes = 1;
stack.base = uintptr_t(__builtin_frame_address(0));
2016-11-29 16:23:38 +01:00
ircd::ctx::current = this;
mark(prof::event::CUR_ENTER);
const unwind atexit([this]
2016-11-29 16:23:38 +01:00
{
mark(prof::event::CUR_LEAVE);
adjoindre.notify_all();
2016-11-29 16:23:38 +01:00
ircd::ctx::current = nullptr;
this->yc = nullptr;
if(flags & context::DETACH)
delete this;
});
// Check for a precocious interrupt
if(unlikely(flags & (context::INTERRUPTED | context::TERMINATED)))
return;
2016-11-29 16:23:38 +01:00
if(likely(bool(func)))
func();
}
catch(const ircd::ctx::interrupted &)
{
return;
}
catch(const ircd::ctx::terminated &)
{
return;
}
catch(const std::exception &e)
{
log::critical
{
"ctx('%s' #%u): unhandled: %s",
name,
id,
e.what()
};
// Preserving the stacktrace from the throw point here is hopeless.
// We can terminate for developer nuisance but we will never know
// where this exception came from and where it is going. Bottom line
// is that #ifdef'ing away this handler or rethrowing isn't as useful as
// handling the exception here with a log message and calling it a day.
return;
}
2016-11-29 16:23:38 +01:00
2018-12-07 21:03:25 +01:00
/// Direct context switch to this context.
///
/// This currently doesn't work yet because the suspension state of this
/// context has to be ready to be jumped to and that isn't implemented yet.
void
ircd::ctx::ctx::jump()
{
assert(this->yc);
assert(current != this); // can't jump to self
auto &yc(*this->yc);
auto &target(*yc.coro_.lock());
// Jump from the currently running context (source) to *this (target)
// with continuation of source after target
{
current->notes = 0; // Unconditionally cleared here
const continuation continuation;
target();
}
assert(current != this);
assert(current->notes == 1); // notes = 1; set by continuation dtor on wakeup
interruption_point();
}
2017-10-12 02:43:11 +02:00
/// Yield (suspend) this context until notified.
///
/// This context must be currently running otherwise bad things. Returns false
/// if the context was notified before actually suspending; the note is then
/// considered handled an another attempt to `wait()` can be made. Returns true
/// if the context suspended and was notified. When a context wakes up the
/// note counter is reset.
bool
ircd::ctx::ctx::wait()
{
namespace errc = boost::system::errc;
assert(this->yc);
assert(current == this);
if(--notes > 0)
return false;
// An interrupt invokes this closure to force the alarm to return.
const interruptor interruptor{[this]
(ctx *const &interruptor) noexcept
{
wake();
}};
// This is currently a dummy predicate; this is where we can take the
// user's real wakeup condition (i.e from a ctx::dock) and use it with
// an internal scheduler.
const predicate &predicate{[this]
{
return notes > 0;
}};
// The register switch itself occurs inside the alarm.async_wait() call.
// The construction of the arguments to the call on this stack comprise
// our final control before the context switch. The destruction of the
// arguments comprise the initial control after the context switch.
boost::system::error_code ec;
alarm.async_wait(yield_context{continuation{predicate, interruptor}}[ec]);
assert(ec == errc::operation_canceled || ec == errc::success);
assert(current == this);
assert(notes == 1); // notes = 1; set by continuation dtor on wakeup
interruption_point();
return true;
}
2017-10-12 02:43:11 +02:00
/// Notifies this context to resume (wake up from waiting).
///
/// Returns true if this note was the first note received by this context
/// while it's been suspended or false if it's already been notified.
2016-11-29 16:23:38 +01:00
bool
ircd::ctx::ctx::note()
{
if(notes++ > 0)
return false;
2018-12-07 21:03:25 +01:00
if(this == current)
return true;
return wake();
2016-11-29 16:23:38 +01:00
}
2017-10-12 02:43:11 +02:00
/// Wakes a context without a note (internal)
2018-12-07 21:03:25 +01:00
bool
2016-11-29 16:23:38 +01:00
ircd::ctx::ctx::wake()
try
{
alarm.cancel();
2018-12-07 21:03:25 +01:00
return true;
2016-11-29 16:23:38 +01:00
}
catch(const boost::system::system_error &e)
{
log::error
{
"ctx::wake(%p): %s", this, e.what()
};
2018-12-07 21:03:25 +01:00
return false;
2016-11-29 16:23:38 +01:00
}
2017-10-12 02:43:11 +02:00
/// Throws if this context has been flagged for interruption and clears
/// the flag.
void
ircd::ctx::ctx::interruption_point()
2016-11-29 16:23:38 +01:00
{
static const auto &flags
{
context::TERMINATED | context::INTERRUPTED
};
if(likely((this->flags & flags) == 0))
return;
if(unlikely(termination_point(std::nothrow)))
throw terminated{};
if(unlikely(interruption_point(std::nothrow)))
throw interrupted
{
"ctx(%p) '%s'", (const void *)this, name
};
}
/// Returns true if this context has been flagged for termination.
/// Does not clear the flag.
bool
ircd::ctx::ctx::termination_point(std::nothrow_t)
{
if(unlikely(flags & context::TERMINATED))
{
// see: interruption_point().
if(flags & context::NOINTERRUPT)
return false;
mark(prof::event::CUR_TERMINATE);
assert(flags & ~context::NOINTERRUPT);
return true;
}
else return false;
}
2016-11-29 16:23:38 +01:00
2017-10-12 02:43:11 +02:00
/// Returns true if this context has been flagged for interruption and
/// clears the flag.
bool
ircd::ctx::ctx::interruption_point(std::nothrow_t)
{
2016-11-29 16:23:38 +01:00
// Interruption shouldn't be used for normal operation,
// so please eat this branch misprediction.
if(unlikely(flags & context::INTERRUPTED))
{
// The NOINTERRUPT flag works by pretending there is no INTERRUPTED
// flag set and also does not clear the flag. This allows the interrupt
// to remaing pending until the uninterruptible section is complete.
if(flags & context::NOINTERRUPT)
return false;
2016-11-29 16:23:38 +01:00
flags &= ~context::INTERRUPTED;
mark(prof::event::CUR_INTERRUPT);
assert(~flags & context::NOINTERRUPT);
return true;
2016-11-29 16:23:38 +01:00
}
else return false;
2016-11-29 16:23:38 +01:00
}
2016-09-05 17:53:36 +02:00
2018-08-20 01:21:33 +02:00
bool
ircd::ctx::ctx::started()
const
{
return stack.base != 0;
}
bool
ircd::ctx::ctx::finished()
const
{
return started() && yc == nullptr;
}
2016-09-10 07:23:07 +02:00
///////////////////////////////////////////////////////////////////////////////
//
2016-11-29 16:23:38 +01:00
// ctx/ctx.h
2016-09-10 07:23:07 +02:00
//
2017-10-12 02:43:11 +02:00
/// Yield to context `ctx`.
///
///
void
ircd::ctx::yield(ctx &ctx)
{
assert(current);
//ctx.jump();
// !!! TODO !!!
// XXX: We can't jump directly to a context if it's waiting on its alarm, and
// we don't know whether it's waiting on its alarm. We can add another flag to
// inform us of that, but most contexts are usually waiting on their alarm anyway.
//
// Perhaps a better way to do this would be to centralize the alarms into a single
// context with the sole job of waiting on a single alarm. Then it can schedule
// things allowing for more direct jumps until all work is complete.
// !!! TODO !!!
notify(ctx);
}
2017-10-12 02:43:11 +02:00
/// Notifies `ctx` to wake up from another std::thread
void
ircd::ctx::notify(ctx &ctx,
threadsafe_t)
{
signal(ctx, [&ctx]
{
notify(ctx);
});
}
2017-10-12 02:43:11 +02:00
/// Notifies `ctx` to wake up. This will enqueue the resumption, not jump
/// directly to `ctx`.
2016-11-29 16:23:38 +01:00
bool
ircd::ctx::notify(ctx &ctx)
{
return ctx.note();
}
2017-10-12 02:43:11 +02:00
/// Executes `func` sometime between executions of `ctx` with thread-safety
/// so `func` and `ctx` are never executed concurrently no matter how many
/// threads the io_service has available to execute events on.
void
ircd::ctx::signal(ctx &ctx,
std::function<void ()> func)
{
ctx.strand.post(std::move(func));
}
/// Marks `ctx` for termination. Terminate is similar to interrupt() but the
/// exception thrown is ctx::terminate which does not participate in the
/// std::exception hierarchy. Project code is unlikely to catch this.
void
ircd::ctx::terminate(ctx &ctx)
{
if(finished(ctx))
return;
if(termination(ctx))
return;
ctx.flags |= context::TERMINATED;
if(!interruptible(ctx))
return;
if(likely(&ctx != current && ctx.cont != nullptr))
ctx.cont->intr(current);
}
2017-10-12 02:43:11 +02:00
/// Marks `ctx` for interruption and enqueues it for resumption to receive the
/// interrupt which will be an exception coming out of the point where the
/// `ctx` was yielding.
2016-11-29 16:23:38 +01:00
void
ircd::ctx::interrupt(ctx &ctx)
{
if(unlikely(ircd::runlevel == runlevel::QUIT))
return terminate(ctx);
2018-08-18 06:31:54 +02:00
if(finished(ctx))
return;
if(interruption(ctx))
return;
2016-11-29 16:23:38 +01:00
ctx.flags |= context::INTERRUPTED;
if(!interruptible(ctx))
return;
if(likely(&ctx != current && ctx.cont != nullptr))
ctx.cont->intr(current);
2016-11-29 16:23:38 +01:00
}
/// Marks `ctx` for whether to allow or suppress interruption. Suppression
/// does not ignore an interrupt itself, it only ignores the interruption
/// points. Thus when a suppression ends if the interrupt flag was ever set
/// the next interruption point will throw as expected.
void
ircd::ctx::interruptible(ctx &ctx,
const bool &b)
{
if(b)
ctx.flags &= ~context::NOINTERRUPT;
else
ctx.flags |= context::NOINTERRUPT;
}
/// started() && !finished() && !running
bool
ircd::ctx::waiting(const ctx &ctx)
{
return started(ctx) && !finished(ctx) && !running(ctx);
}
/// Indicates if `ctx` is the current ctx
bool
ircd::ctx::running(const ctx &ctx)
{
return &ctx == current;
}
2017-10-12 02:43:11 +02:00
/// Indicates if `ctx` was ever jumped to
2016-11-29 16:23:38 +01:00
bool
ircd::ctx::started(const ctx &ctx)
{
return ctx.started();
}
2017-10-12 02:43:11 +02:00
/// Indicates if the base frame for `ctx` returned
2016-11-29 16:23:38 +01:00
bool
ircd::ctx::finished(const ctx &ctx)
{
return ctx.finished();
}
/// Indicates if `ctx` was terminated; does not clear the flag
bool
ircd::ctx::termination(const ctx &c)
noexcept
{
return c.flags & context::TERMINATED;
}
2017-10-12 02:43:11 +02:00
/// Indicates if `ctx` was interrupted; does not clear the flag
bool
ircd::ctx::interruption(const ctx &c)
noexcept
{
return c.flags & context::INTERRUPTED;
}
/// Indicates if `ctx` will suppress any interrupts.
bool
ircd::ctx::interruptible(const ctx &c)
noexcept
{
return ~c.flags & context::NOINTERRUPT;
}
2018-05-07 21:37:44 +02:00
/// Returns the cycle count for `ctx`
const ulong &
ircd::ctx::cycles(const ctx &ctx)
{
return ctx.profile.cycles;
}
/// Returns the yield count for `ctx`
const uint64_t &
ircd::ctx::yields(const ctx &ctx)
{
return ctx.profile.yields;
}
/// Returns the notification count for `ctx`
const int32_t &
2016-11-29 16:23:38 +01:00
ircd::ctx::notes(const ctx &ctx)
{
return ctx.notes;
}
/// Returns the notification count for `ctx`
const size_t &
ircd::ctx::stack_at(const ctx &ctx)
{
return ctx.stack.at;
}
/// Returns the notification count for `ctx`
const size_t &
ircd::ctx::stack_max(const ctx &ctx)
{
return ctx.stack.max;
}
2017-10-12 02:43:11 +02:00
/// Returns the developer's optional name literal for `ctx`
2016-11-29 16:23:38 +01:00
ircd::string_view
ircd::ctx::name(const ctx &ctx)
{
return ctx.name;
}
2017-10-12 02:43:11 +02:00
/// Returns a reference to unique ID for `ctx` (which will go away with `ctx`)
2016-11-29 16:23:38 +01:00
const uint64_t &
ircd::ctx::id(const ctx &ctx)
{
return ctx.id;
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx/this_ctx.h
//
// set by the continuation object and the base frame.
__thread ircd::ctx::ctx *
ircd::ctx::current;
/// Yield the currently running context until `time_point` ignoring notes
void
ircd::ctx::this_ctx::sleep_until(const steady_clock::time_point &tp)
{
while(!wait_until(tp, std::nothrow));
}
/// Yield the currently running context until notified or `time_point`.
///
/// Returns true if this function returned because `time_point` was hit or
/// false because this context was notified.
bool
ircd::ctx::this_ctx::wait_until(const steady_clock::time_point &tp,
const std::nothrow_t &)
{
auto &c(cur());
c.alarm.expires_at(tp);
c.wait(); // now you're yielding with portals
return steady_clock::now() >= tp;
}
/// Yield the currently running context for `duration` or until notified.
///
/// Returns the duration remaining if notified, or <= 0 if suspended for
/// the full duration, or unchanged if no suspend ever took place.
ircd::microseconds
ircd::ctx::this_ctx::wait(const microseconds &duration,
const std::nothrow_t &)
{
auto &c(cur());
c.alarm.expires_from_now(duration);
c.wait(); // now you're yielding with portals
const auto ret(c.alarm.expires_from_now());
// return remaining duration.
// this is > 0 if notified
// this is unchanged if a note prevented any wait at all
return duration_cast<microseconds>(ret);
}
/// Yield the currently running context until notified.
void
ircd::ctx::this_ctx::wait()
{
auto &c(cur());
c.alarm.expires_at(steady_clock::time_point::max());
c.wait(); // now you're yielding with portals
}
/// Post the currently running context to the event queue and then suspend to
/// allow other contexts in the queue to run.
///
/// Until we have our own queue the ios queue makes no guarantees if the queue
/// is FIFO or LIFO etc :-/ It is generally bad practice to use this function,
/// as one should make the effort to devise a specific cooperative strategy for
/// how context switching occurs rather than this coarse/brute technique.
void
ircd::ctx::this_ctx::yield()
{
bool done(false);
const auto restore([&done, &me(cur())]
{
done = true;
notify(me);
});
// All spurious notifications are ignored until `done`
ircd::post(restore); do
{
wait();
}
while(!done);
}
ulong
ircd::ctx::this_ctx::cycles_here()
{
assert(current);
return cycles(cur()) + prof::cur_slice_cycles();
}
size_t
ircd::ctx::this_ctx::stack_at_here()
{
assert(current);
return cur().stack.base - uintptr_t(__builtin_frame_address(0));
}
/// Throws interrupted if the currently running context was interrupted
/// and clears the interrupt flag.
void
ircd::ctx::this_ctx::interruptible(const bool &b)
{
const bool theirs
{
interruptible(cur())
};
if(theirs && !b)
interruption_point();
interruptible(cur(), b);
if(!theirs && b)
interruption_point();
}
void
ircd::ctx::this_ctx::interruptible(const bool &b,
std::nothrow_t)
noexcept
{
interruptible(cur(), b);
}
bool
ircd::ctx::this_ctx::interruptible()
noexcept
{
return interruptible(cur());
}
/// Throws interrupted if the currently running context was interrupted
/// and clears the interrupt flag.
void
ircd::ctx::this_ctx::interruption_point()
{
// Asserting to know if this call is useless as it's being made in
// an uninterruptible scope anyway. It's okay to relax this assertion.
assert(interruptible());
return cur().interruption_point();
}
/// Returns true if the currently running context was interrupted and clears
/// the interrupt flag.
bool
ircd::ctx::this_ctx::interruption_requested()
{
return interruption(cur()) || termination(cur());
}
/// Returns unique ID of currently running context
const uint64_t &
ircd::ctx::this_ctx::id()
{
static const uint64_t zero{0};
return current? id(cur()) : zero;
}
/// Returns optional developer-given name for currently running context
ircd::string_view
ircd::ctx::this_ctx::name()
{
static const string_view nada{"*"};
return current? name(cur()) : nada;
}
//
// uinterruptible
//
ircd::ctx::this_ctx::uninterruptible::uninterruptible()
:theirs
{
interruptible(cur())
}
{
interruptible(false);
}
ircd::ctx::this_ctx::uninterruptible::~uninterruptible()
noexcept(false)
{
interruptible(theirs);
}
//
// uninterruptible::nothrow
//
ircd::ctx::this_ctx::uninterruptible::nothrow::nothrow()
noexcept
:theirs
{
interruptible(cur())
}
{
interruptible(false, std::nothrow);
}
ircd::ctx::this_ctx::uninterruptible::nothrow::~nothrow()
noexcept
{
interruptible(theirs, std::nothrow);
}
//
// exception_handler
//
ircd::ctx::this_ctx::exception_handler::exception_handler()
noexcept
:std::exception_ptr{std::current_exception()}
{
assert(bool(*this));
//assert(!std::uncaught_exceptions());
__cxa_end_catch();
// We don't yet support more levels of exceptions; after ending this
// catch we can't still be in another one. This doesn't apply if we're
// not on any ctx currently.
assert(!current || !std::current_exception());
}
//
// critical_assertion
//
namespace ircd::ctx
{
bool critical_asserted;
void assert_critical();
}
#ifndef NDEBUG
ircd::ctx::this_ctx::critical_assertion::critical_assertion()
:theirs{critical_asserted}
{
critical_asserted = true;
}
#endif
#ifndef NDEBUG
ircd::ctx::this_ctx::critical_assertion::~critical_assertion()
noexcept
{
assert(critical_asserted);
critical_asserted = theirs;
}
#endif
#ifndef NDEBUG
void
ircd::ctx::assert_critical()
{
if(unlikely(critical_asserted))
throw ircd::assertive
{
"%lu '%s' :Illegal context switch", id(), name()
};
}
#else
void
ircd::ctx::assert_critical()
{
}
#endif
//
// stack_usage_assertion
//
#ifndef NDEBUG
ircd::ctx::this_ctx::stack_usage_assertion::stack_usage_assertion()
{
const auto stack_usage(stack_at_here());
assert(stack_usage < cur().stack.max * double(prof::settings::stack_usage_assertion));
}
#endif
#ifndef NDEBUG
ircd::ctx::this_ctx::stack_usage_assertion::~stack_usage_assertion()
noexcept
{
const auto stack_usage(stack_at_here());
assert(stack_usage < cur().stack.max * double(prof::settings::stack_usage_assertion));
}
#endif
///////////////////////////////////////////////////////////////////////////////
//
// ctx/continuation.h
//
decltype(ircd::ctx::continuation::true_predicate)
ircd::ctx::continuation::true_predicate{[]
() -> bool
{
return true;
}};
decltype(ircd::ctx::continuation::false_predicate)
ircd::ctx::continuation::false_predicate{[]
() -> bool
{
return false;
}};
decltype(ircd::ctx::continuation::noop_interruptor)
ircd::ctx::continuation::noop_interruptor{[]
(ctx *const &interruptor) -> void
{
return;
}};
//
// continuation
//
ircd::ctx::continuation::continuation(const predicate &pred,
const interruptor &intr)
:self
{
ircd::ctx::current
}
,pred
{
pred
}
,intr
{
intr
}
2016-11-29 16:23:38 +01:00
{
mark(prof::event::CUR_YIELD);
assert_critical();
assert(!critical_asserted);
assert(self != nullptr);
assert(self->notes <= 1);
// Note: Construct an instance of ctx::exception_handler to enable yielding
// in your catch block.
//
// GNU cxxabi uses a singly-linked forward list (aka the 'exception
// stack') for pending exception activities. Due to this limitation we
// cannot interleave _cxa_begin_catch() and __cxa_end_catch() by yielding
// the ircd::ctx in an exception handler.
assert(!std::current_exception());
//assert(!std::uncaught_exceptions());
self->profile.yields++;
self->cont = this;
ircd::ctx::current = nullptr;
2016-11-29 16:23:38 +01:00
}
ircd::ctx::continuation::~continuation()
noexcept
{
ircd::ctx::current = self;
self->notes = 1;
mark(prof::event::CUR_CONTINUE);
// self->continuation is not null'ed here; it remains an invalid
// pointer while the context is awake.
}
2016-11-29 16:23:38 +01:00
ircd::ctx::continuation::operator boost::asio::yield_context &()
{
return *self->yc;
}
ircd::ctx::continuation::operator const boost::asio::yield_context &()
const
{
return *self->yc;
}
//
// to_asio
//
ircd::ctx::to_asio::to_asio(const interruptor &intr)
:continuation
{
false_predicate, intr
}
{
}
2016-11-29 16:23:38 +01:00
///////////////////////////////////////////////////////////////////////////////
//
// ctx/context.h
//
// Linkage here for default construction because ctx is internal.
ircd::ctx::context::context()
{
}
2016-11-29 16:23:38 +01:00
ircd::ctx::context::context(const char *const &name,
const size_t &stack_sz,
const flags &flags,
function func)
:c
{
std::make_unique<ctx>(name, stack_sz, flags, ios::get())
}
{
2017-10-25 22:45:24 +02:00
auto spawn
{
std::bind(&ircd::ctx::spawn, c.get(), std::move(func))
};
// The profiler is told about the spawn request here, not inside the closure
// which is probably the same event-slice as event::CUR_ENTER and not as useful.
mark(prof::event::SPAWN);
// When the user passes the DETACH flag we want to release the unique_ptr
// of the ctx if and only if that ctx is committed to freeing itself. Our
// commitment ends at the 180 of this function. If no exception was thrown
// we expect the context to be committed to entry. If the POST flag is
// supplied and it gets lost in the asio queue it will not be entered, and
// will not be able to free itself; that will leak.
const unwind::nominal release
{
[this, &flags]
{
if(flags & context::DETACH)
this->detach();
}
};
2016-11-29 16:23:38 +01:00
if(flags & POST)
{
ios::post(std::move(spawn));
return;
}
// The current context must be reasserted if spawn returns here
auto *const theirs(ircd::ctx::current);
const unwind recurrent([&theirs]
2017-10-25 22:45:24 +02:00
{
ircd::ctx::current = theirs;
});
2017-10-25 22:45:24 +02:00
if(flags & DISPATCH)
ios::dispatch(std::move(spawn));
else
spawn();
}
2016-11-29 16:23:38 +01:00
ircd::ctx::context::context(const char *const &name,
const size_t &stack_size,
function func,
2016-11-29 16:23:38 +01:00
const flags &flags)
:context
{
name, stack_size, flags, std::move(func)
}
{
}
ircd::ctx::context::context(const char *const &name,
const flags &flags,
function func)
2016-11-29 16:23:38 +01:00
:context
{
name, DEFAULT_STACK_SIZE, flags, std::move(func)
}
{
}
ircd::ctx::context::context(const char *const &name,
function func,
2016-11-29 16:23:38 +01:00
const flags &flags)
:context
{
name, DEFAULT_STACK_SIZE, flags, std::move(func)
}
{
}
ircd::ctx::context::context(function func,
2016-11-29 16:23:38 +01:00
const flags &flags)
2016-09-05 17:53:36 +02:00
:context
{
"<noname>", DEFAULT_STACK_SIZE, flags, std::move(func)
2016-09-05 17:53:36 +02:00
}
{
}
ircd::ctx::context::context(context &&other)
noexcept
:c{std::move(other.c)}
{
}
ircd::ctx::context &
ircd::ctx::context::operator=(context &&other)
noexcept
{
std::swap(this->c, other.c);
return *this;
}
2016-09-05 17:53:36 +02:00
ircd::ctx::context::~context()
noexcept
{
2018-08-20 03:09:04 +02:00
if(!c)
return;
// Can't join to bare metal, only from within another context.
2018-08-20 03:09:04 +02:00
if(current)
2017-10-25 22:45:24 +02:00
{
const uninterruptible::nothrow ui;
terminate();
2017-10-25 22:45:24 +02:00
join();
return;
2017-10-25 22:45:24 +02:00
}
2017-10-25 22:45:24 +02:00
// because *this uses unique_ptr's, if we dtor the ircd::ctx from
// right here and ircd::ctx hasn't been entered yet because the user
// passed the POST flag, the ctx::spawn() is still sitting in the ios
// queue.
2018-08-20 03:09:04 +02:00
if(!started(*c))
2017-10-25 22:45:24 +02:00
{
detach();
return;
}
// When this is bare metal the above join branch will not have been
// taken. In that case we should detach the context so it frees itself,
// but only if the context has not already finished.
2018-08-20 03:09:04 +02:00
if(!current && !finished(*c))
{
detach();
return;
2017-10-25 22:45:24 +02:00
}
2016-09-05 17:53:36 +02:00
}
void
ircd::ctx::context::join()
{
if(joined())
return;
2016-09-05 17:53:36 +02:00
assert(bool(c));
2018-08-20 01:21:33 +02:00
mark(prof::event::JOIN);
c->adjoindre.wait([this]
{
return joined();
});
mark(prof::event::JOINED);
2016-09-05 17:53:36 +02:00
}
ircd::ctx::ctx *
ircd::ctx::context::detach()
{
assert(bool(c));
2016-11-29 16:23:38 +01:00
c->flags |= DETACH;
2016-09-05 17:53:36 +02:00
return c.release();
}
2016-09-21 23:15:49 +02:00
///////////////////////////////////////////////////////////////////////////////
//
// ctx_pool.h
//
2016-11-29 16:23:38 +01:00
ircd::ctx::pool::pool(const char *const &name,
const size_t &stack_size,
const size_t &size)
:name{name}
,stack_size{stack_size}
2017-11-26 03:21:21 +01:00
,running{0}
,working{0}
2016-09-21 23:15:49 +02:00
{
add(size);
}
2016-11-29 16:23:38 +01:00
ircd::ctx::pool::~pool()
2016-09-21 23:15:49 +02:00
noexcept
{
terminate();
2018-08-20 03:09:04 +02:00
join();
2018-08-20 03:09:04 +02:00
assert(ctxs.empty());
assert(q.empty());
2016-09-21 23:15:49 +02:00
}
void
2016-11-29 16:23:38 +01:00
ircd::ctx::pool::operator()(closure closure)
2016-09-21 23:15:49 +02:00
{
q.push(std::move(closure));
2016-09-21 23:15:49 +02:00
}
2018-08-22 23:08:03 +02:00
void
ircd::ctx::pool::set(const size_t &num)
{
if(size() > num)
del(size() - num);
else
add(num - size());
}
2016-09-21 23:15:49 +02:00
void
2016-11-29 16:23:38 +01:00
ircd::ctx::pool::del(const size_t &num)
2016-09-21 23:15:49 +02:00
{
const auto requested
{
ssize_t(size()) - ssize_t(num)
};
const auto target
{
size_t(std::max(requested, 0L))
};
2016-09-21 23:15:49 +02:00
while(ctxs.size() > target)
ctxs.pop_back();
}
void
2016-11-29 16:23:38 +01:00
ircd::ctx::pool::add(const size_t &num)
2016-09-21 23:15:49 +02:00
{
for(size_t i(0); i < num; ++i)
2016-11-29 16:23:38 +01:00
ctxs.emplace_back(name, stack_size, context::POST, std::bind(&pool::main, this));
2016-09-21 23:15:49 +02:00
}
void
ircd::ctx::pool::join()
{
2018-08-22 23:08:03 +02:00
set(0);
}
2016-09-21 23:15:49 +02:00
void
2016-11-29 16:23:38 +01:00
ircd::ctx::pool::interrupt()
{
for(auto &context : ctxs)
context.interrupt();
}
void
ircd::ctx::pool::terminate()
{
for(auto &context : ctxs)
context.terminate();
}
2016-11-29 16:23:38 +01:00
void
ircd::ctx::pool::main()
noexcept try
2016-09-21 23:15:49 +02:00
{
2017-11-26 03:21:21 +01:00
++running;
const unwind avail([this]
2016-09-21 23:15:49 +02:00
{
2017-11-26 03:21:21 +01:00
--running;
2016-09-21 23:15:49 +02:00
});
while(1)
next();
}
catch(const interrupted &e)
{
// log::debug
// {
// "pool(%p) ctx(%p): %s", this, &cur(), e.what()
// };
}
catch(const terminated &e)
{
// log::debug
// {
// "pool(%p) ctx(%p): %s", this, &cur(), e.what()
// };
2016-09-21 23:15:49 +02:00
}
void
2016-11-29 16:23:38 +01:00
ircd::ctx::pool::next()
2016-09-21 23:15:49 +02:00
try
{
const auto func
2016-09-21 23:15:49 +02:00
{
std::move(q.pop())
};
2016-09-21 23:15:49 +02:00
2017-11-26 03:21:21 +01:00
++working;
const unwind avail([this]
2016-09-21 23:15:49 +02:00
{
2017-11-26 03:21:21 +01:00
--working;
2016-09-21 23:15:49 +02:00
});
func();
}
catch(const interrupted &e)
{
// Interrupt is stopped here so this ctx can be reused for a new job.
return;
2016-09-21 23:15:49 +02:00
}
catch(const std::exception &e)
{
log::critical
{
"pool(%p) ctx(%p '%s' #%u): unhandled: %s",
this,
current,
ircd::ctx::name(cur()),
ircd::ctx::id(cur()),
e.what()
};
2016-09-21 23:15:49 +02:00
}
2017-10-19 09:58:43 +02:00
void
ircd::ctx::debug_stats(const pool &pool)
{
log::debug
{
"pool '%s' (stack size: %zu) total: %zu avail: %zu queued: %zu active: %zu pending: %zu",
pool.name,
pool.stack_size,
pool.size(),
pool.avail(),
pool.queued(),
pool.active(),
pool.pending()
};
2017-10-19 09:58:43 +02:00
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx_prof.h
//
namespace ircd::ctx::prof
{
ulong _slice_start; // Time slice state
ulong _slice_total; // Monotonic accumulator
void check_stack();
void check_slice();
void slice_start();
void handle_cur_continue();
void handle_cur_yield();
void handle_cur_leave();
void handle_cur_enter();
}
// stack_usage_warning at 1/3 engineering tolerance
decltype(ircd::ctx::prof::settings::stack_usage_warning)
ircd::ctx::prof::settings::stack_usage_warning
{
{ "name", "ircd.ctx.prof.stack_usage_warning" },
{ "default", 0.33 },
};
// stack_usage_assertion at 1/2 engineering tolerance
decltype(ircd::ctx::prof::settings::stack_usage_assertion)
ircd::ctx::prof::settings::stack_usage_assertion
{
{ "name", "ircd.ctx.prof.stack_usage_assertion" },
{ "default", 0.50 },
};
// slice_warning after this number of tsc ticks...
decltype(ircd::ctx::prof::settings::slice_warning)
ircd::ctx::prof::settings::slice_warning
{
{ "name", "ircd.ctx.prof.slice_warning" },
{ "default", 280 * 1000000L },
};
// slice_interrupt after this number of tsc ticks...
decltype(ircd::ctx::prof::settings::slice_interrupt)
ircd::ctx::prof::settings::slice_interrupt
{
{ "name", "ircd.ctx.prof.slice_interrupt" },
{ "default", 0L },
};
// slice_assertion after this number of tsc ticks...
decltype(ircd::ctx::prof::settings::slice_assertion)
ircd::ctx::prof::settings::slice_assertion
{
{ "name", "ircd.ctx.prof.slice_assertion" },
{ "default", 0L },
};
#ifdef RB_DEBUG
void
2016-11-29 16:23:38 +01:00
ircd::ctx::prof::mark(const event &e)
{
switch(e)
{
case event::CUR_ENTER: handle_cur_enter(); break;
case event::CUR_LEAVE: handle_cur_leave(); break;
case event::CUR_YIELD: handle_cur_yield(); break;
case event::CUR_CONTINUE: handle_cur_continue(); break;
default: break;
}
}
#else
void
ircd::ctx::prof::mark(const event &e)
{
}
#endif
ulong
ircd::ctx::prof::cur_slice_cycles()
{
return rdtsc() - cur_slice_start();
}
const ulong &
ircd::ctx::prof::cur_slice_start()
{
return _slice_start;
}
const ulong &
ircd::ctx::prof::total_slice_cycles()
{
return _slice_total;
}
void
2016-11-29 16:23:38 +01:00
ircd::ctx::prof::handle_cur_enter()
{
slice_start();
}
void
2016-11-29 16:23:38 +01:00
ircd::ctx::prof::handle_cur_leave()
{
check_slice();
}
void
2016-11-29 16:23:38 +01:00
ircd::ctx::prof::handle_cur_yield()
{
check_slice();
check_stack();
}
void
2016-11-29 16:23:38 +01:00
ircd::ctx::prof::handle_cur_continue()
{
slice_start();
}
void
2016-11-29 16:23:38 +01:00
ircd::ctx::prof::slice_start()
{
_slice_start = rdtsc();
}
void
2016-11-29 16:23:38 +01:00
ircd::ctx::prof::check_slice()
{
const auto &last_cycles
{
cur_slice_cycles()
};
2016-11-29 16:23:38 +01:00
auto &c(cur());
c.profile.cycles += last_cycles;
_slice_total += last_cycles;
2016-11-29 16:23:38 +01:00
const ulong &slice_warning(settings::slice_warning);
if(unlikely(slice_warning > 0 && last_cycles >= slice_warning))
log::dwarning
{
"context timeslice exceeded '%s' #%lu total: %lu last: %lu",
name(c),
id(c),
cycles(c),
last_cycles
};
const ulong &slice_assertion(settings::slice_assertion);
assert(slice_assertion == 0 || last_cycles < slice_assertion);
const ulong &slice_interrupt(settings::slice_interrupt);
if(unlikely(slice_interrupt > 0 && last_cycles >= slice_interrupt))
throw interrupted
{
"context '%s' #%lu watchdog interrupt (total: %lu last: %lu)",
name(c),
id(c),
cycles(c),
last_cycles
};
}
void
2016-11-29 16:23:38 +01:00
ircd::ctx::prof::check_stack()
{
auto &c(cur());
const double &stack_max(c.stack.max);
const auto &stack_at(stack_at_here());
c.stack.at = stack_at;
const double &stack_usage_assertion(settings::stack_usage_assertion);
if(unlikely(stack_at > stack_max * stack_usage_assertion))
{
log::dwarning
{
"context stack usage ctx '%s' #%lu used %zu of %zu bytes",
name(c),
id(c),
stack_at,
c.stack.max
};
const double &stack_usage_assertion(settings::stack_usage_assertion);
assert(stack_at < c.stack.max * double(settings::stack_usage_assertion));
}
}
#ifdef HAVE_X86INTRIN_H
ulong
ircd::ctx::prof::rdtsc()
{
return __rdtsc();
}
#else
ulong
ircd::ctx::prof::rdtsc()
{
static_assert
(
0, "TODO: Implement fallback here"
);
return 0;
}
#endif
///////////////////////////////////////////////////////////////////////////////
//
// ctx_ole.h
//
namespace ircd::ctx::ole
{
using closure = std::function<void ()>;
2018-05-26 05:21:36 +02:00
extern conf::item<size_t> thread_max;
std::mutex mutex;
std::condition_variable cond;
2018-05-26 05:21:36 +02:00
bool termination;
std::deque<closure> queue;
2018-05-26 05:21:36 +02:00
std::vector<std::thread> threads;
closure pop();
void push(closure &&);
2018-05-26 05:21:36 +02:00
void worker() noexcept;
}
2018-05-26 05:21:36 +02:00
decltype(ircd::ctx::ole::thread_max)
ircd::ctx::ole::thread_max
{
{ "name", "ircd.ctx.ole.thread.max" },
{ "default", int64_t(1) },
};
2016-11-29 16:23:38 +01:00
ircd::ctx::ole::init::init()
{
2018-05-26 05:21:36 +02:00
assert(threads.empty());
termination = false;
}
2016-11-29 16:23:38 +01:00
ircd::ctx::ole::init::~init()
noexcept
{
2018-05-26 05:21:36 +02:00
std::unique_lock<decltype(mutex)> lock(mutex);
termination = true;
cond.notify_all();
cond.wait(lock, []
{
return threads.empty();
});
}
void
2016-11-29 16:23:38 +01:00
ircd::ctx::ole::offload(const std::function<void ()> &func)
{
bool done(false);
auto *const context(current);
const auto kick([&context, &done]
{
done = true;
notify(*context);
});
std::exception_ptr eptr;
auto closure([&func, &eptr, &context, &kick]
() noexcept
{
try
{
func();
}
catch(...)
{
eptr = std::current_exception();
}
2017-08-23 22:59:27 +02:00
// To wake the context on the IRCd thread we give it the kick
signal(*context, kick);
});
// interrupt(ctx) is suppressed while this context has offloaded some work
// to another thread. This context must stay right here and not disappear
// until the other thread signals back. Note that the destructor is
// capable of throwing an interrupt that was received during this scope.
2018-08-20 03:09:04 +02:00
const uninterruptible uninterruptible;
push(std::move(closure)); do
{
wait();
}
while(!done);
// Don't throw any exception if there is a pending interrupt for this ctx.
// Two exceptions will be thrown in that case and if there's an interrupt
// we don't care about eptr anyway.
if(eptr && likely(!interruption_requested()))
std::rethrow_exception(eptr);
}
void
2016-11-29 16:23:38 +01:00
ircd::ctx::ole::push(closure &&func)
{
2018-05-26 05:21:36 +02:00
if(unlikely(threads.size() < size_t(thread_max)))
threads.emplace_back(&worker);
2018-02-07 20:37:11 +01:00
const std::lock_guard<decltype(mutex)> lock(mutex);
queue.emplace_back(std::move(func));
2018-05-26 05:21:36 +02:00
cond.notify_all();
}
void
2016-11-29 16:23:38 +01:00
ircd::ctx::ole::worker()
noexcept try
{
while(1)
{
const auto func(pop());
func();
}
}
catch(const interrupted &)
{
2018-05-26 05:21:36 +02:00
std::unique_lock<decltype(mutex)> lock(mutex);
const auto it(std::find_if(begin(threads), end(threads), []
(const auto &thread)
{
return thread.get_id() == std::this_thread::get_id();
}));
assert(it != end(threads));
auto &this_thread(*it);
this_thread.detach();
threads.erase(it);
cond.notify_all();
}
2016-11-29 16:23:38 +01:00
ircd::ctx::ole::closure
ircd::ctx::ole::pop()
{
std::unique_lock<decltype(mutex)> lock(mutex);
cond.wait(lock, []
{
if(!queue.empty())
return true;
2018-05-26 05:21:36 +02:00
if(unlikely(termination))
throw interrupted{};
return false;
});
auto c(std::move(queue.front()));
queue.pop_front();
return std::move(c);
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx/promise.h
//
//
// promise<void>
//
void
ircd::ctx::promise<void>::set_value()
{
check_pending();
make_ready();
}
ircd::ctx::shared_state<void> &
ircd::ctx::promise<void>::state()
{
return promise_base::state<void>();
}
const ircd::ctx::shared_state<void> &
ircd::ctx::promise<void>::state()
const
{
return promise_base::state<void>();
}
//
// promise_base::promise_base
//
ircd::ctx::promise_base::promise_base(promise_base &&o)
noexcept
:st{std::move(o.st)}
,next{std::move(o.next)}
{
if(st)
{
update(*this, o);
o.st = nullptr;
}
}
ircd::ctx::promise_base::promise_base(const promise_base &o)
:st{o.st}
,next{nullptr}
{
append(*this, const_cast<promise_base &>(o));
}
ircd::ctx::promise_base &
ircd::ctx::promise_base::operator=(promise_base &&o)
noexcept
{
this->~promise_base();
st = std::move(o.st);
next = std::move(o.next);
if(!st)
return *this;
update(*this, o);
o.st = nullptr;
return *this;
}
ircd::ctx::promise_base::~promise_base()
noexcept
{
if(!valid())
return;
if(refcount(state()) == 1)
set_exception(std::make_exception_ptr(broken_promise()));
else
remove(state(), *this);
}
void
ircd::ctx::promise_base::set_exception(std::exception_ptr eptr)
{
check_pending();
state().eptr = std::move(eptr);
make_ready();
}
void
ircd::ctx::promise_base::make_ready()
{
auto &st(state());
// First we have to chase the linked list of promises reachable
// from this shared_state. invalidate() will null their pointer
// to the shared_state indicating the promise was already satisfied.
// This is done first because the set() to the READY writes to the
// same union as the promise pointer (see shared_state.h).
invalidate(st);
// Now set the shared_state to READY. We know the location of the
// shared state by saving it in this frame earlier, otherwise invalidate()
// would have nulled it.
set(st, future_state::READY);
// Finally call the notify() routine which will tell the future the promise
// was satisfied and the value/exception is ready for them. This call may
// notify an ircd::ctx and/or post a function to the ircd::ios for a then()
// callback etc.
notify(st);
2018-11-07 04:46:28 +01:00
// At this point the future should no longer be considered valid; no longer
// referring to the shared_state.
assert(!valid());
}
void
ircd::ctx::promise_base::check_pending()
const
{
assert(valid());
if(unlikely(!is(state(), future_state::PENDING)))
throw promise_already_satisfied{};
}
bool
ircd::ctx::promise_base::operator!()
const
{
return !valid();
}
ircd::ctx::promise_base::operator bool()
const
{
return valid();
}
bool
ircd::ctx::promise_base::valid()
const
{
return bool(st);
}
ircd::ctx::shared_state_base &
ircd::ctx::promise_base::state()
{
assert(valid());
return *st;
}
const ircd::ctx::shared_state_base &
ircd::ctx::promise_base::state()
const
{
assert(valid());
return *st;
}
/// Internal semantics; chases the linked list of promises and adds a reference
/// to a new copy at the end (for copy semantic).
void
ircd::ctx::promise_base::append(promise_base &new_,
promise_base &old)
{
if(!old.next)
{
old.next = &new_;
return;
}
promise_base *next{old.next};
for(; next->next; next = next->next);
next->next = &new_;
}
/// Internal semantics; updates the location of a promise within the linked
/// list of related promises (for move semantic).
void
ircd::ctx::promise_base::update(promise_base &new_,
promise_base &old)
{
assert(old.st);
auto &st{*old.st};
if(!is(st, future_state::PENDING))
return;
if(st.p == &old)
{
st.p = &new_;
return;
}
promise_base *last{st.p};
for(promise_base *next{last->next}; next; last = next, next = last->next)
if(next == &old)
{
last->next = &new_;
break;
}
}
/// Internal semantics; removes the promise from the linked list of promises.
/// Because the linked list of promises is a forward singly-linked list this
/// operation requires a reference to the list's head in shared_state_base
/// (for dtor semantic).
void
ircd::ctx::promise_base::remove(shared_state_base &st,
promise_base &p)
{
if(!is(st, future_state::PENDING))
return;
if(st.p == &p)
{
st.p = p.next;
return;
}
promise_base *last{st.p};
for(promise_base *next{last->next}; next; last = next, next = last->next)
if(next == &p)
{
last->next = p.next;
break;
}
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx/shared_shared.h
//
/// Internal use
void
ircd::ctx::notify(shared_state_base &st)
{
if(!st.then)
{
st.cond.notify_all();
return;
}
if(!current)
{
st.cond.notify_all();
assert(bool(st.then));
st.then(st);
return;
}
const stack_usage_assertion sua;
st.cond.notify_all();
assert(bool(st.then));
st.then(st);
}
/// Internal use; chases the linked list of promises starting from the head
/// in the shared_state and invalidates all of their references to the shared
/// state. This will cause the promise to no longer be valid().
///
void
ircd::ctx::invalidate(shared_state_base &st)
{
if(is(st, future_state::PENDING))
for(promise_base *p{st.p}; p; p = p->next)
p->st = nullptr;
}
/// Internal use; chases the linked list of promises starting from the head in
/// the shared_state and updates the location of the shared_state within each
/// promise. This is used to tell the promises when the shared_state itself
/// has relocated.
///
void
ircd::ctx::update(shared_state_base &st)
{
if(is(st, future_state::PENDING))
for(promise_base *p{st.p}; p; p = p->next)
p->st = &st;
}
/// Internal use; returns the number of copies of the promise reachable from
/// the linked list headed by the shared state. This is used to indicate when
/// the last copy has destructed which may result in a broken_promise exception
/// being sent to the future.
size_t
ircd::ctx::refcount(const shared_state_base &st)
{
size_t ret{0};
if(is(st, future_state::PENDING))
for(const promise_base *p{st.p}; p; p = p->next)
++ret;
return ret;
}
/// Internal use; sets the state indicator within the shared_state object. Take
/// special note that this data is unionized. Setting a state here will clobber
/// the shared_state's reference to its promise.
void
ircd::ctx::set(shared_state_base &st,
const future_state &state)
{
switch(state)
{
case future_state::INVALID: assert(0); return;
case future_state::PENDING: assert(0); return;
case future_state::OBSERVED:
case future_state::READY:
case future_state::RETRIEVED:
default:
st.st = state;
return;
}
}
/// Internal; check if the current state is something; safe but unnecessary
/// for public use. Take special note here that the state value is unionized.
///
/// A PENDING state returned here does not mean the state contains the
/// enumerated PENDING value itself, but instead contains a valid pointer
/// to a promise.
///
/// An INVALID state shares a zero/null value in the unionized data.
bool
ircd::ctx::is(const shared_state_base &st,
const future_state &state_)
{
switch(st.st)
{
case future_state::READY:
case future_state::OBSERVED:
case future_state::RETRIEVED:
return state_ == st.st;
default: switch(state_)
{
case future_state::INVALID:
return st.p == nullptr;
case future_state::PENDING:
return uintptr_t(st.p) >= 0x1000;
default:
return false;
}
}
}
/// Internal; get the current state of the shared_state; safe but unnecessary
/// for public use.
///
/// NOTE: This operates over a union of a pointer and an enum class. The
/// way we determine whether the data is a pointer or an enum value is
/// with a test of the value being >= the system's page size. This assumes
/// the system does not use the first page of a process's address space
/// to fault on null pointer dereference. This assumption may not hold on
/// all systems or in all environments.
///
/// Alternatively, we can switch this to checking whether the value is simply
/// above the few low-numbered enum values.
ircd::ctx::future_state
ircd::ctx::state(const shared_state_base &st)
{
return uintptr_t(st.p) >= ircd::info::page_size?
future_state::PENDING:
st.st;
}
//
// shared_state_base::shared_state_base
//
ircd::ctx::shared_state_base::shared_state_base(promise_base &p)
:p{&p}
{
}
// Linkage
ircd::ctx::shared_state_base::~shared_state_base()
noexcept
{
then = {};
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx_list.h
//
void
ircd::ctx::list::remove(ctx *const &c)
{
assert(c);
if(c == head)
{
pop_front();
return;
}
if(c == tail)
{
pop_back();
return;
}
assert(next(c) && prev(c));
prev(next(c)) = prev(c);
next(prev(c)) = next(c);
next(c) = nullptr;
prev(c) = nullptr;
}
ircd::ctx::ctx *
ircd::ctx::list::pop_back()
{
const auto tail
{
this->tail
};
if(!tail)
2018-08-27 10:45:31 +02:00
{
assert(!head);
return tail;
2018-08-27 10:45:31 +02:00
}
2018-08-27 10:45:31 +02:00
assert(head);
assert(!next(tail));
if(!prev(tail))
{
this->head = nullptr;
this->tail = nullptr;
} else {
assert(next(prev(tail)) == tail);
next(prev(tail)) = nullptr;
this->tail = prev(tail);
}
prev(tail) = nullptr;
next(tail) = nullptr;
return tail;
}
ircd::ctx::ctx *
ircd::ctx::list::pop_front()
{
const auto head
{
this->head
};
if(!head)
2018-08-27 10:45:31 +02:00
{
assert(!tail);
return head;
2018-08-27 10:45:31 +02:00
}
2018-08-27 10:45:31 +02:00
assert(tail);
assert(!prev(head));
if(!next(head))
{
this->head = nullptr;
this->tail = nullptr;
} else {
assert(prev(next(head)) == head);
prev(next(head)) = nullptr;
this->head = next(head);
}
prev(head) = nullptr;
next(head) = nullptr;
return head;
}
void
ircd::ctx::list::push_front(ctx *const &c)
{
assert(next(c) == nullptr);
assert(prev(c) == nullptr);
if(!head)
{
2018-08-27 10:45:31 +02:00
assert(!tail);
head = c;
tail = c;
return;
}
assert(prev(head) == nullptr);
prev(head) = c;
next(c) = head;
head = c;
}
void
ircd::ctx::list::push_back(ctx *const &c)
{
assert(next(c) == nullptr);
assert(prev(c) == nullptr);
if(!tail)
{
assert(!head);
head = c;
tail = c;
return;
}
assert(next(tail) == nullptr);
next(tail) = c;
prev(c) = tail;
tail = c;
}
void
ircd::ctx::list::rfor_each(const std::function<void (ctx &)> &closure)
{
for(ctx *tail{this->tail}; tail; tail = prev(tail))
closure(*tail);
}
void
ircd::ctx::list::rfor_each(const std::function<void (const ctx &)> &closure)
const
{
for(const ctx *tail{this->tail}; tail; tail = prev(tail))
closure(*tail);
}
bool
ircd::ctx::list::rfor_each(const std::function<bool (ctx &)> &closure)
{
for(ctx *tail{this->tail}; tail; tail = prev(tail))
if(!closure(*tail))
return false;
return true;
}
bool
ircd::ctx::list::rfor_each(const std::function<bool (const ctx &)> &closure)
const
{
for(const ctx *tail{this->tail}; tail; tail = prev(tail))
if(!closure(*tail))
return false;
return true;
}
void
ircd::ctx::list::for_each(const std::function<void (ctx &)> &closure)
{
for(ctx *head{this->head}; head; head = next(head))
closure(*head);
}
void
ircd::ctx::list::for_each(const std::function<void (const ctx &)> &closure)
const
{
for(const ctx *head{this->head}; head; head = next(head))
closure(*head);
}
bool
ircd::ctx::list::for_each(const std::function<bool (ctx &)> &closure)
{
for(ctx *head{this->head}; head; head = next(head))
if(!closure(*head))
return false;
return true;
}
bool
ircd::ctx::list::for_each(const std::function<bool (const ctx &)> &closure)
const
{
for(const ctx *head{this->head}; head; head = next(head))
if(!closure(*head))
return false;
return true;
}
ircd::ctx::ctx *&
ircd::ctx::list::prev(ctx *const &c)
{
assert(c);
return c->node.prev;
}
ircd::ctx::ctx *&
ircd::ctx::list::next(ctx *const &c)
{
assert(c);
return c->node.next;
}
const ircd::ctx::ctx *
ircd::ctx::list::prev(const ctx *const &c)
{
assert(c);
return c->node.prev;
}
const ircd::ctx::ctx *
ircd::ctx::list::next(const ctx *const &c)
{
assert(c);
return c->node.next;
}